R. Ben-yishai, R. Bar-or, and H. Sompolinsky, Theory of orientation tuning in visual cortex., Proc. Natl. Acad. Sci. USA, pp.3844-3848, 1995.
DOI : 10.1073/pnas.92.9.3844

D. Hansel and H. Sompolinsky, Modeling feature selectivity in local cortical circuits, Methods of Neuronal Modeling, pp.499-567, 1997.

P. Bressloff, N. Bressloff, and J. Cowan, Dynamical Mechanism for Sharp Orientation Tuning in an Integrate-and-Fire Model of a Cortical Hypercolumn, Neural Computation, vol.16, issue.11, pp.2473-2511, 2000.
DOI : 10.1007/BF00288786

P. C. Bressloff and J. D. Cowan, A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.358, issue.1438, 2003.
DOI : 10.1098/rstb.2002.1109

G. Orban, H. Kennedy, and J. Bullier, Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity, J. Neurophysiol, vol.56, pp.462-480, 1986.

D. Hubel and T. Wiesel, Receptive fields and functional architecture of monkey striate cortex, The Journal of Physiology, vol.195, issue.1, p.215, 1968.
DOI : 10.1113/jphysiol.1968.sp008455

P. Chossat and O. Faugeras, Hyperbolic Planforms in Relation to Visual Edges and Textures Perception, PLoS Computational Biology, vol.33, issue.12, p.1000625, 2009.
DOI : 10.1371/journal.pcbi.1000625.s006

URL : https://hal.archives-ouvertes.fr/hal-00807344

J. Bigun and G. Granlund, Optimal orientation detection of linear symmetry, Proc. First Int'l Conf. Comput. Vision, pp.433-438, 1987.

H. Knutsson, Representing Local Structure Using Tensors II, Scandinavian Conference on Image Analysis, pp.244-251, 1989.
DOI : 10.1007/978-3-540-75757-3_110

H. Wilson and J. Cowan, Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons, Biophysical Journal, vol.12, issue.1, pp.1-24, 1972.
DOI : 10.1016/S0006-3495(72)86068-5

P. Bressloff, J. Cowan, M. Golubitsky, P. Thomas, and M. Wiener, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.356, issue.1407, pp.299-330, 2001.
DOI : 10.1098/rstb.2000.0769

P. Bressloff, J. Cowan, M. Golubitsky, P. Thomas, and M. Wiener, What Geometric Visual Hallucinations Tell Us about the Visual Cortex, Neural Computation, vol.222, issue.8, pp.473-491, 2002.
DOI : 10.1007/BF00288786

P. Bressloff and J. Cowan, The visual cortex as a crystal, Physica D: Nonlinear Phenomena, vol.173, issue.3-4, pp.226-258, 2002.
DOI : 10.1016/S0167-2789(02)00677-2

P. Bressloff and J. Cowan, SO(3) Symmetry Breaking Mechanism for Orientation and Spatial Frequency Tuning in the Visual Cortex, Physical Review Letters, vol.88, issue.7, 2002.
DOI : 10.1103/PhysRevLett.88.078102

P. Chossat, G. Faye, and O. Faugeras, Bifurcation of Hyperbolic Planforms, Journal of Nonlinear Science, vol.10, issue.8, 2010.
DOI : 10.1007/s00332-010-9089-3

URL : https://hal.archives-ouvertes.fr/hal-00807355

S. Bonnabel and R. Sepulchre, Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.3, pp.1055-1070, 2009.
DOI : 10.1137/080731347

S. Katok, Fuchsian Groups. Chicago Lectures in Mathematics, 1992.

M. Moakher, A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices, SIAM Journal on Matrix Analysis and Applications, vol.26, issue.3, pp.735-747, 2005.
DOI : 10.1137/S0895479803436937

O. Shriki, D. Hansel, and H. Sompolinsky, Rate Models for Conductance-Based Cortical Neuronal Networks, Neural Computation, vol.16, issue.8, pp.1809-1841, 2003.
DOI : 10.1016/S0006-3495(72)86068-5

URL : https://hal.archives-ouvertes.fr/hal-00173803

S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, vol.13, issue.2, pp.77-87, 1977.
DOI : 10.1007/BF00337259

R. Potthast and P. B. Graben, Existence and properties of solutions for neural field equations, Mathematical Methods in the Applied Sciences, vol.36, issue.1-4, pp.935-949, 2010.
DOI : 10.1002/mma.1199

S. Helgason, In: Groups and Geometric Analysis, Mathematical Surveys and Monographs, vol.83, 2000.
DOI : 10.1090/surv/083

O. Faugeras, R. Veltz, and F. Grimbert, -Dimensional Neural Networks, Neural Computation, vol.13, issue.2, pp.147-187, 2009.
DOI : 10.1007/s004220000237

URL : https://hal.archives-ouvertes.fr/inria-00192952

M. Camperi and X. Wang, A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability, Journal of Computational Neuroscience, vol.5, issue.4, pp.383-405, 1998.
DOI : 10.1023/A:1008837311948

D. Pinto and G. Ermentrout, Spatially Structured Activity in Synaptically Coupled Neuronal Networks: I. Traveling Fronts and Pulses, SIAM Journal on Applied Mathematics, vol.62, issue.1, pp.206-225, 2001.
DOI : 10.1137/S0036139900346453

C. Laing, W. Troy, B. Gutkin, and G. Ermentrout, Multiple Bumps in a Neuronal Model of Working Memory, SIAM Journal on Applied Mathematics, vol.63, issue.1, pp.62-97, 2002.
DOI : 10.1137/S0036139901389495

C. R. Laing and W. C. Troy, PDE Methods for Nonlocal Models, SIAM Journal on Applied Dynamical Systems, vol.2, issue.3, pp.487-516, 2003.
DOI : 10.1137/030600040

C. Laing and W. Troy, Two-bump solutions of Amari-type models of neuronal pattern formation, Physica D: Nonlinear Phenomena, vol.178, issue.3-4, pp.190-218, 2003.
DOI : 10.1016/S0167-2789(03)00013-7

M. Owen, C. Laing, and S. Coombes, Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities, New Journal of Physics, vol.9, issue.10, pp.378-401, 2007.
DOI : 10.1088/1367-2630/9/10/378

S. Coombes, Waves, bumps, and patterns in neural field theories, Biological Cybernetics, vol.16, issue.2, pp.91-108, 2005.
DOI : 10.1007/s00422-005-0574-y

S. E. Folias and P. C. Bressloff, Breathing Pulses in an Excitatory Neural Network, SIAM Journal on Applied Dynamical Systems, vol.3, issue.3, pp.378-407, 2004.
DOI : 10.1137/030602629

G. Faye and O. Faugeras, Some theoretical and numerical results for delayed neural field equations, Physica D: Nonlinear Phenomena, vol.239, issue.9, 2010.
DOI : 10.1016/j.physd.2010.01.010

URL : https://hal.archives-ouvertes.fr/hal-00847433

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, 2003.
DOI : 10.1093/acprof:oso/9780198506546.001.0001

R. Veltz and O. Faugeras, Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations, SIAM Journal on Applied Dynamical Systems, vol.9, issue.3, pp.954-998, 2010.
DOI : 10.1137/090773611

URL : https://hal.archives-ouvertes.fr/hal-00712201

H. Iwaniec, In: Spectral Methods of Automorphic Forms, AMS Graduate Series in Mathematics, vol.53, 2002.
DOI : 10.1090/gsm/053