H. Wilson and J. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, vol.12, issue.2, pp.55-80, 1973.
DOI : 10.1007/BF00288786

S. I. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological Cybernetics, vol.13, issue.2, pp.77-87, 1977.
DOI : 10.1007/BF00337259

R. Curtu and B. Ermentrout, Pattern Formation in a Network of Excitatory and Inhibitory Cells with Adaptation, SIAM Journal on Applied Dynamical Systems, vol.3, issue.3, p.191, 2004.
DOI : 10.1137/030600503

Z. Kilpatrick and P. Bressloff, Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network, Physica D: Nonlinear Phenomena, vol.239, issue.9, pp.547-560, 2010.
DOI : 10.1016/j.physd.2009.06.003

R. Ben-yishai, R. Bar-or, and H. Sompolinsky, Theory of orientation tuning in visual cortex., Proc. Natl. Acad. Sci. USA, pp.3844-3848, 1995.
DOI : 10.1073/pnas.92.9.3844

P. Bressloff, J. Cowan, M. Golubitsky, P. Thomas, and M. Wiener, Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.356, issue.1407, pp.299-3300769, 1407.
DOI : 10.1098/rstb.2000.0769

S. Coombes and C. Laing, Delays in activity-based neural networks, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.12, issue.1, pp.1117-1129, 2009.
DOI : 10.1103/PhysRevA.39.347

A. Roxin, N. Brunel, and D. Hansel, Role of Delays in Shaping Spatiotemporal Dynamics of Neuronal Activity in Large Networks, Physical Review Letters, vol.94, issue.23, p.238103, 2005.
DOI : 10.1103/PhysRevLett.94.238103

URL : https://hal.archives-ouvertes.fr/hal-00094058

N. Venkov, S. Coombes, and P. Matthews, Dynamic instabilities in scalar neural field equations with space-dependent delays, Physica D: Nonlinear Phenomena, vol.232, issue.1, pp.1-15, 2007.
DOI : 10.1016/j.physd.2007.04.011

V. Jirsa and J. Kelso, Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies, Physical Review E, vol.62, issue.6, pp.8462-8465, 2000.
DOI : 10.1103/PhysRevE.62.8462

J. Wu, Symmetric functional differential equations and neural networks with memory, Transactions of the American Mathematical Society, vol.350, issue.12, pp.4799-4838, 1998.
DOI : 10.1090/S0002-9947-98-02083-2

J. Bélair, S. Campbell, and P. Van-den-driessche, Frustration, Stability, and Delay-Induced Oscillations in a Neural Network Model, SIAM Journal on Applied Mathematics, vol.56, issue.1, pp.245-255, 1996.
DOI : 10.1137/S0036139994274526

J. Bélair and S. Campbell, Stability and Bifurcations of Equilibria in a Multiple-Delayed Differential Equation, SIAM Journal on Applied Mathematics, vol.54, issue.5, pp.1402-1424, 1994.
DOI : 10.1137/S0036139993248853

S. Campbell, S. Ruan, G. Wolkowicz, and J. Wu, Stability and bifurcation of a simple neural network with multiple time delays, Differential Equations with Application to Biology, pp.65-79, 1999.
DOI : 10.1090/fic/021/06

F. M. Atay and A. Hutt, Neural Fields with Distributed Transmission Speeds and Long???Range Feedback Delays, SIAM Journal on Applied Dynamical Systems, vol.5, issue.4, pp.670-698, 2006.
DOI : 10.1137/050629367

J. Budd, K. Kovács, A. Ferecskó, P. Buzás, U. Eysel et al., Neocortical Axon Arbors Trade-off Material and Conduction Delay Conservation, PLoS Computational Biology, vol.3, issue.3, p.1000711, 2010.
DOI : 10.1371/journal.pcbi.1000711.s003

URL : http://doi.org/10.1371/journal.pcbi.1000711

O. Faugeras, F. Grimbert, and J. J. Slotine, Abolute stability and complete synchronization in a class of neural fields models, SIAM J. Appl. Math, vol.61, pp.205-250, 2008.

O. Faugeras, R. Veltz, and F. Grimbert, -Dimensional Neural Networks, Neural Computation, vol.13, issue.2, pp.147-187, 2009.
DOI : 10.1007/s004220000237

URL : https://hal.archives-ouvertes.fr/inria-00192952

R. Veltz and O. Faugeras, Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations, SIAM Journal on Applied Dynamical Systems, vol.9, issue.3, pp.954-998, 2010.
DOI : 10.1137/090773611

URL : https://hal.archives-ouvertes.fr/hal-00712201

F. M. Atay and A. Hutt, Stability and Bifurcations in Neural Fields with Finite Propagation Speed and General Connectivity, SIAM Journal on Applied Mathematics, vol.65, issue.2, pp.644-666, 2005.
DOI : 10.1137/S0036139903430884

A. Hutt, Local excitation-lateral inhibition interaction yields oscillatory instabilities in nonlocally interacting systems involving finite propagation delay, Physics Letters A, vol.372, issue.5, pp.541-546, 2008.
DOI : 10.1016/j.physleta.2007.08.018

URL : https://hal.archives-ouvertes.fr/inria-00332987

A. Hutt and F. Atay, Effects of distributed transmission speeds on propagating activity in neural populations, Physical Review E, vol.73, issue.2, pp.1-5, 2006.
DOI : 10.1103/PhysRevE.73.021906

S. Coombes, N. Venkov, L. Shiau, I. Bojak, D. Liley et al., Modeling electrocortical activity through improved local approximations of integral neural field equations, Physical Review E, vol.76, issue.5, p.51901, 2007.
DOI : 10.1103/PhysRevE.76.051901

P. Bressloff and Z. Kilpatrick, Nonlocal Ginzburg-Landau equation for cortical pattern formation, Physical Review E, vol.78, issue.4, pp.1-16, 2008.
DOI : 10.1103/PhysRevE.78.041916

G. Faye and O. Faugeras, Some theoretical and numerical results for delayed neural field equations, Physica D: Nonlinear Phenomena, vol.239, issue.9, pp.561-578, 2010.
DOI : 10.1016/j.physd.2010.01.010

URL : https://hal.archives-ouvertes.fr/hal-00847433

G. Ermentrout and J. Cowan, Large Scale Spatially Organized Activity in Neural Nets, SIAM Journal on Applied Mathematics, vol.38, issue.1, pp.1-21, 1980.
DOI : 10.1137/0138001

K. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Semigroup Forum, vol.63, issue.2, 2001.
DOI : 10.1007/s002330010042

J. Hale and S. Lunel, Introduction to Functional Differential Equations, 1993.
DOI : 10.1007/978-1-4612-4342-7

J. Wu, Theory and Applications of Partial Functional Differential Equations, 1996.
DOI : 10.1007/978-1-4612-4050-1

O. Diekmann, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, 1995.
DOI : 10.1007/978-1-4612-4206-2

K. Yosida, Functional Analysis, Classics in Mathematics, 1980.

A. Hutt, Finite Propagation Speeds in Spatially Extended Systems, p.151, 2009.
DOI : 10.1007/978-3-642-02329-3_5

URL : https://hal.archives-ouvertes.fr/inria-00403132

A. Bátkai and S. Piazzera, Semigroups for Delay Equations, 2005.

T. Kato, Perturbation Theory for Linear Operators, 1995.

D. Breda, S. Maset, and R. Vermiglio, TRACE-DDE: a Tool for Robust Analysis and Characteristic Equations for Delay Differential Equations, Topics in Time Delay Systems, pp.145-155, 2009.
DOI : 10.1007/978-3-642-02897-7_13

T. Burton, Stability by Fixed Point Theory for Functional Differential Equations, 2006.

E. Jarlebring, K. Meerbergen, and W. Michiels, An Arnoldi like method for the delay eigenvalue problem, 2010.

M. Enculescu and M. Bestehorn, Liapunov functional for a delayed integro-differential equation model of a neural field, Europhysics Letters (EPL), vol.77, issue.6, p.68007, 2007.
DOI : 10.1209/0295-5075/77/68007

J. Chen and H. Latchman, Asymptotic stability independent of delays: simple necessary and sufficient conditions, Proceedings of 1994 American Control Conference, ACC '94, 1994.
DOI : 10.1109/ACC.1994.751903

J. Chen, D. Xu, and B. Shafai, On sufficient conditions for stability independent of delay, IEEE Transactions on Automatic Control, vol.40, issue.9, pp.1675-1680, 1995.
DOI : 10.1109/9.412644