Type of Data Set	Model	Score	SD
	$CAT + GTR + \Gamma_4$	+103.01	± 9.15
	$CAT + GTR + COV + \Gamma_4$	+79.76	± 9.44
Nucleotide	$GTR + COV + \Gamma_4$	-7.22	± 6.46
	$CAT + JTT + \Gamma_4$	+17.88	± 5.87
	$CAT + MTREV + \Gamma_4$	+16.49	± 6.92
	$CAT + GTR + \Gamma_4$	+13.68	± 9.25
	$CAT + GTR + COV + \Gamma_4$	+1.55	± 12.97
	$GTR + \Gamma_4$	+1.24	± 5.14
	$CAT + JTT + COV + \Gamma_4$	+1.07	± 9.41
	$CAT + \Gamma_4$	-1.09	± 6.27
	$MTREV + \Gamma_4$	-1.38	± 4.11
	$CAT + MTREV + COV + \Gamma_4$	-3.25	± 7.20
Amino Acid	$UL3 + \Gamma_4$	-20.10	± 10.45
	$UL3 + COV + \Gamma_4$	-22.42	± 8.20
	$UL2 + \Gamma_4$	-26.71	± 8.77
	$UL2 + COV + \Gamma_4$	-27.66	± 7.40

Supplementary Table S3: **Fit of Bayesian models.** Cross-validation estimations of the fit of Bayesian models to the 33 taxa and the three concatenated gene data sets. Models applied to the nucleotide and amino-acid data-set are compared to the best fitting ML models, $GTR_{nt} + \Gamma_4$ and $JTT + \Gamma_4$, respectively. Models are defined according to their components. Substitution model: GTR_{nt} , GTR_{aa} , MtREV and JTT, exchange rate parameters; CAT, UL2 and UL3, site heterogeneous mixture models. Rates across sites models: $+\Gamma_4$, discretized gamma rates (Yang 1994, [42]); +COV, covarion model (Tuffley and Steel 1998, [71]).