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A Bayesian game-theoretic model is developed to design and analyze the resource allocation problem in K-user fading multiple
access channels (MACs), where the users are assumed to selfishly maximize their average achievable rates with incomplete
information about the fading channel gains. In such a game-theoretic study, the central question is whether a Bayesian equilibrium
exists, and if so, whether the network operates efficiently at the equilibrium point. We prove that there exists exactly one Bayesian
equilibrium in our game. Furthermore, we study the network sum-rate maximization problem by assuming that the users
coordinate according to a symmetric strategy profile. This result also serves as an upper bound for the Bayesian equilibrium.
Finally, simulation results are provided to show the network efficiency at the unique Bayesian equilibrium and to compare it with
other strategies.

1. Introduction

The fading multiple access channel (MAC) is a basic wireless
channel model that allows several transmitters connected to
the same receiver to transmit over it and share its capacity.
The capacity region of the fading MAC and the optimal
resource allocation algorithms have been characterized and
well studied in many pioneering works with different infor-
mation assumptions [1–4]. However, in order to achieve the
full capacity region, it usually requires a central computing
resource (a scheduler with comprehensive knowledge of
the network information) to globally allocate the system
resources. This process is centralized, since it involves
feedback and overhead communication whose load scales
linearly with the number of transmitters in the network.
In addition, with the fast evolution of wireless techniques,
this centralized network infrastructure begins to expose its
weakness in many aspects, for example, slow reconfigura-
tion against varying environment, increased computational
complexity, and so forth. This is especially crucial for femto-
cell networks where it is quite difficult to centralize the
information due to a limited capacity backhaul. Moreover,

the high density of base stations would increase the cost of
centralizing the information.

In recent years, increased research interest has been
given to self-organizing wireless networks in which mobile
devices allocate resources in a decentralized manner [5].
Tools from game theory [6] have been widely applied to
study the resource allocation and power control problems
in fading MAC [7], as well as many other types of channels,
such as orthogonal frequency division multiplexing (OFDM)
[8], multiple input and multiple output (MIMO) channels
[9, 10], and interference channels [11]. Typically, the game-
theoretic models used in these previous works assume that
the knowledge, for example, channel state information (CSI),
about other devices is available to all devices. However, this
assumption is hardly met in practice. In practical wireless
scenarios, mobile devices can have local information but can
barely access to global information on the network status.

A static noncooperative game has been introduced
in the context of the two-user fading MAC, known as
“waterfilling game” [7]. By assuming that users compete with
transmission rates as utility and transmit powers as moves,
the authors show that there exists a unique Nash equilibrium
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[12] which corresponds to the maximum sum-rate point
of the capacity region. This claim is somewhat surprising,
since the Nash equilibrium is in general inefficient compared
to the Pareto optimality. However, their results rely on the
fact that both transmitters have complete knowledge of the
CSI, and in particular, perfect CSI of all transmitters in the
network. As we previously pointed out, this assumption is
rarely realistic in practice.

Thus, this power allocation game needs to be recon-
structed with some realistic assumptions made about the
knowledge level of mobile devices. Under this consideration,
it is of great interest to investigate scenarios in which devices
have “incomplete information” about their components, for
example, a device is aware of its own channel gain, but
unaware of the channel gains of other devices. In game
theory, a strategic game with incomplete information is
called a “Bayesian game.” Over the last ten years, Bayesian
game-theoretic tools have been used to design distributed
resource allocation strategies only in a few contexts, for
example, CDMA networks [13, 14], multicarrier interference
networks [15]. The primary motivation of this paper is
therefore to investigate how Bayesian games can be applied
to study the resource allocation problems in the fading
MAC. In some sense, this study can help to design a self-
organizing femto-cell network where different frequency
bands or subcarriers are used for the femto-cell coverage, for
example, different femto-cells operate on different frequency
bands to avoid interference.

In this paper, we introduce a Bayesian game-theoretic
model to design and analyze the resource allocation problem
in a fading MAC, where users are assumed to selfishly max-
imize their ergodic capacity with incomplete information
about the fading channel gains. In such a game-theoretic
study, the central question is whether a Bayesian equilibrium
exists, and if so, whether the network operates efficiently at
the equilibrium point. We prove that there exists exactly one
Bayesian equilibrium in our game. Furthermore, we study
the network sum-rate maximization problem by assuming
that all users coordinate to an optimization-based symmetric
strategy. This centralized strategy is important when the
fading processes for all users are relatively stationary and the
global system structure is fixed for a long period of time. This
result also serves as an upper bound for the unique Bayesian
equilibrium.

The paper is organized in the following form: In
Section 2, we introduce the system model and state impor-
tant assumptions. In Section 3, the K-user MAC is formu-
lated as a static Bayesian game. In Section 4, we charac-
terize the Bayesian equilibrium set. In Section 5, we give a
special discussion on the optimal symmetric strategy. Some
numerical results are provided to show the efficiency of the
Bayesian equilibrium in Section 6. Finally, we close with
some concluding remarks in Section 7.

2. System Model and Assumptions

2.1. System Model. We consider the uplink of a single-
cell network where K users are simultaneously sending

information to one base station. This corresponds to a fading
MAC, in which the users are the transmitters and the base
station is the receiver. The signal received at the base station
can be mathematically expressed as

y(t) =
K∑

k=1

√
gk(t)xk(t) + z(t), (1)

where xk(t) and gk(t) are the input signal and fading channel
gain of user k, and z(t) is a zero-mean white Gaussian
noise with variance σ2. The input signal xk(t) can be further
written as

xk(t) =
√
pk(t)sk(t), (2)

where pk(t) and sk(t) are the transmitted power and data of
user k at time t.

In this study, we consider the wireless transmission
in fast fading environments, that is, the coherence time
of the channel is small relative to the delay constraint of
the application. When the receiver can perfectly track the
channel but the transmitters have no such information, the
codewords cannot be chosen as a function of the state of the
channel but the decoding can make use of such information.
When the fading process is assumed to be stationary and
ergodic within the considered interval of signal transmission,
the channel capacity in a fast fading channel corresponds to
the notion of ergodic capacity, that is,

Eg

⎡
⎣log

⎛
⎝1 +

gk pk

σ2 +
∑K

j=1, j /= k g j p j

⎞
⎠
⎤
⎦, (3)

where g = {g1, . . . , gK} is a vector of channel gain variables.
Note that in (3) we assume that the receiver applies a
single-user decoding and there is not sophisticated successive
decoding to be used. An intuitive understanding of this
result can be obtained by viewing capacities in terms of
time averages of mutual information [16]. Although the
study of multiuser decoding is important, which may involve
Stackelberg games, fairness concepts, and generalized Nash
games, it is not provided in this study. The interested readers
are referred to [17] for this topic.

2.2. Assumption of Finite Channel States. Before introducing
our game model, we need to clarify a prior assumption for
this section.

Assumption 1. We assume that each user’s channel gain gk
is i.i.d. from two discrete values: g− and g+ with probability
ρ− and ρ+, respectively. Without loss of generality, we assume
g− < g+.

On the one hand, our assumption is closely related
to the way how feedback information is signalled to the
transmitters. In order to get the channel information gk at
the transmitter side, the base station is required to feedback
an estimate of gk to user k at a given precision. Since in digital
communications, any information is represented by a finite
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number of bits (e.g., x bits), channels gains are mapped into
a set that contains a finite number of states (2x states).

On the other hand, this is a necessary assumption
for analytical tractability, since in principle the functional
strategic form of a player can be quite complex with both
actions and states being continuous (or infinite). To avoid
this problem, in [15] the authors successfully modelled a
multicarrier Gaussian interference channel as a Bayesian
game with discrete (or finite) actions and continuous states.
Inspired from [15], we also model the fading MAC as a
Bayesian game under the assumption of continuous actions
and discrete states.

3. Game Formulation

We model the K-user fading MAC as a Bayesian game, in
which users do not have complete information. In a K-
user MAC, to have “complete information” means that, at
each time t, the channel gain realizations g1(t), . . . , gK (t) are
known at all the transmitters, denoted by Tx1, . . . , TxK . Any
other condition corresponds to a situation of incomplete
information. In this paper, the “incomplete information”
particularly refers to a situation where each Txk only
knows its own channel gain realization gk(t), but does not
know the channel gains of other transmitters g−k(t) =

{g1(t), . . . , gk−1(t), gk+1(t), . . . , gK (t)}. We will denote by gk
the channel gain variable of user k, whose distribution is
assumed to be stationary and ergodic in this section.

In such a communication system, the natural object of
each user is to maximize its ergodic capacity subject to an
average power constraint, that is,

max
pk

Eg

⎡
⎣log

⎛
⎝1 +

gk pk
(
gk
)

σ2 +
∑

j /= k g j p j

(
g j
)
⎞
⎠
⎤
⎦

s.t. Egk

[
pk
(
gk
)]
≤ Pmax

k

pk
(
gk
)
≥ 0,

(4)

where pk(·) and Pmax
k are transmit power strategy and

average power constraint of user k, respectively. Under the
assumption that each user has incomplete information about
the channel gains, user k’s strategy pk(·) is defined as a
function of its own channel gain gk, that is, pk(gn). Note that
(4) implies that user k should know at least the statistics of
other users’ channels.

For a given set of power strategies p−k = {p1, . . .,
pk−1, pk+1, . . . , pK}, the single-user maximization problem
(4) is a convex optimization problem [18]. Via Lagrangian
duality, the solution is given by the following equation:

Eg−k

⎡
⎣ gk

σ2 + gk pk
(
gk
)

+
∑

j /= k g j p j

(
g j
)
⎤
⎦ = λk, (5)

where the dual variable λk is chosen such that the power
constraint in (4) is satisfied with equality. However, the
solution of (5) depends on p−k(·) which user k does not

know, and the same holds for all other users. Thus, in order
to obtain the optimal power allocation, each user must adjust
its power level based on the guess of all other users’ strategies.
Now, given the following game model, each user is able to
adjust its strategy according to the belief it has about the
strategy of the other user.

The K-player MAC Bayesian game can be completely
characterized as

GMAC � 〈K , T , P , Q, U〉. (6)

(i) Player set: K = {1, . . . ,K}.

(ii) Type set: T = T1 × · · · × TK (“×” stands for the
Cartesian product) where Tk = {g−, g+}. A player’s
type is defined as its channel gain, that is, gk ∈ Tk.

(iii) Action set: P = P1×· · ·×PK where Pk = [0,Pmax
k ].

A player’s action is defined as its transmit power, that
is, pk ∈ Pk.

(iv) Probability set: Q = Q1 × · · · × QK where Qk =

{ρ−, ρ+}, we have ρ+ = Pr(gk = g+) and ρ− = Pr(gk =
g−).

(v) Payoff function set: U = {u1, . . . ,uK} where uk is
chosen as player k’s achievable rate

uk
(
p1, . . . , pK

)
= log

⎛
⎝1 +

gk pk
(
gk
)

σ2 +
∑K

j=1, j /= k g j p j

(
g j
)
⎞
⎠.

(7)

In games of incomplete information, a player’s type
represents any kind of private information that is relevant
to its decision making. In our context, the fading channel
gain gk is naturally considered as the type of user k, since
its decision (in terms of power) can only rely on gk. Note
that this is a continuous game (a continuous game extends the
notion of a discrete game (where players choose from a finite
set of pure strategies), it allows players to choose a strategy
from a continuous pure strategy set) with discrete states,
since each player’s action pk can take any value satisfying the
constraint pk ∈ [0, Pmax

k ] and the channel state gk is finite
gk ∈ {g−, g+}.

4. Bayesian Equilibrium

4.1. Definition of Bayesian Equilibrium. What we can expect
from the outcome of a Bayesian game if every selfish and
rational (rational player means a player chooses the best
response given its information) participant starts to play
the game? Generally speaking, the process of such players’
behaviors usually results in a Bayesian equilibrium, which
represents a common solution concept for Bayesian games.
In many cases, it represents a “stable” result of learning and
evolution of all participants. Therefore, it is important to
characterize such an equilibrium point, since it concerns the
performance prediction of a distributed system.
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Now, let { p̂k(·), p−k(·)} denote the strategy profile where
all players play p(·) except player k who plays p̂k(·), we can
then describe player k’s payoff as

uk
(
p̂k, p−k

)
= uk

(
p1, . . . , pk−1, p̂k, pk+1, . . . , pK

)
. (8)

Definition 2 (Bayesian equilibrium). The strategy profile
p⋆(·) = {p⋆k (·)}k∈K is a (pure strategy) Bayesian equilib-
rium, if for all k ∈ K , and for all pk(·) ∈ Pk and p−k(·) ∈
P−k

uk
(
p⋆k , p⋆−k

)
≥ uk

(
pk, p⋆−k

)
, (9)

where we define un � Eg[uk].

From this definition, it is clear that at the Bayesian
equilibrium no player can benefit from changing its strategy
while the other players keep theirs unchanged. Note that in a
strategic-form game with complete information each player
chooses a concrete action, whereas in a Bayesian game each
player k faces the problem of choosing a set or collection of
actions (power strategy pk(·)), one for each type (channel
gain gk) it may encounter. It is also worth to mention that the
action set of each player is independent of the type set, that
is, the actions available to user k are the same for all types.

4.2. Characterization of the Bayesian Equilibrium Set. It is
well known that, in general, an equilibrium point does not
necessarily exist [6]. Therefore, our primary interest in this
paper is to investigate the existence and uniqueness of a
Bayesian equilibrium in GMAC. We now state our main result.

Theorem 3. There exists a unique Bayesian equilibrium in the
K-user MAC game GMAC.

Proof. It is easy to prove the existence part, since the strategy
space pk is convex, compact, and nonempty for each k; the
payoff function uk is continuous in both pk and p−k; uk is
concave in pk for any p−k [6].

In order to prove the uniqueness part, we should rely on
a sufficient condition given in [19]: a non-cooperative game
has a unique equilibrium, if the nonnegative weighted sum
of the payoff functions is diagonally strictly concave. We firstly
give the definition.

Definition 4 (diagonally strictly concave). A weighted non-
negative sum function f (x, r) =

∑n
i=1 riϕi(x) is called

diagonally strictly concave for any vector x ∈ Rn×1 and fixed
vector r ∈ R

n×1
++ , if for any two different vectors x0, x1, we

have

Ω
(

x0, x1, r
)

�
(

x1 − x0
)T
δ
(

x0, r
)

+
(

x0 − x1
)T
δ
(

x1, r
)
> 0,

(10)

where δ(x, r) is called pseudogradient of f (x, r), defined as

δ(x, r) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r1
∂ϕ1

∂x1
...

rn
∂ϕn

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

We start with the following lemma.

Lemma 5. The weighted nonnegative sum of the average
payoffs uk in GMAC is diagonally strictly concave for r = c+1,
where c+ is a positive scalar, 1 is a vector whose every entry is 1.

Proof. Write the weighted nonnegative sum of the average
payoffs as

f u
(

p, r
)

�

K∑

k=1

rkuk
(

p
)
, (12)

where p = [p1 · · · pK ]T is the transmit power vector and

r = [r1 · · · rK ]T is a nonnegative vector assigning weights
r1, . . . , rK to the average payoffs u1, . . . ,uK , respectively. Sim-

ilar to (11), we let δu(p, r) � [r1(∂u1/∂p1) . . . rK (∂uK /∂pK )]T

be the pseudogradient of f u(p, r). Now, we define

pk � pk
(
g−
)

∀k, (13)

the transmit power of player k when its channel gain is
g−. Since we have shown from the Lagrangian that, at the
equilibrium, the power constraint is satisfied with equality,
that is, Egk [pk(gk)] = Pmax

k , we can write Pmax
k − ρ−pk(g−) =

ρ+pk(g+) for all k, as the transmit power when its channel
gain is g+. Therefore, it is easy to find that the average payoff

uk can be actually transformed into a weighted sum-log
function as follows:

uk
(
pk
)
=
∑

i

ωi log

⎡
⎣1 +

αik + βik pk

σ2 +
∑

j /= k

(
αij + βij p j

)
⎤
⎦, (14)

where i represents the index for different jointly probability
events, ωi represents the corresponding probability for event
i that are related to the probabilities {ρ−, ρ+}, and αik and βin
represent some positive and nonzero real numbers that are
related to the channel gains {g−, g+}. Note that the following
conditions hold for all i, k:

ωi > 0, αik + βik pk ≥ 0, αik > 0, βik /= 0, σ2 > 0.
(15)

Now, we can write the pseudogradient δu as

δu
(

p, r
)
=

⎡
⎢⎢⎢⎢⎢⎢⎣

c+ ∂u1

∂p1
...

c+ ∂uK
∂pK

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c+
∑

i

ωiβ
i
1φ
−1
i

(
p
)

...

c+
∑

i

ωiβ
i
Kφ

−1
i

(
p
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= c+
∑

i

⎡
⎢⎢⎣
ωiβ

i
1φ
−1
i

(
p
)

...
ωiβ

i
Kφ

−1
i

(
p
)

⎤
⎥⎥⎦,

(16)
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where the function φi(x) is defined as

φi(x) � σ2 +
K∑

k=1

(
αik + βik xk

)
. (17)

To check the diagonally strictly concave condition (10), we let
p0, p1 be two different vectors satisfying the power constraint,
and define

Ω
u
(

p0, p1, r
)

�
(

p1 − p0
)T
δu
(

p0, r
)

+
(

p0 − p1
)T
δu
(

p1, r
)

=
(

p1 − p0
)T[

δu
(

p0, r
)
− δu

(
p1, r

)]

=
[
∆p1 · · · ∆pK

]

×

⎡
⎢⎢⎢⎢⎢⎢⎣

c+
∑

i

ωiβ
i
1

(
φ−1
i

(
p0
)
− φ−1

i

(
p1
))

...

c+
∑

i

ωiβ
i
K

(
φ−1
i

(
p0
)
− φ−1

i

(
p1
))

⎤
⎥⎥⎥⎥⎥⎥⎦

= c+
∑

i

ωi
[
φ−1
i

(
p0
)
− φ−1

i

(
p1
)]
ζi

= c+
∑

i

ωiφ
−1
i

(
p0
)
φ−1
i

(
p1
)
ζ2
i ,

(18)

where ∆pk and ζi are defined as

∆pk � p1
k − p0

k ,

ζi �
K∑

k=1

βik∆pk,
(19)

Since p0, p1 are assumed to be two different vectors, we

must have ∆p = [∆p1 · · ·∆pK ]T
/= 0. Now, we can draw a

conclusion from the equation above:Ωu(p0, p1, r) > 0. This is
because: (1) the first part ωiφ

−1
i (p0)φ−1

i (p1) > 0 for all i, since
ωi > 0, σ2 > 0 and αik + βik pk ≥ 0 for all i, k; (2) the second
part ζ2

i ≥ 0 for all i, and there exists at least one nonzero term
ζ2
i , due to ∆p /= 0 and rk /= 0, βik /= 0 for all i, k. Therefore,

the summation of all the products of the first and the second
terms must be positive. From Definition 4, the sum-payoff

function f u(p, r) satisfies the condition of diagonally strictly
concave. This completes the proof of this lemma.

Since our sum-payoff function f u(p, r) given in (12)
is diagonally strictly concave, the uniqueness of Bayesian
equilibrium in our game GMAC follows directly from [19,
Theorem 2].

5. Optimal Symmetric Strategies

The Bayesian game-theoretic approach provides us a better
understanding of the wireless resource competition existing
in the fading MAC when every mobile device acts as a
selfish and rational decision maker (this means a device
always chooses the best response given its information).
The advantage of this model is that it mathematically

captures the behavior of selfish wireless entities in strategic
situations, which can automatically lead to the convergence
of system performance. The introduced Bayesian game-
theoretic framework fits very well the concept of self-
organizing networks, where the intelligence and decision
making is distributed. Such a scheme has apparent benefits
in terms of operational complexity and feedback load.

However, from the global system performance perspec-
tive, it is usually inefficient to give complete “freedom”
to mobile devices and let them take decisions without
any policy control over the network. It is very interesting
to note that a similar situation happens in the market
economy, where consumers can be modeled as players to
complete for the market resources. In the famous literature
The Wealth of Nations, Adam Smith (a Scottish moral
philosopher, pioneer of political economy, and father of
modern economics) expounded how rational self-interest
and competition can lead to economic prosperity and well-
being through macroeconomic adjustments. For example, all
states today have some form of macroeconomic control over
the market that removes the free and unrestricted direction
of resources from consumers and prices such as tariffs and
corporate subsidies.

In particular, wireless service providers would like to
design an appropriate policy to efficiently manage the system
resource so that the global network performance can be
optimized or enhanced to a certain theoretical limit, for
example, Shannon capacity or capacity region [20]. Appar-
ently, a centralized scheduler with comprehensive knowledge
of the network status can globally optimize the resource
utility. However, this approach usually involves sophisticated
optimization techniques and a feedback load that grows with
the number of wireless devices in the network. Thus, the
optimization-based centralized decision has to be frequently
updated as long as the wireless environment varies, or the
system structure changes, for example, a user joins or exits
the network.

In this section, we consider that the channel statistics
(fading processes) for all wireless devices are jointly station-
ary for a relatively long period of signal transmission, and
the global system structure remains unchanged. In addition,
we neglect the problem of computational complexity at the
scheduler and the impact of feedback load to the useful data
transmission rate. In this case, the network service provider
would strictly prefer to use a centralized approach, that is,
a scheduler assigns some globally optimal strategies to the
wireless devices, guiding them how to react under all kinds
of different situations. Based on the Bayesian game settings,
we provide a special discussion on the optimal symmetric
strategy design. Note that this result can be treated as a
theoretical upperbound for the performance measurement
of Bayesian equilibrium.

We now introduce a necessary assumption.

Assumption 6. Mobile devices are designed to use the same
power strategies, that is, they send the same power if
their observations on the channel states are symmetric. In
addition, we assume that the mobile devices have the same
average power constraint, that is, Pmax

1 = · · · = Pmax
K � Pmax.
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5.1. Two Channel States. For simplicity of our presentation,
We first consider the scenario of two users with two channel
states. In fact, the analysis of multiuser MAC can be extended
in a similar way. According to Assumption 6, we define

p− � p1

(
g−
)
= p2

(
g−
)
,

p+ � p1

(
g+

)
= p2

(
g+

)
,

(20)

and we have ρ−p− + ρ+p+ = Pmax. Write user 1’s average
payoff as (Without loss of generality, we consider user 1 in the
following context, since the problem is symmetric for user 2)

u1 = Eg1,g2

[
log2

(
1 +

g1p1

(
g1

)

σ2 + g2p2

(
g2

)
)]

= ρ2
−log2

(
1 +

g−p−
σ2 + g−p−

)

+ ρ−ρ+log2

(
1 +

g−p−
σ2 + g+

(
Pmax − ρ−p−

)
/ρ+

)

+ ρ−ρ+log2

(
1 +

g+

(
Pmax − ρ−p−

)
/ρ+

σ2 + g−p−

)

+ ρ2
+log2

(
1 +

g+

(
Pmax − ρ−p−

)
/ρ+

σ2 + g+

(
Pmax − ρ−p−

)
/ρ+

)
.

(21)

Now, u1 is transformed into a function of p−, write it as
u1(p−). To maximize the average achievable rate, user 1 needs
to solve the following optimization problem, as mentioned in
(4)

max
p−

u1

(
p−
)

s.t. 0 ≤ p− ≤
Pmax

ρ−
.

(22)

Under Assumption 6, it can be shown that (due to the
symmetric property) this single-user maximization problem
is equivalent to the multiuser sum average rate maximization
problem, that is, max(u1 + u2), which is our object in this
section.

But unfortunately, u1 may not be a convex function [18],
so the single-user problem may not be a convex optimization
problem. It can be further verified that u1 is convex under
some special conditions, depending on all the parameters
g−, g+, ρ−, ρ+,Pmax, and σ2. Here, we will not discuss all
the convex cases, but only focus on the high SNR regime
(meaning that the noise can be omitted compared to the
signal strength). In this case, we have

lim
σ2 → 0

u1 = ρ−ρ+

[
log2

(
1 +

g−p−
g+

(
Pmax − ρ−p−

)
/ρ+

)

+log2

(
1 +

g+

(
Pmax − ρ−p−

)
/ρ+

g−p−

)]

+ ρ2
− + ρ2

+.

(23)

This function is strict convex. To be more precise, it is
decreasing on [0, g+Pmax/(g−ρ+ + g+ρ−)) and increasing on
(g+Pmax/(g−ρ+ + g+ρ−),Pmax/ρ−], and the solution is given
by

{
p⋆− , p⋆+

}
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
0,
Pmax

ρ+

}
,

g+

ρ+
≥

g−
ρ−

,

{
Pmax

ρ−
, 0

}
,

g+

ρ+
<
g−
ρ−

.

(24)

Note that in this setting the choice of the optimal
symmetric strategy is to concentrate the full available power
on a single channel state. The selection of the channel state
on which to transmit depends not only on the channel
conditions but also on the probability of the channel states.
This result implies that, in the high SNR regime, the
optimal symmetric power strategy is to transmit information
in an “opportunistic” way. For a better understanding of
the “opportunistic” transmission, the interested reads are
referred to [2].

5.2. Multiple Channel States. In this subsection, we discuss
the extension to arbitrary L (L ≥ 2) channel states. Note that
the result of this subsection can also be applied to the case of
two channel states.

Assumption 7. Each user’s channel gain gk has L positive
states, which are a1, . . . , aL with probability ρ1, . . . , ρL, respec-
tively (Without loss of generality,a1 < · · · < aL), and we have∑L

ℓ=1 ρℓ = 1.

Based on Assumption 6, we define pℓ � p1(aℓ) =

p2(aℓ), ℓ = 1, . . . ,L, as the transmit power when a user’s
channel gain is aℓ . As previously mentioned, our object in
this part is to maximize the sum ergodic capacity of the
system, that is, max

∑
k uk. Under the symmetric assumption,

this sum-ergodic-capacity maximization problem is equiva-
lent to the following single-user maximization problem

max
p

∑

i

∑

j

ρiρ j log2

(
1 +

gipi
σ2 + g j p j

)

s.t.
∑

i

ρi pi ≤ Pmax

pi ≥ 0, i = 1, . . . ,L,

(25)

where p is now defined as p = {p1, . . . , pL}. This optimiza-
tion problem is difficult, since the objective function is again
nonconvex in p. However, we can consider a relaxation of the
optimization by introducing a lower bound [21]

α log z + β ≤ log(1 + z), (26)

where α and β are chosen specified as

α =
z0

1 + z0
,

β = log(1 + z0)−
z0

1 + z0
log z0,

(27)
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we say that the lower bound (26) is tight with equality at a
chosen value z0.

Let us consider the lower bound (denoted as ξ) by using
the relaxation (26) to the objective function in (25)

ξ
(

p
)

�
∑

i

∑

j

ρiρ j

[
αi, j log2

(
gipi

σ2 + g j p j

)
+ βi, j

]
(28)

which is still nonconvex, and so it is not concave in
p. However, with a logarithmic change of the following
variables and constants: p̃i = log2 pi, p̃i = log2 pi and
g̃i = log2 gi, we can turn the geometric programming [18]
associated with the objective function (28) into the following
problem:

max
p̃

ξ
(

p̃
)

s.t.
∑

i

ρi2
p̃i ≤ Pmax,

(29)

where ξ(p̃) is defined as

ξ
(

p̃
)
=
∑

i

∑

j

ρiρ jαi, j
(
g̃i + p̃i

)

−
∑

i

∑

j

ρiρ jαi, j log2

(
σ2 + 2(g̃ j+ p̃ j )

)

+
∑

i

∑

j

ρiρ jβi, j .

(30)

Now, it is easy to verify that the lower bound ξ is concave
in the transformed set p̃, since the log-sum-exp function is
convex. The constraints of the optimization problem are such
that Slater’s condition is satisfied [18]. So, the Karush-Kuhn-
Tucker (KKT) condition of the optimization is sufficient and
necessary for the optimality. Given the following Lagrangian
dual function (denoted by L):

L
(

p̃, ν

)
=
∑

i

∑

j

ρiρ jαi, j
(
ãi + p̃i

)

−
∑

i

∑

j

ρiρ jαi, j log2

(
σ2 + 2(ã j+ p̃ j )

)

+
∑

i

∑

j

ρiρ jβi, j − ν

⎛
⎝∑

i

2(ãi+ p̃i) − Pmax

⎞
⎠,

(31)

the KKT conditions are

ρℓ
∑

j

ρ jαℓ, j − ρℓ

(
2(ãℓ+ p̃ℓ)

σ2 + 2(ãℓ+ p̃ℓ)

)

×
∑

i

ρiαi,ℓ − (ν ln 2)2(ãℓ+ p̃ℓ) = 0, ∀ℓ,

(32)

where ãℓ = log2aℓ , and ν ≥ 0 is a dual variable associated
with the power constraint in (29).

Define xℓ � 2(ãℓ+ p̃ℓ), ℓ = 1, . . . ,L, the equivalent KKT
conditions can be simply written as a quadratic equation

Aℓx
2
ℓ + Bℓxℓ + Cℓ = 0, ∀ℓ, (33)

where the parameters Aℓ ,Bℓ ,Cℓ are expressed as

Aℓ = ν ln 2, ∀ℓ

Bℓ = ρℓ
∑

i

ρi
(
αi,ℓ − αℓ,i

)
+ σ2

ν ln 2, ∀ℓ

Cℓ = −ρℓσ
2
∑

i

ρiαℓ,i, ∀ℓ.

(34)

Note that Aℓ and Bℓ are functions of ν, we can write them
as Aℓ(ν) and Bℓ(ν). Since xℓ ≥ 0, the solution to the KKT
conditions can only be one of the roots to the quadratic
equation, that is,

p⋆ℓ =
−Bℓ(ν) +

√
B2
ℓ (ν)− 4Aℓ(ν)Cℓ

2aℓAℓ(ν)
, ∀ℓ, (35)

where ν is chosen such that
∑

ℓ ρℓ p
⋆

ℓ = Pmax. Thus, for some
fixed value of α,β, we can directly apply (35) to maximize the
lower bound ξ (28). Then, it is natural to improve the bound
periodically. Based on the discussion above, we propose the
following algorithm, namely Lower Bound Tightening (LBT)
algorithm

The algorithm convergence can be easily proved, since
the objective is monotonically increasing at each iteration.
However, the global optimum is not always guaranteed, due
to the nonconvex property.

6. Numerical Results

In this section, numerical results are presented to validate
our theoretical claims. For Figures 1 and 2, the network
parameters are chosen as ρ− = ρ+ = 0.5, Pmax = 1 and
σ2 = 0.1.

First, we show the existence and uniqueness of Bayesian
equilibrium in the scenario of two-user fading MAC. In
Figure 1(a), we assume the channel gains are g− = 1, g+ = 3;
in Figure 1(b), we assume g− = 1, g+ = 10. On both X and
Y axis, p1 and p2 represent the power allocated by user 1 and
user 2 when the channel gain is g−. The curves r1(p2) and
r2(p1) represent the best-response functions of user 1 and
user 2, respectively. As expected, the Bayesian equilibrium is
unique in both cases, that is, (0.6,0.6) and (0.5,0.5).

Second, we investigate the efficiency of Bayesian equi-
librium from the viewpoint of global average network
performance. The X axis, SNR is defined as the ratio
between the power constraint Pmax and the noise variance
σ2. In Figure 2(a), again, we assume g− = 1, g+ = 3;
in Figure 2(b), we assume g− = 1, g+ = 10. The curve
“Pareto” represents the Nash equilibrium in the waterfilling
game, in which users have complete information. This gives
the upper bound for our Bayesian equilibrium, since it is
also the Pareto optimal solution [7]. The curve “Uniform”
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Figure 1: The uniqueness of Bayesian equilibrium. (a) g− = 1, g+ = 3, (b) g− = 1, g+ = 10.
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Figure 2: Average network sum-rate. (a) g− = 1, g+ = 3, (b) g− = 1, g+ = 10.

represents the time-domain uniform power allocation. Since
this is the strategy when users have no information about
the channel gains, it corresponds obviously to a lower
bound. The curve “Symmetric” represents the optimal
symmetric strategy presented in Section 5. This can be
treated as a weaker upper bound (inferior to the Pareto
optimality) for the Bayesian equilibrium. From the slopes
of these curves, we can clearly observe the inefficiency of
the Bayesian equilibrium, especially in the high SNR regime.
This can be explained as follows: in our game GMAC, users
with incomplete information improve the global network
performance (comparing to the scenario in which the users

have no information), however, it does not improve the
performance slope.

Finally, we show the convergence behavior of the lower
bound tightening (LBT) algorithm. In Figure 3, we choose
the parameters as L = 3, g1 = 1, g2 = 2, g3 = 3, and ρ1 =

ρ2 = ρ3 = 1/3. The sum capacity versus the SNR are
plotted for five iterations. The upper bound is achieved by
exhaustive search. As expected, one can easily observe the
convergence behavior. In the low SNR regime, we can find
that the algorithm converges to the local instead of the global
maximum. However, we also find that the performance of the
local optimum is improved while the SNR is increasing.
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Figure 3: The convergence of the lower bound tightening (LBT)
algorithm.

Initialize t = 0; ν = 0; α(t)
i, j = 1, for i = 1, . . . ,L, j = 1, . . . ,L.

repeat
repeat

ν = ν + ∆ν

for i = 1 to L do
update Ai,Bi,Ci using (34)

p⋆i = (−Bi +
√
B2
i − 4AiCi)/2aiAi

end for
until

∑
i ρip

⋆

i = Pmax

for i = 1 to L and j = 1 to L do

z(t)
i, j = aip

⋆

i /(σ
2 + a j p

⋆

j ); α(t+1)
i, j = z(t)

i, j /(1 + z(t)
i, j )

end for
t = t + 1

until converge

Algorithm 1: Lower Bound Tightening (LBT).

7. Conclusion

We presented a Bayesian game-theoretic framework for
distributed resource allocation in fading MAC, where users
are assumed to have only information about their own
channel gains. By introducing the assumption of finite
channel states, we successfully found a analytical way to
characterize the Bayesian equilibrium set. First, we proved
the existence and uniqueness. Second, the inefficiency was
shown from numerical results. Furthermore, we analyzed
the optimal symmetric power strategy based on the prac-
tical concerns of resource allocation design. Future exten-
sion is considered to improve the efficiency of Bayesian
equilibrium through pricing or cooperative game-theoretic
approaches.
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