
HAL Id: hal-00784459
https://hal.inria.fr/hal-00784459

Submitted on 4 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronous Modeling and Analysis of Data Intensive
Applications

Abdoulaye Gamatié, Éric Rutten, Huafeng Yu, Pierre Boulet, Jean-Luc
Dekeyser

To cite this version:
Abdoulaye Gamatié, Éric Rutten, Huafeng Yu, Pierre Boulet, Jean-Luc Dekeyser. Synchronous
Modeling and Analysis of Data Intensive Applications. EURASIP Journal on Embedded Systems,
SpringerOpen, 2008, 2008 (1), pp.561863. <10.1155/2008/561863>. <hal-00784459>

https://hal.inria.fr/hal-00784459
https://hal.archives-ouvertes.fr

Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 561863, 22 pages
doi:10.1155/2008/561863

Research Article

Synchronous Modeling and Analysis of
Data Intensive Applications

Abdoulaye Gamatié,1 Éric Rutten,2 Huafeng Yu,1 Pierre Boulet,1 and Jean-Luc Dekeyser1

1 LIFL, CNRS/INRIA, Université de Lille 1, Parc de la Haute Borne, Bât A 40 avenue Halley, 59650 Villeneuve d’Ascq Cedex, France
2 INRIA Rhône-Alpes, 655 avenue de l’Europe, Montbonnot, 38334 Saint-Ismier cedex, France

Correspondence should be addressed to Abdoulaye Gamatié, abdoulaye.gamatie@lifl.fr

Received 4 July 2007; Revised 8 March 2008; Accepted 25 June 2008

Recommended by Marc Pouzet

We present the modeling of data-intensive parallel applications following the synchronous approach. We consider the GASPARD
environment, which is dedicated to high-performance system-on-chip (SoC) codesign. Our motivation is to bridge the gap
between the GASPARD design approach and the formal validation techniques provided by the synchronous technology. First, we
define a synchronous dataflow equational model of GASPARD models. The modeling formalism adopted in GASPARD consists of
an extension of the domain-specific language Array-OL. Then, we address correctness issues (e.g., causality and synchronizability
analyses) about GASPARD models via their corresponding synchronous descriptions in order to formally validate the original
system descriptions.

Copyright © 2008 Abdoulaye Gamatié et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Computing and analyzing large amounts of data play an
increasingly important role in embedded systems. The
concerned applications often perform computations on
regular multidimensional data structures. Typical examples
are state-of-the-art multimedia applications that require
high-performance (e.g., high-definition TV, medical imag-
ing, radar or sonar signal processing, telecommunications,
mobile cell phones, etc.). The highly desirable design
approaches for such applications are those providing users
with well-adapted concepts in order to represent the data
manipulations, and the techniques that trustworthily guar-
antee important implementation requirements.

The domain-specific language Array-OL has been orig-
inally proposed within an industrial context by Thomson
Marconi Sonar, now Thales, for the description of data-
intensive applications manipulating multidimensional data
structures [1]. It offers adequate concepts to describe both
task parallelism and data-parallelism in applications. Fur-
thermore, Array-OL descriptions are platform-independent.
All these features make Array-OL very expressive and suitable
for the specification of data-intensive applications. This is the
reason why they have been adopted in graphical array spec-

ification for parallel and distributed computing (GASPARD)
[2], an integrated development environment dedicated to
the modeling, simulation, testing, verification, and code
generation of high-performance system-on-chip (SoC).

On the other hand, the synchronous approach [3] has
been defined to provide embedded real-time system design-
ers with formal concepts that favor the trusted design. Its
basic assumption is that computation and communication
are instantaneous, referred to as the “synchrony hypothesis.”
The execution of a system is seen through the chronology
and simultaneity of observed events. This is a main difference
from visions where the system execution is rather considered
under its chronometric aspect, that is, duration has a signifi-
cant role. This assumption confers to synchronous languages
a deterministic semantics in presence of concurrency.

The combination of the advantages of both Array-
OL and synchronous languages within a unique design
framework can significantly increase the ability of devel-
opers of high-performance applications to (i) adequately
describe such applications, and (ii) trustworthily guarantee
the correctness of the corresponding implementations. The
aim of this paper is mainly to answer this demand by
bridging the gap between Array-OL-based techniques and
the synchronous approach.

2 EURASIP Journal on Embedded Systems

Application

Association

Architecture

Refactoring

IP

Deployed

Synchronous
equational Polyhedron RTL

Loop

OpenMP

Synchronous
OpenMP
fortran

SystemC
TLM PA

VHDL

Metamodel Dependency

Code Transformation

Figure 1: The GASPARD design methodology.

1.1. Rationale: the GASPARD framework

Our proposition is defined within the GASPARD framework
[2] that is dedicated to the development of high-performance
SoC and intensive signal processing applications. The mod-
eling formalism of GASPARD, referred to as GASPARD
profile, consists of a UML-style extension of the Array-
OL language with additional concepts that are necessary to
represent different aspects of the systems to be designed:
software (or application) part, hardware (or architecture)
part, association of the two, and deployment of the resulting
associated model on specific platforms using a library of
intellectual properties (IP).

GASPARD promotes a software/hardware codesign
methodology based on model-driven engineering (MDE) as
illustrated by Figure 1: the software and hardware parts of
the system are first modeled, then refined toward lower
level languages for various purposes: formal validation with
synchronous languages [3] (currently Lustre and Signal),
simulation in SystemC and OpenMP Fortran, and circuit
synthesis in VHDL. At each level of this refinement, the
concepts are characterized by a dedicated metamodel, and
the transitions from one level to another are obtained via
automatic model transformations. The backbone environ-
ment that implements this methodology is Eclipse.

Through the methodology adopted in the GASPARD
framework, various design issues can be addressed at
different abstraction levels depending on the suitability of
these levels to enable the required analysis. In addition,
one can notice that during the transformation of high-
level GASPARD models toward lower levels, for example,
SystemC, OpenMP Fortran or synchronous languages, there
could be a loss of abstraction. But it does not matter since
the low-level descriptions resulting from the transformation

constitute approximations that preserve the properties of
interest in the initial GASPARD models. In particular, these
descriptions are expressive enough to be considered for
functional and nonfunctional simulation in SystemC and
OpenMP Fortran, circuit synthesis in VHDL and formal
verification with synchronous languages.

From a practical point of view, the use of MDE approach
to implement the GASPARD methodology strongly favors
reusability and separation of concerns, which represent real
benefits when designing complex systems. Indeed, MDE
allows us to access useful pre-existing facilities (simulation,
performance analysis, formal verification, etc.) depending
on the target representations reached via the model
transformations.

Most of the design concepts of GASPARD have been
integrated in the OMG standard MARTE profile (http://www
.omgmarte.org/), dedicated to the modeling and analysis of
real-time and embedded systems. These concepts are defined
within the package named repetitive structure modeling
(RSM), in the MARTE specification.

In this paper, we consider the specification and the mod-
eling of high-performance applications. These applications
are initially designed with the GASPARD extension of Array-
OL. The resulting descriptions are translated into a set of
synchronous dataflow equations to analyze various aspects
of the applications. Then, we address some correctness
issues on the obtained descriptions with the help of the
synchronous technology: causality analysis, single assign-
ment, synchronizability resulting from the deployment of a
platform, and so forth.

In the sequel, we give an introduction to Array-OL and
the synchronous language Signal, which is used here for
illustration, followed by a presentation of some related work.
Section 2 describes how GASPARD models are translated
into a set of synchronous dataflow equations, based on
two possible interpretations of data parallelism in target
applications. The usefulness of such a translation is shown
in Section 3, where we use some specific concepts of the
synchronous approach, such as affine clocks, in order to
check some important properties in GASPARD models of
considered applications. Finally, Section 4 gives the conclud-
ing remarks and future work.

1.2. Array-OL: the underlying specification
language of GASPARD

Array-OL [1, 4, 5] is a mixed graphical-textual language that
enables to specify both task parallelism and data parallelism
available in intensive signal processing applications. Among
the basic characteristics of this domain-specific language, we
mention the following ones.

(i) Data dependency expressions: Array-OL only specifies
true data dependencies in order to express the
full parallelism of the application. In such a way,
except the minimal partial order resulting from the
specified data dependencies, no other order is a priori
assumed.

(ii) Functionally-deterministic specifications: any execu-
tion schedule that respects the data dependencies

Abdoulaye Gamatié et al. 3

<<Application component>>
R

<<Application component>>

<<Elementary component>>

E[(3,2)]

[(3, 4)]

[(2, 3)]

[(1)]

[(9, 8)]

[(3, 2)]

[(11, 6)]

<<Tiler>>

{Fitting = “((1, 0), (0, 1))”,

origin = “(0, 0)”,

paving = “((3, 0), (0, 4))”}

<<Tiler>>

{Fitting = “(1, 0)”,

origin = “(0, 0)”,

paving = “((1, 0), (0, 1))”}

<<Tiler>>

{Fitting = “((2, 0), (1, 1))”,

origin = “(0, 0)”,

paving = “((3, 0), (0, 3))”}

Figure 2: An Array-OL repetitive task depicted in the GASPARD framework.

specified in Array-OL necessarily leads to the same
results.

(iii) Single assignment: the language handles values, not
variables, so a value is produced only once.

(iv) All values are manipulated under the form of multi-
dimensional arrays, with a possible infinite dimension
representing time. These arrays are also toroidal.
Indeed, some spatial dimensions may represent some
physical tori (e.g., hydrophones around a subma-
rine), and some frequency domains obtained by
fast fourier transformations (FFTs) are toroidal. The
language is not a dataflow language as the dimensions
of the arrays can be mapped on space (several
processors) or time for an execution. No hypothesis
on this mapping is done at specification time.

As an informal overview of the basic concepts of Array-
OL, let us consider the visual description given in Figure 2.
It represents a task R that takes as inputs a (9, 8)-array and
a (3, 2)-array, and produces an (11, 6)-array. R expresses a
data-parallel repetition in the sense that the same function
E is applied to subsets of the input data in the form of
(3, 4)-array and a (1)-array to produce subsets of the output
data in the form of (2, 3)-array. The way each subset of
data is either extracted or stored in the input and output
arrays is determined by using the information attached to
the links stereotyped “Tiler,” which connect two different
ports. Array-OL defines three kinds of tasks: elementary tasks
(e.g., E when it is an elementary function), repetitive tasks
(e.g., R) that express data-parallelism, and hierarchical tasks,
which hierarchically combine tasks through a task graph. The
remainder of this section mainly presents each kind of these
tasks and clarifies the unexplained details of Figure 2.

Elementary tasks

Such a task has a body corresponding to an atomic com-
putation block that typically consists of a function (e.g.,

addition, dot product, FFT). The interface of this function
must comply with the interface of the task characterized by
ports. In Figure 2, E may be considered as an elementary
task. The shape of its input arrays (resp., output arrays)
is noted on the corresponding ports: (3, 4) and (1) (resp.,
(2, 3)).

Repetitive tasks

Before presenting this task, we must first precise what the
term “repetition” stands for. A repetition enables to execute
a set of operations in an arbitrary order, including parallel,
without any computational differences in the result (no
semantic change). A repetitive task (e.g., task R in Figure 2)
expresses the data parallelism in Array-OL by specifying
a repetition on the elements of the input and output
arrays. Each operation is achieved by a task instance, which
executes independently of the other instances. The subarrays
consumed and produced by repeated task instances (e.g.,
instances of task E in Figure 2) have the same shape. They are
referred to as patterns when considered as inputs/outputs of
a task instance, and tiles when considered as a set of elements
within incoming/outgoing arrays of the repetitive task. Such
tiles are regularly spaced sets of regularly stored elements,
hence their representation as subarrays. Note that by abuse
of language, the terms “pattern” and “tile” are often used to
mean the same thing.

The way the tiles is constructed is defined via tilers,
which are associated with each array (i.e., each edge in the
graphical representation). A tiler extracts (resp., stores) tiles
from (resp., in) an array based on some information: F a
fitting matrix (how array elements fill the tiles), o the origin
of the reference tile (for the reference repetition), and P a
paving matrix (how the tiles cover arrays).

The repetition space indicating the number of task
instances is itself defined as a multidimensional array with
a shape. Each dimension of this repetition space can be seen
as a parallel loop and the shape of the repetition space gives

4 EURASIP Journal on Embedded Systems

the bounds of the nested parallel loops. In Figure 2, the shape
of repetition space is (3, 2).

Given a tile, let its reference element denote its origin
point from which all its other elements can be extracted.
The fitting matrix is used to determine these elements.
Their coordinates, represented by ei, are built as the sum
of the coordinates of the reference element and a linear
combination of the fitting vectors, modulo the size of the
array (since arrays are toroidal) as follows:

∀i, 0 ≤ i < spattern, ei = ref + F × i mod sarray, (1)

where spattern is the shape of the pattern, sarray is the shape of
the array, and F is the fitting matrix.

Figure 3 shows an example of fitting corresponding to the
single output array in task R of Figure 2. Here, there are 6
elements in this tile since the shape of the pattern is

(
2
3

)
. The

reference element is represented by vector
(

0
0

)
. The indexes

of the remaining elements are thus
(

0
1

)
,
(

0
2

)
,
(

1
0

)
,
(

1
1

)
, and(

1
2

)
. The positions of these elements in the tile relative to the

reference point are determined as follows:

F ×

(
0
0

)
=

(
0
0

)
,

F ×

(
0
1

)
=

(
1
1

)
,

F ×

(
0
2

)
=

(
2
2

)
,

F ×

(
1
0

)
=

(
2
0

)
,

F ×

(
1
1

)
=

(
3
1

)
,

F ×

(
1
2

)
=

(
4
2

)
.

(2)

For each repetition, one needs to specify the reference
elements of the input and output tiles.

A similar scheme as the one used to enumerate the
elements of a tile is used for that purpose. The reference
elements of the reference repetition are given by the origin
vector, o, of each tiler. The reference elements of the other
repetitions are built relatively to this one. As above, their
coordinates are built as a linear combination of the vectors
of the paving matrix as follows:

∀r, 0 ≤ r < srepetition, refr = o + P × r mod sarray, (3)

where srepetition is the shape of the repetition space, P the
paving matrix, and sarray the shape of the array. Figure 4
illustrates an example of paving corresponding to the first
input of task R, that is, the (9× 8)-array.

Hierarchical tasks

They are represented by hierarchical acyclic graphs in which
each node consists of an Array-OL task, and edges are
labelled by the arrays exchanged between these nodes. This
naturally leads to hierarchical description of tasks (see
Figure 9 for illustration).

An execution model for Array-OL

GASPARD considers a particular execution model according
to which Array-OL-based descriptions are executed. This
model of execution defines an executable Array-OL descrip-
tion as a hierarchical task model in which the top-level
is composed of a single task that plays a similar role as
the “main” in a C program. A transformation of Array-OL
specifications, called fusion [6], allows one to automatically
transform any task model into such a hierarchical task
model. Infinite arrays are only manipulated at the top-level of
the hierarchy (see Figure 9 for illustration). Furthermore, the
infinite dimension is interpreted as a temporal dimension. As
a result, the unique top-level task in the hierarchy receives its
input arrays through a flow and produces its output arrays
following the arrival order of its inputs. In the sublevels
of the hierarchy, the arrays received at each step of the
flow are manipulated as usual in Array-OL, that is, without
any consideration of temporal dimension. Every subtask is
assumed to compute its outputs only after all the inputs have
been received. In other words, every output of a sublevel
task depends on all its input. In GASPARD, an application
is represented by such a hierarchical task. In this paper, all
applications are considered with respect to this execution
model.

Behavior of GASPARD programs

We are interested in the behavior of GASPARD programs in
terms of the sets of computations they define, that is, what
functions are applied to what data.

Hence, the behavior of a GASPARD program can be
defined as follows:

(i) for an elementary task E: the singleton of one
computation, applying the function f corresponding
on the input data i to produce the output data o,
hence behavior(E) = {o = f (i)};

(ii) for a repetitive task R: the union of the sets defining
the behavior of each of the |r| instances of the
computations of the repeated body, each apply-
ing to the appropriate patterns of data in input
and in output, as determined by the tilers, hence
behavior(R) = ∪k∈1···|r|Bk, where Bk denotes the
set of computations for each instance; for example,
if the repeated body is an elementary task applying
function f , and the input array i is decomposed by

the input tiler into patterns pki , and the output array
o is recomposed by the input tiler from patterns pko ,

then ∪k∈1···|r|{pko = f (pki)};

(iii) for a hierarchical task H : the union of the sets
defining the behavior of the subtasks in the body,
each applying to the appropriate data in input and
in output, as determined by the dependencies, hence
behavior(H) = ∪t∈TasksBt; for example, a hierarchical
task T with input i and output o, having two
elementary subtasks T1 with input i and output l,
and T2 with input l and output o, has the behavior:
{o = f2(l), l = f1(i)}.

Abdoulaye Gamatié et al. 5

(
0
0

)

(
0
2

)

(
0
1

)

(
1
0

)

(
1
1

)

(
1
2

)

spattern =

(
2
3

)
F =

(
2 1
0 1

)

Figure 3: A fitting example.

r =

(
0
1

)
r =

(
1
1

)
r =

(
2
1

)

r =

(
0
0

)
r =

(
0
0

)
r =

(
0
0

)
0

0

7

8

0

0

7

8

0

0

7

8

0

0

7

8

0

0

7

8
0

0

7

8

F =

(
1 0
0 1

)

o =

(
0
0

)

P =

(
3 0
0 4

)

spattern =

(
3
4

)

sarray =

(
9
8

)

srepetition =

(
3
2

)

Figure 4: Paving example: a 2D pattern tiling perfectly a 2D array.

1.3. The synchronous language Signal

The synchronous language signal [7] belongs to the family
of dataflow languages whose origin can be historically
associated with earlier studies on dataflow models started
in 70s [8–10]. It is the case of the synchronous dataflow
languages Lustre [11] and Lucid Synchrone [12]. Signal
handles unbounded series of typed values (xτ)τ∈N, called
signals, denoted as x and implicitly indexed by discrete time.
At a given instant, a signal may be present, at which point it
holds a value; or absent and denoted ⊥. The set of instants
where a signal x is present represents its clock, noted̂x. Two
signals x and y, which have the same clock are said to be
synchronous. A process (or a node) is a system of equations
over signals that specifies relations between values and clocks
of the signals. A program is a process. Signal relies on the
following six primitive constructs:

Relations

y := f (x1, . . . , xn)
def
≡ for all τ ≥ 0 : yτ /= ⊥⇔ x1τ /= ⊥⇔

· · · ⇔ xnτ /= ⊥, and yτ = f (x1τ , . . . , xnτ).

Delay

y := x $ 1 init c
def
≡ for all τ xτ /= ⊥⇔ yτ /= ⊥ and for all

τ > 0 : yτ = xk, where k = max{τ′ | τ′ < τ and xτ′ /= ⊥

}, y0 = c.

Undersampling

y := x when b where b is Boolean
def
≡ for all τ ≥ 0 : yτ =

xτ if bτ = true, else yτ = ⊥. The expression y := when b
is equivalent to y := b when b.

Deterministic merging

z := x de f ault y
def
≡ for all τ ≥ 0 : zτ = xτ if xτ /= ⊥, else

zτ = yτ .

Composition

(|P|Q|)
def
≡ union of the equations of P and Q. This operator

is commutative and associative.

6 EURASIP Journal on Embedded Systems

(1) process k Overspl = {integer k; }
(2) (? event c1; ! event c2;)
(3) (| cnt := (k− 1 when c1) default (pre cnt − 1)
(4) | pre cnt := cnt $ 1 init 0

(5) | c1̂= when (pre cnt <= 0)
(6) | c2 := when (̂cnt)
(7) |)
(8) where integer cnt, pre cnt;
(9) end; %process k Overspl%

c1 : tt ⊥ ⊥ ⊥ tt ⊥ ⊥ · · ·

cnt : 3 2 1 0 3 2 1 · · ·

pre cnt : 0 3 2 1 0 3 2 · · ·

c2 : tt tt tt tt tt tt tt · · ·

Figure 5: A clock oversampling process in signal and a trace.

Table 1: Comparison of various specification languages for signal processing.

Language Data form Data access style
Access generality Control structures

Tool support
sliding window under/over sampling delays hierarchy modes

SDF [24] 1-D subarray n n y n n Ptolemy

CSDF [25] 1-D subarray n n y n y y

Stream-It [20] 1-D subarray y y y y n StreamIT

MDSDF [26] ∗-D subarray n y y n n Ptolemy

GMDSDF [27] ∗-D subarray n y y n n n

WSDF [28] ∗-D subarray y y y n n u

BLDF [29] ∗-D subarray n y y y y y

Array-OL [1, 4] cyclic ∗-D subarray y y e y e GASPARD

Alpha [23] P affine functions y y y y n MM-Alpha

• In column Data form, “1-D” means that the scheduling considers monodimensional data streams (that may carry multidimensional arrays); “∗-D” means
that these data streams are replaced by multidimensional arrays; “cyclic ∗-D” means that some dimensions of these multidimensional arrays may be cyclic;
and “P” means that the language handles convex polyhedra of integer points.
• The following convention holds: “y:” supported feature, “n:” not supported feature, “e:” feature supported through extended constructs; “u:” unknown to
us.
• In column Tool support, when the name of a tool is known, it is explicitly mentioned.

Hiding

P where x
def
≡ x is local to the process P.

These constructs are expressive enough to derive other
constructs for comfort and structuring. For instance, given
two signals x and y, the extended construct =̂ is used to spec-
ify that they are synchronous [13], noted x̂= y. Signal offers
a process frame that enables the definition of subprocesses
(declared in the where subpart, see Figures 12 and, 13, e.g.).
Subprocesses that are only specified by an interface without
internal behavior are considered as external, and may be
separately compiled processes or physical components. A
useful notion of Signal is the oversampling mechanism. It
consists of a temporal refinement of a given clock c1, which
yields another clock c2, which is faster than c1, meaning that
c2 contains more instants than c1.

In the Signal process given in Figure 5, called
k Overspl, k is a constant integer parameter (line 1).
The clock signals c1 and c2, respectively, denote input
represented by “?” and output represented by “!” (line
2). Here, c2 is a 4-oversampling of c1. The event type is
associated with clocks. It is equivalent to Boolean type where
the only taken value is true. The local signals cnt and pre cnt
serve as counter to define 4 instants in c2 per instant in c1
lines (3 and 4).

There is a graphical syntax of Signal that is very similar
to block diagrams. In such a syntax, a box represents a
process and a connection between boxes represents the

communication of signal values between processes (see
illustrations in Figures 8 and 11).

1.4. Related work

Several languages have been proposed to deal at a high
level of abstraction with multidimensional arrays, mostly
for parallel scientific computing. The most well-known is
high performance Fortran which uses an array notation
to define compactly subarrays and that proposes parallel
loops constructs and regular data distributions [14]. More
recent efforts are hierarchically tiled arrays [15, 16], the
cascade high-productivity language [17], Fortress [18] or
the java-like X10 [19]. The tiling construct proposed by
Array-OL is more adapted to signal processing applications,
allowing overlapping tiles and modular accesses. Another
difference is that Array-OL specifications manipulate
time and space dimensions in the same way, allowing a
specification that is independent of the execution strategy.
Loop transformations are provided to adapt the specification
of the algorithm to a particular hardware and execution
strategy. The mapping and scheduling formalism proposed
in GASPARD is strictly more expressive than the one of
HPF and allows separating the mapping of the data and the
mapping of the computations.

Table 1 gives a synthetic comparison of Array-OL with
other popular specification languages for signal processing.
Array-OL is the only one able to deal with the following

Abdoulaye Gamatié et al. 7

Codesign

transformations
compilation

simulation TLM, RTL

Diagnosis, debug
Clock synchronizability. . .

analysis: causality. . .

verification
simulation

GASPARD
(Array-OL

models)

Transf
Synchronous

equations

(metamodel)

Code
generators

Lustre

Lucid Synchrone

Signal

Modeling

language

Intermediary

format
Formal

specification languages

Figure 6: A global view of our approach.

requirements of the application domain:

(i) access to multidimensional arrays by regularly spaced
subarrays;

(ii) ability to deal with sliding windows;

(iii) ability to deal with cyclic array dimensions;

(iv) ability to sub/oversample the arrays;

(v) hierarchical specification to deal with complex sys-
tems.

Stream processing languages such as StreamIt [20] and
the synchronous dataflow (SDF) family of Ptolemy II [21]
are usually not multidimensional with the notable exception
of the multidimensional SDF of Ptolemy and its extensions
(GMDSDF, WSDF, and BLDF). The Alpha language [22, 23]
is an interesting alternative to Array-OL. However, this lan-
guage uses loop index formulas to define the computations
and not the higher level tiling construct of Array-OL that
favors modularity.

Note that all these languages are able to statically
manipulate unbounded sets of values. The unboundedness
is often induced by the (infinite) temporal dimension in
manipulated data structures. In the case of Alpha, the
polyhedra can represent unbounded set of values. While each
of them enables to describe dataflow specifications, the way
the control aspects are described by varies with the language
(see Table 1).

Finally, we note that synchronous languages also defines
arrays in order to deal with specific algorithms and archi-
tectures. In [30], authors introduced arrays in Lustre in
order to design and simulate systolic algorithms. This work
leads to the implementation of their result on circuits [31].
More recently, an efficient compilation of array in Lustre
programs has been proposed [32]. The Signal language also
manipulates arrays in order to describe regular algorithms
and architectures. In particular, the notion of array of
processes [13] has been introduced in the language, which is
well suited to model systolic algorithms. The notion of array
is however less expressive in synchronous languages than in
Array-OL. For instance, in synchronous languages, arrays are
necessarily finite; as a result the time dimension cannot be
considered as an array dimension unlike in Array-OL. In

our translation of GASPARD models toward synchronous
languages, an infinite array will be represented by a flow of
finite subarrays.

2. FROM GASPARD TO SYNCHRONOUS LANGUAGES

2.1. Motivation elements for a translation toward
synchronous languages

The goal of the translation presented in this section is
to provide GASPARD designers with the possibility to
address some correctness issues in the described models
using the existing formal tools and techniques offered by
the synchronous technology. Of course some of these issues
may be addressed at the GASPARD formalism level with
appropriate tools. Here, we rather propose a bridge between
the GASPARD environment and the existing synchronous
technology in order to achieve the analysis of model cor-
rectness. This is achieved according to the MDE philosophy
adopted by GASPARD.

The first reason for this choice is that the development
of required tools at the GASPARD formalism level can be
very complex. For instance, checking the single assignment
property of GASPARD model can be done by using sophis-
ticated techniques such as [33, 34], which are achieved with
polyhedra and linear programming as shown in [5]. How-
ever, such a solution may reveal penalizing due to the com-
plexity induced by possible combinatorial explosion when
manipulating polyhedra (even if tools like the parametric
integer programming—PIP—solver (http://www.piplib.org/)
are shown to be promising against the problems related to
polyhedra manipulation). Provided a synchronous descrip-
tion corresponding to an abstraction (or an approximation)
of a GASPARD model, checking single assignment on such
an abstract description is straightforward and costless with
compilers of synchronous languages.

The same observation holds when one wants to address
further properties about GASPARD models, such as deter-
minism and causality. The algorithms proposed in Feautrier’s
work on dataflow analysis of array and scalar [34] can
be also considered as a possible solution to deal with
such properties. However, the scalability of these algorithms
remains a challenging issue.

8 EURASIP Journal on Embedded Systems

Another important reason to take synchronous lan-
guages as the target representation is their capability to
address the above properties in presence of complex control
structures. The previously mentioned polyhedra-based tech-
niques mainly deal with data dependencies. Adding control
features to the GASPARD design model [35] leads to more
difficult analysis of design properties. Synchronous languages
offer a suitable model representation in which both data
dependencies and control flow are analyzable uniformly. In
the synchronous language Signal, the structure that serves
for this purpose is the hierarchized conditional dependency
graph (HCDG) [7]. Such a structure combines data depen-
dencies and activation clocks that indicate when edges and
vertexes of the dependency graph are valid with respect to the
control flow. For instance, the mutual exclusion of different
statements in a program specification is trivially detected on
the HCDG. The analysis of causality, determinism, and single
assignment also relies on this structure.

On the other hand, the synchronous technology provides
us with typical techniques and tools that are proved to be
very efficient to answer critical questions about the correct
interaction of system components. For instance, in the
methodology illustrated by Figure 1, after the deployment
phase, the designer may need to check the synchronization
between parts of the modeled system, deployed on different
processors. Such a question could be answered with the clock
synchronizability notions defined in synchronous languages
[36, 37].

2.2. Global picture of the translation

Our translation approach is illustrated by Figure 6. We
propose a transformation path toward synchronous tech-
nologies so as to be able to formally address new issues about
the design correctness of GASPARD models, for example,
causality and synchronizability properties. This transforma-
tion called trans f is followed by a code generation phase that
targets the synchronous dataflow languages Lustre, Lucid
Synchrone, and Signal. Although our work covers the whole
gray box in the figure, the real main contribution is the
definition of trans f and the analysis of the synchronous
models based on this transformation. Synchronous dataflow
equations and their translation to existing languages are in
general well-understood topics.

Through the proposed approach, the advantages of both
data-parallel and synchronous technologies are put together
so as to benefit from their specific strengths: on the one
hand, high-performance SoC design with GASPARD and on
the other hand, formal analysis with synchronous tools. All
this is well integrated within the GASPARD methodological
framework [38].

In the next sections, we explain the basic modeling
ideas on which the transformation trans f relies. We first
show a synchronous model that fully preserves the data
parallelism and task parallelism of the GASPARD models
(Section 2.3). Then, we present a refined version of such a
model, where computations are serialized (Section 2.4). This
second version can be typically associated with a mono-
processor execution platform. Finally, we briefly discuss the

Task ::= Interface; Body (r1)
Interface ::= i, o : {Port} (r2)

Port ::= id; type; shape (r3)

Body ::= Bodyh
∣∣Bodyr

∣∣Bodye (r4)
Bodye ::= some function f (r5)
Bodyr ::= ti, to : {Tiler}; (r; Task); (r6)

Connexion ::= pi, po : Port (r7)
Tiler ::= Connexion; (F; o;P) (r8)

Bodyh ::= {Task}; {Connexion} (r9)

Figure 7: A grammar of GASPARD concepts.

combination of both models within a mixed description
that can feature a multiprocessor execution. Although our
approach targets all the synchronous dataflow languages, we
restrict ourselves to Signal for illustrations in this paper.
The reader should therefore keep in mind that the resulting
descriptions are the same for other languages. Moreover, we
will use both graphical and textual (pseudo-Signal) notations
to facilitate the understanding of the translation, and will
fully describe some examples in the Signal syntax.

We concentrate on the modeling of computation, as it is
the heart of our contribution, rather than modeling of data
structures.

2.3. Parallel model

The transformation from the GASPARD source model to the
synchronous model is structural, following the syntactical
constructs. It is greatly facilitated by the similarity between
GASPARD and Signal since both have a recursive block-
diagram structure.

We present the transformation by concentrating on
aspects related to the behavior in terms of the sets of
computations, and, for the sake of clarity, skip technical
details on, for example, constructing interfaces or connecting
nodes according to data dependencies.

2.3.1. Structural transformation

The grammar given in Figure 7 describes the basic GASPARD
specification concepts. By convention, the notation x : X in
the grammar means that X is the type of x, and {X} denotes
a set of objects of type of X .

The recursive algorithm following the grammatical
structure is as follows, starting with (r1).

(r1) Each GASPARD task is represented by a Signal
process or node, with an interface according to (r2),
and a body translating the GASPARD task body
according to (r4).

(r2) Each input and output array of an interface is
translated according to (r3).

(r3) Each port is translated as a Signal flow. As mentioned
previously, in Array-OL, arrays can have an infinite
dimension, and there is no explicit representation
of time whatsoever. This infinite dimension of an
array can be suitably represented by an infinite flow
of arrays of the remaining dimensions as stated in

Abdoulaye Gamatié et al. 9

A1

A2

A3

E

E
.
.
.
E

t11 := A1[〈ind1
1〉]

t21 := A1[〈ind2
1〉]

.

.

.

tk1 := A1[〈indk1〉]

t12 := A2[〈ind1
2〉]

t22 := A2[〈ind2
2〉]

.

.

.
tk2 := A2[〈indk2〉]

A3[〈ind1
3〉] := t13

A3[〈ind2
3〉] := t23
.
.
.

A3[〈indk
3〉] := tk3

t11

t21

tk1

t12

t22

tk2

t13

t23

tk3

Figure 8: Modeling of tilers and parallel tasks.

the execution model of GASPARD. Therefore, we
concretely enforce this representation by modeling
Array-OL arrays into flows of subarrays.

(r4) The body is translated according to the appropriate
rule, being either an elementary task (r5), a repetitive
task (r6), or a hierarchical task (r9).

(r5) An elementary task E is represented by one equation,
a Signal relation construct, defining the output in
terms of a function of the input, essentially of the
form: O := E(I).

This equation can be encapsulated in an instanta-
neous process PE (with bounded execution dura-
tion), which has the same interface as E. All input
parameters of PE precede all its output parameters.

(r6) Repetitive tasks are modeled by a compound Signal
node, where

(i) the input tilers are transformed according to
(r8),

(ii) the repeated computation is represented by a
node with a composition of |r| instances of the
node representing the repeated body, obtained
by (r1),

(iii) the output tilers are transformed according to
(r8).

Figure 8, showing the repetition of body E, graph-
ically illustrates the perfect matching of this Signal
compound node with the GASPARD repetitive task
of Figure 2.

(r7) Connexions are translated as assignments between
the pi and p0 ports.

(r8) Each tiler is represented by a node; for input tilers,
this node takes as input the array given by the con-
nection in (r7), and where each pattern is produced
as output, by an equation extracting it from the
input array. The indexes for each pattern are obtained
by applying the paving and fitting equations, as
explained below. Output tilers are represented by a
node, where each pattern, given by the connection in
(r7), is inserted in the output array by an equation.

(r9) Hierarchical tasks are modeled by the synchronous
composition of nodes representing each of the sub-
tasks, obtained by (r1), with the appropriate data
dependencies defined by the connections in (r7).

The hierarchy of GASPARD task models is trivially
described using the process hierarchy of Signal: if a
task H at a given level is modeled by a process P,
the subtasks associated with H will be modeled by
subprocesses of P. Indeed, both hierarchy represen-
tations are of the same nature. The example pre-
sented in Section 2.3.3 illustrates this correspondence
between the GASPARD model depicted by Figure 9
and its Signal model given in Figure 10.

2.3.2. Correctness with respect to the GASPARD semantics

The correctness of the transformation with respect to the sets
of computations defining the behavior of GASPARD can be
examined essentially at three levels as follows.

(i) An elementary task is transformed in Signal as an
individual invocation of the corresponding function,
hence one computation in GASPARD is trivially
transformed into one corresponding computation in
Signal.

(ii) Hierarchical tasks, defining the union of underlying
sets of computations, are transformed into a syn-
chronous composition of Signal nodes representing
the subtasks, hence the resulting system of equations
is the union of the corresponding sets of equations,
hence the resulting set of computations is simply the
union of the underlying sets of computations.

(iii) Repetitive tasks are not directly transformed into sets
of basic computations, so we have to derive this basic
form from the structured compound node proposed
above.

The proposed transformation has the form of the
following equations system (4), strictly equivalent to its
graphical form in Figure 8:

(∣∣t1
1 := A1

[〈
ind1

1

〉]∣∣ · · ·
∣∣tk1 := A1

[〈
indk

1

〉]
∣∣t1

2 := A2

[〈
ind1

2

〉]∣∣ · · ·
∣∣tk2 := A2

[〈
indk

2

〉]
∣∣t1

3 := E(t1
1 , t1

2)
∣∣ · · ·

∣∣tk3 := E
(
tk1 , tk2

)
∣∣A3

[〈
ind1

3

〉]
:= t1

3

∣∣ · · ·
∣∣A3

[〈
indk

3

〉]
:= tk3∣∣) where t1

1 , t1
2 , t1

3 , . . . , tk1 , tk2 , tk3 end,

(4)

where in the two first lines, patterns are extracted from the
two input arrays, in the third line, the k instances of the
repeated task E are applied, and the fourth line shows how
patterns are recomposed into the output array.

Indexes 〈ind
j
i 〉 denote the indexes associated with the

elements of the tile corresponding to the point j in the
repetition space; and E is the synchronous model of the
computation part, corresponding to an elementary task.
Here, a partial assignment of arrays is assumed for the sake of

10 EURASIP Journal on Embedded Systems

<<Application component>>

Downscaler

[(80, 60,∗)]

[(8, 8)] [(4, 8)]

<<Application component>>
Horizontal filter

<<Application component>>
<<Elementary component>>

Hfilter [(8)]

[(8)] [(4)]<<Tiler>>

{Fitting = “(1, 0)”,
origin = “(0, 0)”,
paving = “(0, 1)”}

<<Tiler>>

{Fitting = “(1, 0)”,
origin = “(0, 0)”,
paving = “(0, 1)”}

<<Application component>>
Vertical filter

<<Application component>>
<<Elementary component>>

Vfilter [(4)]
[(8)] [(4)]<<Tiler>>

{Fitting = “(0, 1)”,
origin = “(0, 0)”,
paving = “(1, 0)”}

<<Tiler>>

{Fitting = “(0, 1)”,
origin = “(0, 0)”,
paving = “(1, 0)”}

[(4, 4)]

[(4, 4)]

[(4, 8)]

[(8, 8)]

[(640, 480,∗)]

[(320, 240,∗)]

<<Tiler>>

{Fitting = “((0, 1),

(1, 0), (0, 0))”,

origin = “(0, 0, 0)”,

paving = “((8, 0, 0),

(0, 8, 0), (0, 0, 1))”}

<<Tiler>>

{Fitting = “((1, 0),

(0, 1), (0, 0))”,

origin = “(0, 0, 0)”,

paving = “((4, 0, 0),

(0, 4, 0), (0, 0, 1))”}

Figure 9: A model of downscaler according to GASPARD.

clarity. If the tiler for an array Ai is (Fi, oi,Pi), spi is the shape
of the pattern associated with tiles in array Ai and sai is the

shape of array Ai, then 〈ind
j
i 〉 is the following set of indexes:

〈
ind

j
i

〉
=
{

oi + jPi + xFi mod sai , where 0 ≤ x < spi

}
. (5)

Observe that this system (4) does not present a clear sepa-
ration of single repetition points. Actually, such a separation
can be restored by simply considering the commutativity and
associativity properties of the Signal composition operator.
By just permuting equations, the following system (6) is
straightforwardly deduced from system (4):

(∣∣t1
1 := A1

[〈
ind1

1

〉]∣∣t1
2 := A2

[〈
ind1

2

〉]
∣∣t1

3 := E
(
t1
1 , t1

2

)∣∣A3

[〈
ind1

3

〉]
:= t1

3∣∣ · · ·
∣∣tk1 := A1

[〈
indk

1

〉]∣∣tk2 := A2

[〈
indk

2

〉]
∣∣tk3 := E

(
tk1 , tk2

)∣∣A3

[〈
indk

3

〉]
:= tk3∣∣) where t1

1 , t1
2 , t1

3 , . . . , tk1 , tk2 , tk3 end;

(6)

where each line describes the treatment of one point j in the
repetition space.

Each line of system (6) consists of the introduction of a
few intermediary local signals in (7), hence it can be trivially
proved equivalent:

∀ j ∈ repetition space,

A3

[〈
ind

j
3

〉]
:= E

(
A1

[〈
ind

j
1

〉]
,A2

[〈
ind

j
2

〉])
.

(7)

Indeed, it is costless to introduce intermediary signals, as
they can be compiled away by the synchronous compilers and
optimizers.

The modeling of a repeated computation then amounts
to the synchronous composition of all the models of each
point in the repetition space:

(∣∣A3

[〈
ind1

3

〉]
:= E

(
A1

[〈
ind1

1

〉]
,A2

[〈
ind1

2

〉])
∣∣ · · ·
∣∣A3

[〈
indk

3

〉]
:= E

(
A1

[〈
indk

1

〉]
,A2

[〈
indk

2

〉])
∣∣),

(8)

where k denotes the number of repetitions. As mentioned
previously, Array-OL expresses only data dependencies
between arrays, hence leaving all the potential parallelism
in the specifications. In particular, repetitions on arrays
describe how many times, and according to what paving
and fitting a computation should be repeated, but not
in what order the array elements should be accessed. In
other words, any order could be adopted in an iteration
implementing such a repetition in the case of a sequential
implementation provided that functional determinism is
preserved. We conform to this property of Array-OL simply
by using synchronous composition between models of all the
repetitions, thereby inducing no order between them.

Hence, the synchronous model of repetitive tasks
describes the same set of computations as the GASPARD
repetitive task.

Abdoulaye Gamatié et al. 11

module Downscaler module =

%External libraries%
use Basic Functions;

%Types and constants%
type type array i = [640,480] integer;
type type array o = [320,240] integer;
type type tile i = [8,8] integer;
. . .

process DOWNSCALER =

(? type array i A i;
! type array o A o;)

(| (T i1, . . . ,T i4800) := HV TILER i(A i)
| (T o1, . . . ,T o4800) :=

R HV FILTER(T i1, . . . ,T i4800)
| A o := HV TILER o (T o1, . . . ,T o4800)
|)
where

type tile i T i1, . . . ,T i4800;
type tile o T o1, . . . ,T o4800;
process HV TILER i =

(? type array i A i;
! type tile i T i1, . . . ,T i4800;)

(| T i1 := [[A i[0,0], . . . ,A i[0,7]],
. . . ,
[A i [7,0], . . . ,A i [7,7]]]

| · · ·

| T i4800 :=
[[A i [631, 471], . . . ,A i [631, 479]],
. . . ,
[A i [639, 471], . . . ,A i [639, 479]]]

|)
end; %process HV TILER i%

process R HV FILTER =

(? type tile i T i1, . . . ,T i4800;
! type tile o T o1, . . . ,T o4800;)

(| T o1 := HV FILTER (T i1)
| · · ·

| T o4800 := HV FILTER (T i4800)
|)
where

process HV FILTER =

(? type tile i T i;
! type tile o T o;)

(| t := H FILTER (T i)
| T o := V FILTER (t)
|)
where

type tile l t;
process H FILTER =

(? type tile i T i;
! type tile l t;)

(| · · · |)
process V FILTER =

(? type tile l t;
! type tile o T o;)

(| · · · |)
end; %process HV FILTER%
end; %process R HV FILTER%

process HV TILER o =

(? type tile o T o1, . . . ,T o4800;
! type array o A o;)

(| A o := HV TILE o (T o1, . . . ,T o4800)
|)
where

process HV TILE o =

(? type tile o T o1, . . . ,T o4800;
! type array o A o;)

(| A o :=
[[T o1 [0,0], . . . ,T o4720 [0,3]],
. . . ,
[T o80[0,0], . . . ,T o4800[3,3]]]
|)
end; %process HV TILER o%
end; %process DOWNSCALER%
end; %module Downscaler module%

Figure 10: A sketch of the signal code of the downscaler.

At this stage, it is possible to have a more compact
synchronous notation of a repetitive task. For instance, a map
of the function E on the array [39] or an array of processes
construct [13] offer this possibility. The model presented
here is meant to be intuitive and simple, and may certainly
be optimized. However, the considered optimizations can be
quite different according to the intended target operations
(e.g., efficient code generation or verification).

2.3.3. Application to the description of
an image downscaler

As an example to illustrate our modeling approach, let us
consider the video functionality of a new generation multi-
media cell phone. Such mobile devices are being increasingly
adopted by consumers. They always include multimedia
features, for example, camera, MP3 player, or radio provided
by multimedia modules and processors integrated in chips.
These features make the system design more complicated
than ever, leading to real development challenges today in
telephony industries.

The part of the video functionality modeled here deals
with scaling. It consists of a classical downscaler, which trans-

forms a video graphics array signal (VGA), 640 × 480 pixels
per frame into a quarter video graphics array (QVGA) signal,
320 × 240 pixels per frame. Therefore, a downscaling of 4:1
is required. Such an operation is interesting when visualizing
high quality live video in thin-film transistor (TFT) screen
while using low power and real-time previews (i.e., view
mode in video functionality of a cell phone) TFT refers
to active matrix screens on laptop computers, which offers
sharper screen displays and broader viewing angles than
does passive matrix. The best-known application of TFT is
in liquid crystal display (LCD) technology. The downscaler
itself is composed of two components: a horizontal filter that
reduces the number of pixels from a 640-line to a 320-line
by interpolating packets of 8 pixels; and a vertical filter that
reduces the number of pixels from a 480-line to a 240-line by
interpolating packets of 8 pixels as well.

GASPARD model

The GASPARD model of the downscaler is illustrated by
Figure 9. It is represented by a hierarchical task consisting
of three levels: top level, a repetitive task referred to
as Downscaler; second level, a compound component

12 EURASIP Journal on Embedded Systems

represented by a directed acyclic graph where the nodes
are repetitive tasks Horizontal f ilter and Vertical f ilter;
and third level, elementary tasks H f ilter and V f ilter that
are repeated within the repetitive tasks of second level. The
whole downscaler receives an infinity of frames, denoted by
the input 3D array (640, 480,∞), and produces an infinity
of transformed frames, (320, 240,∞). Here,∞ is represented
by the symbol ⋆ in the depicted model. The way pixels are
extracted from (resp., inserted in) these infinite arrays is
described by tilers.

Signal description

The Signal description sketched in Figure 10 corresponds to
the code generated automatically from the GASPARD model
of the downscaler by our implemented transformation.
The whole application is encapsulated in a module called
Downscaler module. A module plays a similar role as a
package in UML. Other modules are imported via the
statement use: Basic Functions proposes elementary external
functions, such as FFT, DCT, which are performed by
elementary tasks. In addition, types and constants can be
declared in the module. For instance, type array i is defined
as an array of integer type with size [640, 480].

The main process in the module, called DOWNSCALER,
reflects the same hierarchy as the corresponding GASPARD
model. Here, due to lack of space, we only represent the
main parts of process DOWNSCALER. This process is
composed of three subprocesses: HV TILER i for input
tiler, R HV FILTER containing the task repeated at the
top level, and HV TILER o for output tiler. Let us focus
first on the definition of HV TILER i in the Signal code.
It takes the input array A i and produces 4800 tiles, each
associated with a point in the repetition space. In particular,
we can notice that index values in arrays are static since
they are determined during the transformation from the
GASPARD model to the synchronous descriptions. The
process R HV FILTER represents the top-level repeated
task, and contains two subprocesses denoting the compound
tasks in the second level of the global hierarchy: H FILTER
and V FILTER. Their output tiles are stored in A o by
process HV FILTER o.

Observations

The resulting synchronous description of the downscaler
perfectly matches the corresponding GASPARD model. The
advantage is that it can be considered for an analysis using
the formal tools and techniques available in the Signal
environment. This is addressed in Section 3. However, the
main limitation of such a model concerns scalability. The
size of the process sketched in Figure 10 linearly depends on
the number of repetitions performed in parallel (here, 4800
subsets of equations). A possible way to reduce the size of
the process consists in considering that some computations,
for example, tile index calculations, are achieved by external
modules. But, such a solution is only partially satisfactory.

A1

A2

A3

E

(Array
to

flow)

(Array
to

flow)

(Flow
to

array)

t11 , . . . , tk1 t13 , . . . , tk3

t12 , . . . , tk2

Figure 11: A serialized model.

2.4. Serialized model

2.4.1. Structural transformation

Avoiding enumerating repetitions

While the parallel model fully preserves the data parallelism
present in Array-OL specifications, the model called seri-
alized, which is described in this section offers a refined
view of such specifications by sequentializing the execution
of a repetitive task. This model is particularly compact in
comparison with the parallel model because it only defines
one instance of the repeated task in a repetitive task. It
therefore significantly reduces the scalability problem men-
tioned before. It also features a monoprocessor execution of
multiple repetitions. More generally, GASPARD applications
will be modeled by combining both parallel and serialized
models (Section 2.5). The serialized version of elementary
tasks and of hierarchical tasks do not differ from their parallel
version from the viewpoint of model construction. Here, we
mainly focus on the translation of repetitive tasks.

An alternative transformation

The difference with the previous transformation mainly
concerns the rules describing repetitive tasks (r6) and the
tilers (r8), which is as follows.

(r6′) Repetitive tasks are modeled by a compound Signal
node, where

(i) the input tilers are transformed according to (r8′);

(ii) the repeated computation is represented by a single
instance of the node representing the repeated body,
obtained by (r1);

(iii) the output tilers are transformed according to (r8′).

As shown by Figure 11 in our graphical syntax for Signal, in
other words, we distinguish three basic subparts: a single task
instance E (which can still be seen as an external function)
and two kinds of components referred to as Array to Flow
and Flow to Array. E receives its input tiles via a tile flow from
Array to Flow and sends its output tiles to Flow to Array, also
via a tile flow of the same length as the one given by Array to
Flow.

Abdoulaye Gamatié et al. 13

Clock

Index 1

Index 2

.

.

.

Index n

Seq

Mem
a

t

Extract

(1) process Array2Flow = { integer k; type array type, tile type; }
(2) (? array type a; ! tile type t;)
(3) (| clk p := Clock{k} (̂a)
(4) | id := Seq(clk t)
(5) | t := Extract {array type, tile type} (id, a)
(6)

∣∣)

(7) where

(8) eventclk t, integer id;
(9) process Extract = {type array type, tile type; }
(10) (? integer id; array type a; ! tile type t;);
(11) process Seq =

(12) (? event c ! integer id);
(13) process Clock = {integer k; }
(14) (? event c1; ! event c2;)
(15) end; %process Array2Flow%

Figure 12: Construction of tile flows from arrays.

(r8′) Each tiler is represented by a node defined by
the Array to Flow and Flow to Array components, which
play a central role in the serialized model. This definition
partially relies on the oversampling mechanism introduced
previously.

Let us consider that incoming arrays A1 and A2 are
received at the instants {τi,i∈N} of a given clock c1. Then,
for each τi, the tile production algorithm is applied to the
received arrays: the task instance E is provided with the flow

of tile pairs (t
j
1, t

j
2) and produces the tile flow t

j
3; the resulting

tile flow is therefore associated with a clock c2 = k ↑ c1, where
0 ≤ j ≤ k. The constant integer k corresponds to the number
of paving iterations deduced from the repetition space. It is
directly derived from Array-OL specifications.

Globally, the definition of Array to Flow and Flow to Array
components includes the following aspects.

(1) Memorization: in Array to Flow, every incoming
array must be made available at every instant of
c2 in order to extract the successive output tiles.
Similarly, in Flow to Array, the incoming tiles must be
accumulated locally until the k expected tiles become
available. Then, the output array can be produced.

(2) Consumption and production rates: in both compo-
nents, we describe the frequencies at which tiles and
arrays are consumed or produced. This is basically
captured through the clock information associated
with the corresponding signals.

(3) Scheduling: we have to ensure the coherency between
the tile flow produced by Array to Flow and the
one consumed by Flow to Array. Here, we consider
a common sequencer for both components, which
decides the right tiles to be scheduled at every instant
τi of the clock associated with a tile flow.

Construction of tile flows from arrays

The Array to Flow component is described in both graphical
and Signal textual syntax by Figure 12. The illustration given
on the left-hand side is encoded by the Signal program shown

on the right-hand side (we do not give the detailed Signal
program due to lack of space).

Three parts are to be distinguished. First, the Clock
subprocess (line 3 in the program) defines the tile production
rate from the input array denoted by a. It basically consists
of the oversampling mechanism specified previously (i.e.,
process k Overspl). Then, the Extract subprocess (line 5) is
used to memorize an incoming array from which it extracts
the tiles t. Finally, the Seq subprocess (line 4) describes
in which order tiles are gathered from the input array. It
produces tile identifiers id at the same rate as the event clk t
defined by Clock. These identifiers are used by the Extract
subprocess to produce tiles. The tile enumeration strategy
adopted in Seq can be decided from several viewpoints as
follows.

(i) Environment: the presence of sensors/actuators
imposes particular orders according to which data are
received/produced.

(ii) Application: in some algorithms, each computation
step requires the results obtained at previous steps,
referred to as interrepetition dependency in Array-OL
[5], hence leading to precedence constraints between
task instances. Operating modes in some applications
are also source of flows [35].

(iii) Architecture: characteristics related to architecture
devices such as processor or memory may also lead
to particular scheduling/allocation strategies.

Reconstruction of arrays from tile flows

The description of the Flow to Array component (see
Figure 13) is obtained in a symmetric way as Array to Flow.

Here, in the Clock subprocess, there is no need to use
the oversampling mechanism. However, we have to define
the instant when the output array is produced. This is
represented by the signal clk a, which occurs whenever k
input tiles are received. Every input tile is immediately
stored in the memorized local array tmp within the Insert
subprocess. The Seq subprocess is the same as previously. It
defines the way the tiles are organized within the local array
by indicating the suitable index (id) associated with them.

14 EURASIP Journal on Embedded Systems

Clock

Index 1

Index 2

.

.

.

Index n

Seq

Mem

t

a

Insert

(1) process Flow2Array = { integer k; type array type, tile type; }
(2) (? tile type t; ! array type a;)
(3) (| clk a := Clock{k} (̂t)
(4) | id := Seq (̂t)
(5) | tmp := Insert { array type, tile type } (id, t)
(6) | a := tmp when clk a

(7)
∣∣)

(8) where

(9) integer id; event clk a; array type tmp;
(10) process Insert = {type array type, tile type; }
(11) (? integer id; tile type t; ! array type a;);
(12) process Seq =

(13) (? event c ! integer id);
(14) process Clock = {integer k; }
(15) (? event c1; ! event c2;)
(16) end; %process Flow2Array%

Figure 13: Construction of arrays from a tile flow.

2.4.2. Correctness with respect to the GASPARD semantics

The correction of the serialized model is based on the
fact that the set of computations performed is that of the
GASPARD definition. Indeed,

(i) the oversampling is done in such a way that the
repeated function will be invoked as many times as
the size of the repetition space;

(ii) each invocation will apply on an input pattern
value obtained from the input array by using the
appropriate index obtained from the tiler definition;

(iii) each produced output pattern value is stored in the
output array by using the appropriate index obtained
from the tiler definition;

(iv) the fact that the same sequence is applied in Array
to Flow and Flow to Array ensures that indexes for
input and output correspond to the same point in the
repetition space;

(v) the input and output arrays of the repetitive tasks
hence contain the same values as in the previous case
where they were computed in parallel; the fact that
they are serialized, along the oversampled local clock,
is actually completely internal to the Signal process.
Seen from the external point of view, the input array
will be transformed into an output array, not in the
same logical instant, as was the case previously, but in
a later instant. However, the flows of input arrays and
output arrays will carry the same values in the same
order.

The parallel and serialized models offer the bases to
represent GASPARD applications from high-level views (i.e.,
with a maximal parallelism) to more refined views (i.e., with
serialized execution). We have a strict functional equivalence
(or flow-equivalence [7]) between the parallel and serialized
models: the input and output arrays in both cases are the
same although the order in which their constituent elements
are produced may differ. For any two repetitions, there is no
side effect between their execution. So computed patterns
always hold the same value independently from the kind of
model.

2.5. Mixing parallel and serialized models

We now present how the parallel and serialized models
can be combined in order to describe an application
composed of different kinds of tasks. The model resulting
from such a combination typically features the projection
of the application on a multiprocessor architecture (see the
methodology illustrated in Figure 1), where each serialized
model represents a monoprocessor execution of a subpart of
the application.

Composition

The composition of several parallel synchronous models
of elementary tasks is quite straightforward. Indeed, the
execution of the resulting description is instantaneous. The
parallel composition of these tasks is exactly the same as the
one of processes in synchronous languages.

When serialized models are involved, the parallel com-
position is more tricky because of multiple oversamplings
within composed elementary tasks. To illustrate the problem,
let us consider two serialized tasks T1 and T2 with different
oversampling parameters, such that their outputs are the
only inputs of a task T3. According to the execution
model of Array-OL defined in GASPARD, T3 imposes the
simultaneous presence of its inputs before executing. To
ensure this property, we have to make the outputs of T1 and
T2 available at the same moment although they have different
oversampling rhythms (since one task will probably finish its
execution before the other).

The process given in Figure 14 describes our solution,
which synchronizes k inputs of a task. Each array is associated
with a state variable represented by Boolean c. The outputs
are produced when the signal rdv (the conjunction or all
state variables) is true. Here, the Signal construct y :=
x cell b means that y takes the value of x when x is present,
otherwise the latest value of x whenever the Boolean b holds
the value true.

Hierarchy

The hierarchy of GASPARD models can be represented
in synchronous languages by considering their modularity.

Abdoulaye Gamatié et al. 15

(1) process synchronize = {type array type; }
(2) (? array type a1, . . . ,ak; ! array type a11, . . . ,akk;)
(3) (|

(∣∣ c1̂= · · ·̂= ck̂ =
(
a1 ̂+ · · · ̂+ ak

)

(4) | c1 := â1 default (false when (rdv$1)) default (c1$1 init false)
(5)

∣∣ · · ·
(6) | ck := âk default (false when (rdv$1)) default (ck$1 init false)
(7) | rdv := c1 and · · · and ck

(8) |)
(9) | (| a11 := (a1 cell rdv) when rdv

(10)
∣∣ · · ·

(11) | akk := (ak cell rdv) when rdv

(12) |)
(13) |)
(14) where boolean c1, . . . ,c2, rdv;
(15) end; %process synchronize%

Figure 14: A synchronize in signal.

Every nonhierarchical task of GASPARD is replaced by either
a parallel or a serialized model depending on the execution.
Then, for each hierarchical task at level n, represented by a
process in Signal, its subtasks are considered as subprocesses
of the synchronous model associated with the task at level n
(see Figure 10).

3. ANALYSIS OF GASPARD MODELS USING
SYNCHRONOUS TOOLS

We present how the synchronous models obtained from
the previous section are used to address design correctness
issues for GASPARD models. We primarily discuss how basic
characteristics of GASPARD models can be easily checked
via the corresponding synchronous models (Section 3.1).
Then, we present two specific analyses on these models.
The first analysis concerns causality analysis for GASPARD
models (Section 3.2). It consists in checking that the specified
data dependencies do not induce any cycle in the global
graph representing a model. The second analysis specif-
ically addresses nonfunctional properties (Section 3.3). It
deals with constraints on execution frequencies in systems
designed with GASPARD. One may need to guarantee that
the application implementation respects some given data
production rates at the modeling phase in order to reduce
the global design cost earlier. This knowledge has an impact
on the choice of the granularity of array processing. Here,
we propose to address this issue by using specific concepts
of synchronous languages though a simple but relevant
example. Further possible analyses of GASPARD models
are also briefly mentioned (Section 3.4). To finish, some
implementation aspects are discussed (Section 3.5).

3.1. Guaranteeing single assignment and
functional determinism

We discuss how the translation described in this paper makes
it possible to check some basic properties of GASPARD
models with the synchronous technology.

3.1.1. Single assignment

In Section 1.2, we have seen that single assignment is one
of the key characteristics of Array-OL. Thus, for a given

output array A of a task, one must ensure that no element
of A, denoted by A [〈ind〉], is overwritten after its first
value assignment. This typically happens when the paving
matrix and the shape of patterns lead to tiles that overlap
within A. Single assignment in a GASPARD model can be
checked with an algorithm that exhibits the emptiness of
polyhedra intersection as shown in [5]. Such an algorithm
can be implemented using linear programming. However,
no implementation is currently available in the GASPARD
environment.

The synchronous models resulting from our translation
can therefore be used to check single assignment in the
translated GASPARD models. As a matter of fact, most
of the considered synchronous dataflow languages assume
single assignment. It is the case of Lustre and Signal.
Their associated compilers therefore allow one to check this
property on programs.

Here is an example that illustrates the single assignment
issue. Let us consider the rightmost output tiler of the
Downscaler model illustrated previously in Figure 9. The left-
hand side picture in Figure 15 (taken from the Array-OL
tool - (http://www2.lifl.fr/west/aoltools)) partially shows the
correct paving according to the tiling information defined in
Figure 9. Patterns have the shape (4,4) and are separated by
white lines. They are perfectly contiguous. In each pattern, an
array element with white circles around denotes the reference
element of the pattern.

It is not the case for the tiling information considered
for the picture on the right-hand side in Figure 15. These
information are as follows:

F =

(
1 0
0 1

)
, o =

(
0
0

)
, P =

(
3 0
0 4

)
. (9)

We can observe intersection regions between some
contiguous tiles in the picture. For instance, pattern P(0,0)

overlaps pattern P(1,0) at the array elements with indexes
(3, 0), (3, 1), (3, 2), and (3, 3).

The translation of a GASPARD model with a tiling
information as illustrated in the last picture will produce a
synchronous description with multiple assignments to the
same variable, thus violates the single assignment property
required by Array-OL.

16 EURASIP Journal on Embedded Systems

P(0, 0)

P(0, 1)

P(0, 2)

P(0, 3)

P(0, 4)

P(1, 0)

P(1, 1)

P(1, 2)

P(1, 3)

P(1, 4)

P(2, 0)

P(2, 1)

P(2, 2)

P(2, 3)

P(2, 4)

P(3, 0)

P(3, 1)

P(3, 2)

P(3, 3)

P(3, 4)

P(4, 0)

P(4, 1)

P(4, 2)

P(4, 3)

P(4, 4)

P(5, 0)

P(5, 1)

P(5, 2)

P(5, 3)

P(5, 4)

(a)

P(0, 0)

P(0, 1)

P(0, 2)

P(0, 3)

P(0, 4)

P(1, 0)

P(1, 1)

P(1, 2)

P(1, 3)

P(1, 4)

P(2, 0)

(2, 1)

P(2, 2)

P(2, 3)

P(2, 4)

P(3, 0)

P(3, 1)

P(3, 2)

P(3, 3)

P(3, 4)

P(4, 0)

P(4, 1)

P(4, 2)

P(4, 3)

P(4, 4)

P(5, 0)

P(5, 1)

P(5, 2)

P(5, 3)

P(5, 4)

P(6, 0)

P(6, 1)

P(6, 2)

P(6, 3)

P(6, 4)

P(7, 0)

P(7, 1)

P(7, 2)

P(7, 3)

P(7, 4)

(b)

Figure 15: The illustrations of the single assignment issue.

3.1.2. Functional determinism

Synchronous languages have been originally introduced in
order to enable deterministic descriptions of embedded
system behaviors. Given a synchronous model, its functional
determinism is trivially verified using the compiler. For
instance, in Signal, the so-called endochrony property that is
checked with the compiler ensures that a program behaves
deterministically [7]. In Lustre, programs are deterministic
by construction. If the code generated by our transformation
is not deterministic, it will be systematically rejected by
the Lustre compiler. Our transformation of GASPARD
models does not a priori take into account the determinism
during the code generation process. Such a property is
only checked on the resulting synchronous code when
required. Nevertheless, note that non deterministic behaviors
could be interesting when we want typically to model
system environment. For instance, the concept of sensor
in GASPARD can be associated with a model that behaves
nondeterministically regarding the production of values.

3.2. Causality analysis

The absence of causality cycles in GASPARD models is
another important property of GASPARD models. Currently,
designers are not provided with any specific tool in the GAS-
PARD environment to check the absence of causality cycles
in models. While such cycles may be avoided easily in simple
application models, the detection of their presence in more
complex models, for example, models with several nested
hierarchical levels or models including control features [35],
is very far to be trivial. As mentioned in Section 2, such
a property of Array-OL specifications could be addressed
with polyhedra techniques (e.g., [34]). However, for the
GASPARD extension of Array-OL, we also argued why these
techniques become less attractive compared to those relying
on mixed representations like the Signal HCDG.

Further situations where causality analysis is interesting
in GASPARD concern IP reuse in the associated design
methodology (see Figure 1). As a matter of fact, the use

T
T1

T2

i11 o11

i12 o12

i21

o21
i22 o22

Figure 16: A simple hierarchical task model.

of some IPs during the deployment phase may introduce
data-dependency cycles in cycle-free models that result from
the association phase. Conversely, some IPs can break an
apparent data-dependency cycle in a model (see the examples
shown in Figure 17). Our translation of GASPARD models
toward synchronous languages offers an efficient way to deal
with all these issues with their corresponding compilers.
The presence of a cycle in a synchronous program leads to
deadlock, that is, instantaneous self dependency.

Let us consider the hierarchical task T , depicted by
Figure 16. This task is composed of two subtasks T1 and
T2, which communicate with each other via some local
array variables. For the sake of simplicity, these subtasks
are assumed to be elementary tasks. They are therefore
represented by either an IP or some black-box abstraction
of their corresponding functionality. Now, we want to check
whether or not there is a causality cycle in the specification of
T . Depending on the level of detail of a translated GASPARD
model into a synchronous model, the cycle detection can be
achieved either mainly syntactically as in the Lustre language
[40]; or using more sophisticated techniques as in the Signal

Abdoulaye Gamatié et al. 17

T
T1

T2

i11 o11

i12 o12

i21

o21
i22 o22

(a) Detection of causality cycle in T

T
T1

T2

i11 o11

i12 o12

i21

o21
i22 o22

(b) Absence of causality cycle in T

Figure 17: Causality analysis for GASPARD application models at different levels of detail.

language which takes into account clock information to
decide the validity of data dependencies [41].

3.2.1. According to the execution model
defined in GASPARD

Figure 17(a) illustrates the task T according to the execution
model of Array-OL defined in GASPARD, every output port
of an elementary task (e.g., T1 or T2), say o11 in T1,
depends on all input ports of the task, that is, i11 and
i12. The translation of such an Array-OL model leads to a
synchronous program on which a dedicated compiler can
straightforwardly exhibit the presence of causality cycles. As
a result, the version of task T given in Figure 17(a) should be
rejected with respect to the current semantics of elementary
tasks in Array-OL.

3.2.2. According to a finer grained execution model

Now, let us consider that a user has several alternatives
concerning the way elementary tasks T1 and T2 can be
defined. In other words, he has different IPs that implement
both T1 and T2. A possible choice may be the one illustrated
in Figure 17(b). Here, the dependency constraint induced
by the execution model of Array-OL in GASPARD, on
interface ports is no longer considered. A finer-grained
description of the interfaces of the IPs is available, enriched
with dependency information. For instance, in T1, o11 only
depends on i11. Assuming the dependencies specified in
Figure 17(b), it is very easy to show that the translation of the
second version of task T leads to a deadlock-free program.
With a finer-grained view of models, that is, a more precise
interface description of tasks, the causality analysis avoids the
detection of “false” cycles. As a result, a finer compilation of
specifications and better reuse of IPs are made possible.

The above example shows another advantage of the
synchronous modeling in that it enables to explore the
presence of causality cycles in Array-OL models from
different execution models of an application. This allows one
to identify a wider range of valid application specifications

0 1 2 3 4 5 6 7 8 9 10 · · ·

c1 : tt ⊥ ⊥ tt ⊥ ⊥ tt ⊥ ⊥ tt ⊥ · · ·

c2 : ⊥ tt ⊥ ⊥ ⊥ tt ⊥ ⊥ ⊥ tt ⊥ · · ·

Figure 18: c1 and c2 are in (3, 1, 4)-affine relation.

while still respecting a basic principle of Array-OL, consisting
of the absence of causality cycles in models. Note that there is
a great opportunity of using conditioned dependencies, as is
done in the Signal causality analysis. This is particularly very
useful in GASPARD with control features [35].

3.3. Synchronizability analysis using affine clocks

We first recall the definition of affine clocks. Then, we use
this notion to deal with clock synchronization issues in an
application example.

Affine clocks

Affine clocks enable to deal with synchronizability issues in
a more relaxed way than usually in synchronous languages.
They have been defined by Smarandache et al. [36] in order
to address the validation of real-time systems using the
functional data parallel language Alpha [22] and Signal.
Intensive numerical computations are expressed in Alpha
while the control (the clock constraints resulting from Alpha
descriptions after transformations) is addressed in Signal.
The regularity of computations expressed in Alpha makes
it possible to identify affine relations between the specified
clocks. The Signal compiler therefore enables to address
synchronizability criteria based on such clock relations.

Definition 1. An affine transformation of parameters (n,φ,d)
applied to a clock c1 produces a clock c2 by inserting (n− 1)
instants between any two successive instants of c1, and then
counting on this fictional set of instants each dth instant,
starting with the φth. Clocks c1 and c2 are said to be in

(n,φ,d)-affine relation, noted as c1
(n,φ,d)
−−−−→ c2 (see example

in Figure 18).

18 EURASIP Journal on Embedded Systems

In affine clock systems, two different signals are said to be
synchronizable if there is a dataflow preserving way to make
them actually synchronous. The Signal clock calculus (i.e., its
static analysis phase) has been extended in order to address
such synchronizability issues with the associated compiler
[36].

Using affine clocks

Let us consider a cell phone in its View mode of video
functionality [42]. It captures video images through its
CMOS sensor, and these images are immediately transferred
to the processor. Then, in general, the images should be
downscaled so as to fit for the TFT preview. Finally, the
downscaled images must be transferred to TFT for display. To
simplify the modeling of this functionality, we assume that
there exists a base clock in this cell phone. The sensor, the
processor and TFT display hold a logical clock based on the
base clock through affine relations, which also lead to further
affine relations between the logical clocks characterizing
the three components. Now, we want to analyze how these
components must be synchronized through their clocks so
that the video can be normally displayed in the TFT. This
issue is addressed below by performing a synchronizability
analysis on the resulting synchronous model by using affine
clocks.

In Figure 19, the downscaler is considered together with
its connected components in the cell phone. The way
it receives its inputs and outputs will be now expressed
through flows. A CMOS sensor gathers data and sends
to the downscaler a flow of pixels, denoted by tki . Then,
the downscaler transforms these pixels in order to display
reduced video images on the TFT screen. The result of this
transformation is the flow tko .

Each component is associated with a logical clock that
defines its activation instants, that is, its data consump-
tion/production rates. This is typically what GASPARD is not
able to describe. Remember that in GASPARD the only kind
of relation that can be specified between different tasks is data
dependency and repetition. There is no information on the
presence of either flows or frequencies. For this reason, the
synchronous model is primarily important here because it
includes such nonfunctional information. Moreover, its asso-
ciated validation techniques enable to verify very interesting
properties of the modeled system.

Let us denote by cp, ca, and ci the respective logical
clocks of the sensor, the downscaler, and the display. They,
respectively, represent the pixel production rate in the sensor,
the bloc computation frequency within the downscaler, and
the image production rate on the display. The whole model
works as follows: the sensor produces its output data pixel
by pixel; the downscaler periodically performs an operation
whenever it receives from the sensor a fixed number of pixels;
and the TFT screen periodically displays an image whenever
it receives from the downscaler a fixed number of blocs of
transformed pixels. A step in cp, ca, and ci corresponds to
the production of, respectively, a single pixel by the sensor, a
transformed block of pixels by the downscaler, and an image
by the TFT display. From the point of view of GASPARD,

cp ca ci

tki tko
CMOS
sensor

Display

scaling

4 : 1
downscaler

TFT
display

Figure 19: Downscaling images within a cell phone.

the clock steps associated with a component correspond
to its paving iterations. We therefore derive the following
constraints between above logical clocks:

(i) C1 : ca is an affine undersampling of cp, that is,

cp
(1,φ1,d1)
−−−−−→ ca;

(ii) C2 : ci is an affine undersampling of ca, that is,

ca
(1,φ2,d2)
−−−−−→ ci;

Now, let us consider a specification requirement of the
video display functionality, consisting of a constraint on
the actual production rate, noted c′i , of displayed images
in the cell phone. This constraint, denoted by C3, states
a relation between the pixel production rate cp and c′i as

follows: cp
(1,φ3,d3)
−−−−−→ c′i . Then, we need to guarantee the

compatibility of this new constraint with the previous set of
constraints {C1,C2}. In other words, we want to establish
a synchronizability relation between clocks c′i and ci with
respect to {C1,C2,C3}. This will ensure that the expected
rate of the TFT display ci, which depends on the production
rate of the downscaling process ca, satisfies the considered
requirement.

This issue cannot be addressed by only using the
usual definition of clock synchronization in synchronous
languages. Instead, we consider affine clock systems in order
to define under which condition c′i and ci are synchronizable.
Hence, from C1, C2, and C3, this synchronizability property
is checked by using the following property, which has been
proved in [43], and now implemented in the Signal compiler:

c′i and ci are synchronizable ⇐⇒

{
φ1 + d1φ2 = φ3,

d1d2 = d3.
(10)

This issue is solved quite easily with synchronous models,
while it is not possible with GASPARD only. The result of this
analysis can be used to adjust the paving iteration parameters
of the GASPARD model of the downscaler so as to satisfy the
nonfunctional requirements imposed on the whole system.

In [36], Smarandache et al. combine the Alpha language
and the synchronous language Signal to design and validate
embedded systems by defining affine clocks relations, which
are used in Section 3.3 to check a synchronizability criteria.
Our approach differs from this work in that we propose
a synchronous model of a whole data-parallel application
instead of describing only its clock information as it is the
case with [36]. As a result, our model allows us to address
both functional and nonfunctional properties of the appli-
cation using the synchronous technology. Another similar

Abdoulaye Gamatié et al. 19

work concerns the design of n-synchronous Kahn networks
[37] in which authors consider the Lucid Synchrone language
in order to address the correct-by-construction development
of high performance stream-processing applications. This
work also defines clock synchronizability properties that
can be applicable to GASPARD models specified in Lucid
Synchrone. Note that in both [36, 37], the analysis relies
on clocks, which give a qualitative view of time. This is not
the case of [44], which is another interesting work where
authors use linear relations to analyze synchronous programs
so as to verify quantitative time properties. Such an approach
would be very helpful when dealing with time durations
and the perspective of generating Lustre code would make
the connection of GASPARD and this technique possible.
For the moment, the qualitative approach of Smarandache
et al. is privileged because it is more appropriate for clock
synchronizability issues.

3.4. Other analyses

Among other techniques that are very useful to GASPARD
applications, we mention performance evaluation for tempo-
ral validation. In Signal, a technique has been implemented
within its associated design environment, which allows to
compute temporal information corresponding to execution
times [45]. It first consists in deriving from a given
program another Signal program, termed the “temporal
interpretation,” which computes timestamps associated with
the variables of the initial one. The cosimulation of both
programs therefore produces at the same time the value
of each variable that is present and its current timestamp
(or availability date). These timing information are used
to compute different latencies allowing one to calculate an
approximation of the program execution time. Such an
evaluation technique becomes very desirable for GASPARD
in order to make architecture exploration possible early
during the design flow.

We also mention the possibility to observe the functional
behavior of given GASPARD applications. This is achieved
by using the simulation code automatically generated by syn-
chronous tools from the associated models. Several examples
have been experimented among which are matrix and image
processing. They have been implemented using the approach
exposed in this paper by first defining their associated
specification in GASPARD, then by generating automatically
the corresponding executable synchronous code.

All these features of the synchronous technology con-
tribute to make trustworthy the design activity for data-
intensive applications in the GASPARD framework.

3.5. Implementation issues

A prototype transformation tool, based on MDE, has been
developed in order to enable the automatic translation
of GASPARD models into synchronous programs defined
in dataflow languages [38]. It mainly relies on a generic
metamodel for synchronous equational dataflow languages,
which targets at the same time Lustre, Lucid Synchrone,
and Signal. This tool has been developed as an Eclipse

(http://www.eclipse.org/) plugin composed of a metamodel
and a set of transformation rules. The implemented trans-
formation rules globally represent about five thousands lines
of Java code in Eclipse.

Figure 20 illustrates a typical transformation chain with
the Signal compiler as the target technology. The data-
intensive applications are first specified in MagicDraw with
the help of the GASPARD UML profile. The specified model
are then exported so as to be used in Eclipse environment,
where automatic model transformations [38] are carried
out according to GASPARD and synchronous metamodels.
Then, the results of these transformations are Signal code.

The repetition size that could be handled in the transfor-
mation within the Eclipse capacity is about forty thousands.
The implementations are carried out on a desktop computer
that is equipped with Quad-Core Intel Xeon processors
for a total of eight execution cores in two sockets. The
computer has 2 gigabyte memory and runs on Linux. Eclipse
environment has problems on the big memory used by its
plugins, which limit the transformation plugin because it
calculates array indexes and stores them in the memory
temporarily. As a result, there is a maximum repetition
number. But certain optimizations on memory usage can be
done to improve the repetition number that can be handled,
for instance, by storing the array indexes in temporary files
during the computing in order to reduce the memory usage.

4. CONCLUSIONS

In this study, we propose a synchronous model for the design
of data-intensive applications within the GASPARD envi-
ronment, which is dedicated to high-performance system-
on-chip codesign. The GASPARD underlying specification
language, Array-OL, adopts a particular style where multi-
dimensional arrays are manipulated. We show how models
described using such a language can be modeled using
synchronous dataflow languages. For that, we propose on
the one hand, a synchronous model that fully preserves the
data-parallelism and task parallelism of GASPARD models,
and on the other hand, a refined model in which the
execution of GASPARD models is partially serialized. A
major advantage is that the resulting models enable to
formally check the correctness of GASPARD models, which
is necessary before going through the next steps of its
associated design methodology (e.g., simulation, synthesis).
We discuss how basic characteristics of GASPARD models
can be verified to ensure the correctness of the specifications.
We address the analysis of single assignment, functional
determinism, and causality on the resulting synchronous
models. We also illustrate synchronizability analysis on a
simple application example for correctness issues. This study
is the first attempt to relate explicitly multidimensional data
structures to the synchronous paradigm.

A prototype engine, based on MDE has been devel-
oped to enable the automatic transformation of GAS-
PARD descriptions into synchronous models [38]. A
few sample demonstrations (item “Gaspard2 to Lustre”)
can be found at the address http://www2.lifl.fr/west/
DaRTShortPresentations. They illustrate the design, the

20 EURASIP Journal on Embedded Systems

Magic draw

Signal compiler

Signal code

Gaspard modelUML model

Signal codeSynchronous model

EMF UML model
Eclipse modeling framework

Figure 20: The architecture of the implementation tools.

transformation, and example of Lustre code generated from
Gaspard models. The generated code is used to illustrate a
functional simulation with the SIMEC simulator available in
the Lustre environment, and causality analysis.

While this study shows very promising results, a main
limitation is that the resulting synchronous models can be
huge due to the explicit instantiation of Array-OL data-
parallel constructs. This can reduce the applicability of more
advanced analyses.

The perspectives of this work are manifold. First, we
want to enhance the current control extension of GASPARD.
Control has been introduced in the form of computa-
tion mode automata (inspired by synchronous dataflow
languages) that define several ways of achieving different
computations. The modes can differ either by the way data
are accessed by tilers, or by the nature of the algorithm
that applies on received data. Following the preliminary
work of [35], we plan to make possible the specification
of hierarchical and parallel automata defining modes and
transitions between them. The resulting transition systems
could be analyzed using techniques such as model-checking
based on our transformation toward synchronous languages.
A more constructive perspective is the use of discrete
controller synthesis techniques. By introducing properly
task control structures [46, 47], this technique can be
used to generate automatically part of the task handler
to enforce safety properties in the system under design.
Another challenging question concerning the link between
the fusion transformation of Array-OL [6] and synchronous
clock calculi. The fusion transformation enables to deduce

from any application description, a specification in which
there is a unique top-level task in the hierarchy. It seems
that the execution of a repetitive task model resulting from
the fusion transformation matches the multidimensional
time model proposed by Feautrier [48]. How could such
a multidimensional time model be defined in synchronous
languages? If it is possible, how could the associated clock
calculus be defined? The answer to these questions will help
us to identify a suitable clock notion for GASPARD and to
benefit from the know-how of synchronous clock calculi.

REFERENCES

[1] A. Demeure and Y. Del Gallo, “An array approach for signal
processing design,” in Proceedings of the Sophia-Antipolis
Conference on Micro-Electronics (SAME ’98), Sophia Antipolis,
France, October 1998.

[2] The DaRT Team, http://gforge.inria.fr/projects/gaspard2.
[3] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le

Guernic, and R. de Simone, “The synchronous languages 12
years later,” Proceedings of the IEEE, vol. 91, no. 1, pp. 64–83,
2003.

[4] P. Boulet, “Array-OL revisited, multidimensional intensive
signal processing specification,” Tech. Rep. RR-6113, INRIA,
Paris, France, February 2007.

[5] P. Boulet, “Formal semantics of Array-OL, a domain specific
language for intensive multidimensional signal processing,”
Tech. Rep. PR-6467, INRIA, Paris, France, March 2008.

[6] A. Amar, P. Boulet, and P. Dumont, “Projection of the Array-
OL specification language onto the Kahn process network
computation model,” in Proceedings of the 8th International
Symposium on Parallel Architectures, Algorithms and Networks

Abdoulaye Gamatié et al. 21

(ISPAN ’05), pp. 496–501, Las Vegas, Nev, USA, December
2005.

[7] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann, “POLYCHRONY
for system design,” Journal of Circuits, Systems and Computers,
vol. 12, no. 3, pp. 261–303, 2003.

[8] J. B. Dennis, “First version of a data flow procedure language,”
in Programming Symposium, vol. 19 of Lecture Notes in
Computer Science, pp. 362–376, Paris, France, 1974.

[9] G. Kahn, “The semantics of simple language for parallel
programming,” in Proceedings of the IFIP Congress, vol. 74
of Information Processing, pp. 471–475, Stockholm, Sweden,
August 1974.

[10] W. Wadge and E. Ashcroft, LUCID, the Dataflow Programming
Language, Academic Press, San Diego, Calif, USA, 1985.

[11] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice, “LUSTRE:
a declarative language for real-time programming,” in Pro-
ceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL ’87), pp. 178–188,
ACM Press, Munich, Germany, January 1987.

[12] P. Caspi and M. Pouzet, “Synchronous Kahn networks,” in
Proceedings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP ’96), pp. 226–238, Philadel-
phia, Pa, USA, May 1996.

[13] L. Besnard, T. Gautier, and P. L. Guernic, “SIGNAL V4—
INRIA version: Reference Manual,” 2007, http://www.irisa.fr/
espresso/Polychrony.

[14] High Performance Fortran Forum, “High performance for-
tran language specification,” January 1997, http://hpff.rice
.edu/versions/hpf2/index.htm.

[15] B. B. Fraguela, J. Guo, G. Bikshandi, et al., “The hierarchically
tiled arrays programming approach,” in Proceedings of the 7th
Workshop on Workshop on Languages, Compilers, and Run-
Time Support for Scalable Systems (LCR ’04), vol. 81, pp. 1–12,
Houston, Tex, USA, 2004.

[16] G. Almási, L. De Rose, B. B. Fraguela, J. Moreira, and D.
Padua, “Programming for locality and parallelism with hier-
archically tiled arrays,” in Proceedings of the 16th International
Workshop on Languages and Compilers for Parallel Computing
(LCPC ’03), vol. 2958 of Lecture Notes in Computer Science, pp.
162–176, College Station, Tex, USA, October 2003.

[17] D. Callahan, B. L. Chamberlain, and H. P. Zima, “The
cascade high productivity language,” in Proceedings of the 9th
International Workshop on High-Level Programming Models
and Supportive Environments (HIPS ’04), vol. 9, pp. 52–60,
Santa Fe, NM, USA, April 2004.

[18] E. Allen, D. Chase, J. Hallett, et al., “The fortress language
specification, version 1.0 beta,” March 2007, http://research
.sun.com/projects/plrg/fortress.pdf.

[19] P. Charles, C. Grothoff, V. Saraswat, et al., “X10: an object-
oriented approach to non-uniform cluster computing,” in
Proceedings of the 20th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA ’05), pp. 519–538, ACM Press, San Diego, Calif,
USA, October 2005.

[20] W. Thies, M. Karczmarek, M. Gordon, et al., “StreamIt: a com-
piler for streaming applications,” MIT/LCS Technical Memo
MIT/LCS Technical Memo LCS-TM-622, Massachusetts Insti-
tute of Technology, Cambridge, Mass, USA, December 2001.

[21] E. Lee, C. Hylands, J. Janneck, et al., “Overview of the
ptolemy project,” Technical Memorandum UCB/ERL M01/11,
Department of Electrical Engineering and Computer Science,
University of California, Berkeley, Calif, USA, 2001.

[22] C. Mauras, Alpha: un langage équationnel pour la conception
et la programmation d’architectures parallèles synchrones, Ph.D.

thesis, Université de Rennes I, Rennes, France, December
1989.

[23] D. Wilde, “The ALPHA language,” Tech. Rep. 827, IRISA/
INRIA, Rennes, France, 1994.

[24] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow:
describing signal processing algorithm for parallel compu-
tation,” in Proceedings of the 32nd IEEE Computer Society
International Conference (COMPCON ’87), pp. 310–315, San
Francisco, Calif, USA, February 1987.

[25] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete,
“Cyclo-static data flow,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP ’95), vol. 5, pp. 3255–3258, Detroit, Mich, USA, May
1995.

[26] E. A. Lee, “Mulitdimensional streams rooted in dataflow,”
in Proceedings of the IFIP WG10.3. Working Conference on
Architectures and Compilation Techniques for Fine and Medium
Grain Parallelism (PACT ’93), vol. A-23 of IFIP Transactions,
pp. 295–306, Orlando, Fla, USA, January 1993.

[27] P. K. Murthy and E. A. Lee, “Multidimensional synchronous
dataflow,” IEEE Transactions on Signal Processing, vol. 50, no.
8, pp. 2064–2079, 2002.

[28] J. Keinert, C. Haubelt, and J. Teich, “Windowed synchronous
data flow,” Tech. Rep. Co-Design Report 02, Department of
Computer Science 12, Hardware-Software-Co-Design, Uni-
versity of Erlangen-Nuremberg, Erlangen, Germany, 2005.

[29] D.-I. Ko and S. S. Bhattacharyya, “Modeling of block-based
DSP systems,” The Journal of VLSI Signal Processing, vol. 40,
no. 3, pp. 289–299, 2005.

[30] N. Halbwachs and D. Pilaud, “Use of a real-time declarative
language for systolic array design and simulation,” in Proceed-
ings of the International Workshop on Systolic Arrays, Oxford,
UK, July 1986.

[31] F. Rocheteau and N. Halbwachs, “POLLUX, a LUSTRE-based
hardware design environment,” in Proceedings of the Interna-
tional Workshop on Algorithms and Parallel VLSI Architectures
II, P. Quinton and Y. Robert, Eds., pp. 335–346, Chateau de
Bonas, Gers, France, June 1991.

[32] L. Morel, “Array iterators in Lustre: from a language extension
to its exploitation in validation,” EURASIP Journal of Embed-
ded Systems, vol. 2007, Article ID 59130, 16 pages, 2007.

[33] P. Feautrier, “Array expansion,” in Proceedings of the 2nd
International Conference on Supercomputing, pp. 429–441, St.
Malo, France, June 1988.

[34] P. Feautrier, “Dataflow analysis of array and scalar references,”
International Journal of Parallel Programming, vol. 20, no. 1,
pp. 23–53, 1991.

[35] O. Labbani, J. Dekeyser, P. Boulet, and E. Rutten, “Introducing
control in the gaspard2 data-parallel metamodel: synchronous
approach,” in Proceedings of the International Workshop on
Modeling and Analysis of Real-Time and Embedded Systems
(MARTES ’05), Montego Bay, Jamaica, October 2005.

[36] I. Smarandache, T. Gautier, and P. Le Guernic, “Validation
of mixed SIGNAL-ALPHA real-time systems through affine
calculus on clock synchronisation constraints,” in Proceedings
of the Wold Congress on Formal Methods in the Development
of Computing Systems-Volume II, vol. 1709 of Lecture Notes
In Computer Science, pp. 1364–1383, London, UK, September
1999.

[37] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau,
and M. Pouzet, “N-sychronous Kahn networks,” in Proceedings
of the 33th ACM SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL ’06), pp. 180–193,
Charleston, SC, USA, January 2006.

22 EURASIP Journal on Embedded Systems

[38] H. Yu, A. Gamatié, E. Rutten, and J.-L. Dekeyser, “Model
transformations from a data parallel formalism towards
synchronous languages,” in Embedded Systems Specification
and Design Languages, V. Eugenio, Ed., vol. 10 of Lecture
Notes Electrical Engineering, chapter 13, pp. 183–198, Springer,
London, UK, 2008.

[39] L. Morel, “Efficient compilation of array iterators for Lustre,”
in Proceedings of the 1st Workshop on Synchronous Languages,
Applications, and Programming (SLAP ’02), vol. 65 of Electronic
Notes in Theoretical Computer Science, pp. 19–26, Grenoble,
France, April 2002.

[40] N. Halbwachs, P. Raymond, and C. Ratel, “Generating efficient
code from data-flow programs,” in Proceedings of the 3rd
International Symposium on Programming Language Imple-
mentation and Logic Programming (PLILP ’91), pp. 207–218,
Passau, Germany, August 1991.

[41] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire, “Pro-
gramming real-time applications with SIGNAL,” Proceedings
of the IEEE, vol. 79, no. 9, pp. 1321–1336, 1991.

[42] Intel Corporation, “Intel Quick Capture Technology for the
Intel PXA27x Processor Family,” 2004, http://www.intel.com/
design/pca/applicationsprocessors/whitepapers/300873.htm.

[43] I. Smarandache, Transformations affines d’horloges: application
au codesign de systèmes temps réel en utilisant les langages
SIGNAL et ALPHA, Ph.D. thesis, Université de Rennes 1,
Rennes, France, October 1998.

[44] N. Halbwachs, Y.-E. Proy, and P. Roumanoff, “Verification
of real-time systems using linear relation analysis,” Formal
Methods in System Design, vol. 11, no. 2, pp. 157–185, 1997.

[45] A. A. Kountouris and P. Le Guernic, “Profiling of SIGNAL
programs and its application in the timing evaluation of
design implementations,” in Proceedings of the IEE Colloquium
on Hardware-Software Cosynthesis for Reconfigurable Systems,
vol. 6, pp. 1–9, HP Labs, Bristol, UK, February 1996.

[46] K. Altisen, A. Clodic, F. Maraninchi, and E. Rutten, “Using
controller-synthesis techniques to build property-enforcing
layers,” in Proceedings of the 12th European Symposium on
Programming Languages and Systems (ESOP ’03), vol. 2618
of Lecture Notes in Computer Science, pp. 174–188, Warsaw,
Poland, April 2003.

[47] G. Delaval and É. Rutten, “A domain-specific language for
multi-task systems, applying discrete controller synthesis,”
EURASIP Journal on Embedded Systems, vol. 2007, Article ID
84192, 17 pages, 2007.

[48] P. Feautrier, “Some efficient solutions to the affine scheduling
problem—part II: multidimensional time,” International Jour-
nal of Parallel Programming, vol. 21, no. 6, pp. 389–420, 1992.

