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We present a novel approach to real-time spatial rendering of realistic auditory environments and sound sources recorded live,
in the Peld. Using a set of standard microphones distributed throughout a real-world environment, we record the sound peld
simultaneously from several locations. After spatial calibration, we segment from this set of recordings a number of auditory com-
ponents, together with their location. We compare existing tioheéay of arrival estimation techniques between pairs of widely
spaced microphones and introduce a noveleent hierarchical localization algorithm. Using the high-level representation thus
obtained, we can edit and rerender the acquired auditory scene over a variety of listening setups. In particular, we can move or
alter the di erent sound sources and arbitrarily choose the listening position. We can also composite elemergreof dcenes
together in a spatially consistent way. Our approach providesent rendering of complex soundscapes which would be challeng-

ing to model using discrete point sources and traditional virtual acoustics techniques. We demonstrate a wide range of possible
applications for games, virtual and augmented reality, and audio visual post production.

Copyright © 2007 Emmanuel Gallo et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION sound Peld can be directly used to acquire live auditory en-
vironments as a wholel[ 2]. They produce lifelike results
While hardware capabilities allow for real-time rendering ofbut o er little control, if any, at the playback end. In partic-
increasingly complex environments, authoring realistic vir-ular, they are acquired from a single location in space, which
tual audio-visual worlds is still a challenging task. This is par-makes them insu cient for walkthrough applications or ren-
ticularly true for interactive spatial auditory scenes for whichdering of large near-beld sources. In practice, their use is
few content creation tools are available. mostly limited to the rendering of an overall ambiance. Be-
The current models for authoring interactive 3D-audio Sides, since no explicit position information is directly avail-
scenes often assume that sound is emitted by a set of mon@ble for the sound sources, itis deult to tightly couple such
phonic point sources for which a signal has to be individuallyspatial recordings with matching visuals.
generated. In the general case, source signals cannot be com- This paper presents a novel analysis-synthesis approach
pletely synthesized from physics-based models and must behich bridges the two previous strategies. Our method
individually recorded, which requires enormous time and re- builds a higher-level spatial description of the auditory scene
sources. Although this approach gives the user the freedom tfhom a set of Peld recordings (s€egure ). By analyzing
control each source and freely navigate throughout the audihow di erent frequency components of the recordings reach
tory scene, the overall result remains an approximation duehe various microphones through time, it extracts both spa-
to the complexity of real-world sources, limitations of mi- tial information and audio content for the most signibpcant
crophone pick-up patterns, and limitations of the simulated sound events present in the acquired environment. This spa-
sound propagation models. tial mapping of the auditory scene can then be used for post-
On the opposite end of the spectrum, spatial soundprocessing and rerendering the original recordings. Reren-
recordings which encode the directional components of thedering is achieved through a frequency dependent warping
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() (b)

Figure 1: (a) We use multiple arbitrarily positioned microphones (circled in yellow) to simultaneously record real-world auditamgynen
ments. (b) We analyze the recordings to extract the positions of various sound components through time. (c) This high-level representation
allows for postediting and rerendering the acquired soundscape within generic 3D-audio rendering architectures.

of the recordings, based on the estimated positions of severahgles with dierent microphones allows the sound editor
frequency subbands of the signal. Our approach makes posie render di erent audio perspectives, as required by the vi-
tional information about the sound sources directly availablesual action. Thus, producing synchronized souneets for

for generic 3D-audio processing and integration with 2D or PIms requires carefully planned microphone placement so
3D visual content. It also provides a compact encoding othat the resulting audio track perfectly matches the visual ac-
complex live auditory environments and captures complextion. This is especially true since the required audio mate-
propagation and reverberation ects which would be very rial might be recorded at dierent times and places, before,
di cult to render with the same level of realism using tradi- during, and after the actual shooting of the action on stage.
tional virtual acoustics simulations. Usually, simultaneous monaural or stereophonic recordings

Our work complements image-based modeling and ren-of the scene are composited by hand by the sound designer or
dering approaches in computer graphi32§]. Moreover,  editor to yield the desired track, limiting this approach to-o
similar to the matting and compositingechniques widely line post-production. Surround recording setups (e $ur-
used in visual eects production 7], we show that the var- round Decca Treeg9, 10], which historically evolved from
ious auditory components segmented out by our approachstereo recording, can also be used for acquiring a sound peld
can be pasted together to create novel and spatially consistestitable for restitution in typical cinema-like setups (e.g., 5.1-
soundscapes. For instance, foreground sounds can be intsurround). However, such recordings can only be played back
grated in a di erent background ambiance. directly and do not support spatial post-editing.

Our technique opens many interesting possibilities for ~ Other approaches, more physically and mathematically
interactive 3D applications such as games, virtual/augmentgrounded, decompose the wavebeld incident on the record-
ed reality or o-line post-production. We demonstrate its ing location on a basis of spatial harmonic functions such
applicability to a variety of situations using drent micro-  as spherical/cylindrical harmonics (e gmbisonigs 1, 11D

phone setups. 14 or generalized Fourier-Bessel functiorig] Such rep-
resentations can be further manipulated and decoded over
2. RELATED WORKS a variety of listening setups. For instance, they can be easily

rotated in 3D space to follow the listenerOs head orientation
Our approach builds upon prior works in several domains and have been successfully used in immersive virtual reality
including spatial audio acquisition and restitution, structure applications. They also allow for beamforming applications,
extraction from audio recordings, and blind source separawhere sounds emanating from any specibed direction can
tion. A fundamental dierence between the approaches isbe further isolated and manipulated. However, these tech-
whether they attempt to capture the spatial structure of theniques are practical mostly for low-order decompositions
wavebeld through mathematical or physical models or at{order 2 already requiring 9 audio channels) and, in return,
tempt to perform a higher-level auditory scene analysis to resu er from limited directional accuracylf]. Most of them
trieve the various, perceptually meaningful, subcomponentsilso require specibc microphones 17019 which are not
of the scene and their 3D location. The following sectionswidely available and whose bandwidth usually drops when
give a short overview of the background most relevant to outthe spatial resolution increases. Hence, higher-order micro-

problem. phones do not usually deliver production-grade audio qual-
ity, maybe with the exception of TrinnovOs SRP sysi&n [

phones but is dedicated to 5.1-surround restitution. Finally,
Processing and compositing live multitrack recordings is ofa common limitation of these approaches is that they use co-
course a widely used method in motion-picture audio pro- incident recordings which are not suited to rendering walk-
duction [8]. For instance, recording a scene from dient  throughs in larger environments.



Emmanuel Gallo et al. 3

Closely related to the previous approach is wave-pbel@.2.2. Blind source separation
synthesis/holophonyZ0, 21]. Holophony uses the Fresnel- S
Kircho integral representation to sample the sound pelgAnother large area of related research is blind source sepa-
inside a region of space. Holophony could be used to acfation (BSS) which aims at separating the various sources
quire live environments but would require a large number from one or several mixtures under various mixing modelg
of microphones to avoid aliasing problems, which would [33 34. Most recent BSS approaches rely on a sparse sig-
jeopardize proper localization of the reproduced sourcesn@l representation in some space of basis functions which
In practice, this approach can only capture a live audi-Minimizes the probability that a high-energy coeient at
tory scene through small acoustic Owindows.O In contragthy time instant belongs to more than one sour@[
while not providing a physically accurate reconstruction of SOme work has shown that such sparse coding does exists
the sound Peld, our approach can provide stable localiza@t the cortex level for sensory codirgf]. Several techniques

tion cues regardless of the frequency and number of microhave been proposed such as independent component analysis
phones. (ICA) [37, 38 or the more recenDUET technique B9, 40

which can extract several sources from a stereophonic signal
I1_)y building an interchannel delay/amplitude histogram in
Fourier frequency domain. In this aspect, it closely resembles
the aforementioned binaural cue coding approach. However,
most BSS approaches do not separate sources based on spa-

Finally, some authors, inspired from works in computer
graphics and vision, proposed a dense sampling and inte
polation of the plenacoustic functidie2, 23 in the man-
ner of lumigraphgd3, 4, 24, 25. However, these approaches

remain mostly theoretical due to the required spatial den- . | but directl ve for the dirent ional

sity of recordings. Such interpolation approaches have alsfid! cues, butdirectly so vedolr eh' tr}en SOlthrce §|gn|asgs-
been applied to measurement and rendering of reverberaS"MINgd @ priort mMixing Models which are often simple. ur
tion blters 6 27). Our approach follows the idea of ac- context would be very challenging for such techniques which

quiring the plenacoustic function using only a sparse sam-m'ght require knowing the number of sources to extract in

pling and then warping between these samples in,[eracz;\dvance, or need more sensors than sources in order to ex-

tively, for example, during a walkthrough. In this sense,plicmy separate the desired signals. In practice, most audi-

it could be seen as an Ounstructured plenacoustic rendef2"Y BSS techniques_ are devote_d to separation of spe_ech sig-
nals for telecommunication applications but other audio ap-

ing.O NN -
9 plications include upmixing from stereo to 5.1 surround for-
mats §41].
2.2. High-level auditory scene analysis In this work, however, our primary goal is not to bnely

segment each source present in the recorded mixtures but
A second large family of approaches aims at identifyingather to extract enough spatial information so that we can
and manipulating the components of the sound Peld atmodify and re-render the acquired environment while pre-
a higher level by performing auditory scene analy28.[ serving most of its original content. Closer in spirit, the
This usually involves extracting spatial information about DUET technique has also been used for audio interpolation
the sound sources and segmenting out their respective corf42). Using a pair of closely spaced microphones, the au-
tent. thors apply DUET to re-render the scene at arbitrary loca-
tions along the line passing through the microphones. The
present work extends this approach to arbitrary microphone
arrays and re-rendering at any 3D location in space.

Some approaches extract spatial features such as binau-
ral cues (interaural time dierence, interaural level dér- 3. OVERVIEW
ence, interaural correlation) in several frequency subbands
of stereo or surround recordings. A major application of We present a novel acquisition and 3D-audio rendering
these techniques is €ient multichannel audio compression pipeline for modeling and processing realistic virtual audi-
[29 30 by applying the previously extracted binaural cuestory environments from real-world recordings.
to a monophonic downmix of the original content. However, We propose to record a real-world soundscape using ar-
extracting binaural cues from recordings requires an implicityjtarily placed omnidirectional microphones in order to get
knowledge of the restitution system. a good acoustic sampling from a variety of locations within
Similar principles have also been applied to 3exible renthe environment. Contrary to most related approaches, we
dering of directional reverberation ects B1] and analysis use widely spaced microphone arrays. Any studio micro-
of room responsesl] by extracting direction of arrival in-  phones can be used for this purpose, which makes the ap-
formation from coincident or near-coincident microphone proach well suited to production environments. We also pro-
arrays B2. pose an image-based calibration strategy making the ap-
This paper generalizes these approaches to multichannpkoach practical for peld applications. The obtained set of
beld recordings using arbitrary microphone setups and no aecordings is analyzed in an dine preprocessing step in or-
priori knowledge of the restitution system. We propose a di-der to segment various auditory components and associate
rect extraction of the 3D position of the sound sources ratherthem with the position in space from which they were emit-
than binaural cues or direction of arrival. ted. To compute this spatial mapping, we split the signal into

2.2.1. Spatial feature extraction and restitution



4 EURASIP Journal on Advances in Signal Processing

O -line On-line
Multi-track Image-based Time-frequency Position of Clustering Post-editing
rec%:dmg £ calibration of—> Pa'f\IN'tSG P time-frequency & 3
. correlation ; ;
photographs microphones estimates atoms | source matting | rerendering
<— Section 4 Sections 5 &6 Sectior+————>

Figure 2: Overview of our pipeline. In an aline phase, we brst analyze multitrack recordings of a real-world environment to extract the
location of various frequency subcomponents through time. At run time, we aggregate these estimates into a target number of clustered
sound sources for which we reconstruct a corresponding signal. These sources can then be freely postedited and rerendered.

short time frames and a set of frequency subbands. We therival (TOA) to each microphone has to be determined. How-
use classical time derence of arrival techniques between all ever, it is not always possible to introduce calibration signals
pairs of microphones to retrieve a position for each subbancat a proper level in the environment. Hence, in noisy envi-
at each time frame. We evaluate the performance of existingpnments obtaining the required TOAs might be diult,
approaches in our context and present an improved hierar4f not impossible. Rather, we use an image-based technique
chical source localization technique from the obtained time-from photographs which ensures fast and convenient acqui-
di erences. sition on location, not requiring any physical measurements

This high-level representation allows for Rexible and ef-0r homing device. Moreover, since it is not based on acous-
bcient on-line re-rendering of the acquired scene, indepentic measurements, it is not subject to background noise and
dent of the restitution system. At run-time during an in- IS likely to produce better results. We use REALWfage-
teractive simulation, we use the previously computed spatiaModelei(http://www.realviz.comto extract the 3D locations
mapping to properly warp the original recordings when the from a small set of photographs (4 to 8 in our test examples)
virtual listener moves throughout the environment. With an taken from several angles, but any standard algorithm can be
additional clustering step, we recombine frequency subbandapplied for this step44]. To facilitate the process, we place
emitted from neighboring locations and segment spatially-colored markers (tape or balls of modeling clay) on the mi-
consistent sound events. This allows us to select and posgrophones, as close as possible to the actual location of the
edit subsets of the acquired auditory environment. Finallycapsule, and on the microphone stands. Additional mark-
the location of the clusters is used for spatial audio restitu-ers can also be placed throughout the environment to ob-
tion within standard 3D-audio APIs. tain more input data for calibration. The only constraint is

Figure 2shows an overview of our pipeline. Secti@hs to provide a number of noncoplanar calibration points to

5 and 6 describe our acquisition and spatial analysis phas@v0id degenerate cases in the process. In our test examples,
in more detail.Section 7presents the on-line spatial audio 1€ accuracy of the obtained microphone locations was of
resynthesis based on the previously obtained spatial mappin@e orc_Jer of one centimeter. Image-based callbratlt_)n of_the
of the auditory scene. Finallgection &lescribes several ap- 'ccording setup is a key aspect of our approach since it al-

plications of our approach to realistic rendering, postediting, /0 for treating complex peld recording situations such as
and compositing of real-world soundscapes. the one depicted irfFigure 3where microphones stands are

placed on large irregular rocks on a seashore.

4. RECORDING SETUP AND CALIBRATION 5. PROPAGATION MODEL AND ASSUMPTIONS

. . FOR SOURCE MATTING
We acquire real-world soundscapes using a number of om-

nidirectional microphones and a multichannel recording in- From theM recorded signals, our Pnal goal is to localize and
terface connected to a laptop computer. In our examples, Wee-render a numbed of representative sourgesich o er a
used up to 8 identicaRudioTechnica AT3038icrophones  good perceptual reconstruction of the original soundscape
and aPresonus Firepddewire interface running on batter- captured by the microphone array. Our approach is based on
ies. The microphones can be arbitrarily positioned in the en-+ywo main assumptions.
vironment. Section &hows various possible setups. To pro-  First, we consider that the recorded sources can be repre-
duce the best reSUItS, the microphones should be placed SO génted as point emitters and assume an idea' anechoic prop_
to provide a compromise between the signal-to-noise ratio ofagation model. In this case, the mixtuxg(t) of N sources
the signibcant sources and spatial coverage. si(t), ..., s(t) recorded by themth microphone can be ex-

In order to extract correct spatial information from the pressed as
recordings, it is necessary to brst retrieve the 3D locations
of the microphones. Maximum-likelihood autocalibration N
methods could be used based on the existence of predebned Xm(t) = amn(t)s tS mn(t) (@)
source signals in the scer®d], for which the time of ar- n=1
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whereyim(t) is the inverse Fourier transform &fm(2), ,j(m

and m are correction terms for attenuation and time de-
lay derived from the estimated positions of the efent sub-

bands. The term |, also includes a matting coeient rep-
resenting how much energy within each frequency subband
should belong to each representative source. In this sense, it
shares some similarity with théme-frequency maskirgp-
proach of §Q.

The obtained representation can be made to match the
acquired environment iK N and if, following a sparse
coding hypothesis, we further assume that the contents of
each frequency subband belong to a single source at each
time frame. This hypothesis is usually referred toVéis
disjoint orthogonalitj4Q and givenN sourcesS,, ...,y in

Figure 3: We retrieve the position of the microphones from several Fourier domain, it can be expressed as

photographs of the setup using a commercial image-based model- S(2S(2) = 0, i =j. (6)

ing tool. In this picture, we show four views of a recording setup,

position of the markers and the triangulation process yielding the ~ When the two previous conditions are not satisbed, the

locations of the microphone capsules. representative sources will correspond to a mixture of the
original sources andsj will lead to a less-accurate approx-
imation.

where parameterann(t) and mn(t) are the attenuation co-
e cients and time delays associated withilfesource and . SPATIAL MAPPING OF THE AUDITORY SCENE
the mth microphone.

Second, since our environments contain more than oneln this step of our pipeline, we analyze the recordings in or-
active source simultaneously, we consideirequency sub- der to produce a high-level representation of the captured
bandsK J, as the basic components we wish to position insoundscape. This high-level representation is a mapping,
space at each time frame (d€igure 5(a). We choose to use global to the scene, between drent frequency subbands of
nonoverlapping frequency subbands uniformly dePned on dhe recordings and positions in space from which they were
Bark scale45 to provide a more psycho-acoustically rele- emitted (sed-igure 5.
vant subdivision of the audible spectrum (in our examples,  Following our previous assumptions, we consider each

we experimented with 1 to 32 subbands). frequency subband as a unique point source for which
In frequency domain, the signal, Pltered in thekth a single position has to be determined. Localization of a
Bark band can be expressed at each time frame as sound source from a set of audio recordings, using a single-

propagation-path model, is a well-studied problem with ma-
jor applications in robotics, people tracking and sensing,
teleconferencing (e.g., automatic camera steering), and de-
fense. Approaches rely either on time éience of arrival
where (TDOA) estimates46248], high-resolution spectral estima-
tion (e.g., MUSIC) 9, 5(] or steered response power us-
1, 2% < Bark(f) < w ing a beamforming strategp1E63. In our case, the use of
K K 3) freely positioned microphones, which may be widely spaced,
0, otherwise, prevents from using a beamforming strategy. Besides, such
f2 an approach would only lead to direction of arrival infor-
+35atan o0—— , 4 mation and not a 3D position (unless several beamforming
1000 7508 arrays were used simultaneously). In our context, we chose
f = z/Zf,is the frequency in Hertzfs is the sampling rate, 10 use a TDOA strategy to determine the location of the var-

and Xm(2) is the Z-point Fourier transform ofxm(t). We  ious auditory events. Since we do not know the directivity
typically record our live signals using 24-bit quantization and©f the sound sources nor the response of the microphones,
fo= 44.1 KHz. The subband signals are computed uging  localization based on level dirence cannot be applied.
512 with a Hanning window and 50% overlap before storing Figur(_e 4details the various stages of our source localiza-
them back into time domain for later use. tion pipeline.

At each time frame, we construct a new representation
for the captured soundbeld at an arbitrary listening pointas6.1. Time-frequency correlation analysis

-
Yim(2) = Wk(2) Xm(t)egj(2 2T) = Wk(2)Xm(2), (2)
t=1

Wi (f) =

Bark(f) = 13 atan

J K j Analysis of the recordings is done on a frame-by-frame basis
X(t) kmYkm £+ km , M, (5  using short time windows (typically 20 milliseconds long or
j=lk=1 1024 samples at CD quality). For a given source position and
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Figure 4: Overview of the analysis algorithm used to construct a spatial mapping for the acquired soundscapes.

@ (b) (©

Figure 5: lllustration of the construction of the global spatial mapping for the captured sound-peld. (a) At each time frame, we split the
signals recorded by each microphone into the same set of frequency subbands. (b) Based ondisreéliof arrival estimation between

all pairs of recordings, we sample all corresponding hyperbolic lodbtaiw a position estimate for the considered subband. (c) Position
estimates for all subbands at the considered time frame (shown as colored spheres).

a given pair of microphones, the propagation delay from the  For the weighting function, , we use the PHAT weight-
source to the microphones generates a measurable time difrg which was shown to give better results in reverberant en-
ference of arrival. The set of points which generate the sam@ronments p4:

TDOA debnes a hyperboloid surface in 3D (or a hyperbola 1
in 2D) which foci are the locations of the two microphones mn(2) = RACTACE 9
(seeFigure 5(b). n(2)Ym(2)

In our case, we estimate the TDOAg,,, between pairs Note that phase dierences computed directly on the

of microphones m,n in each frequency subbaridusing  Fourier transforms, for example, as used in the DUET tech-
standard generalized cross-correlation (GCC) techniques imique [39, 40|, cannot be applied in our framework since our
frequency domain48, 54, 55| microphones are widely spaced.
_ We also experimented with an alternative approach based
mn = arg MaGCCm( ), (7) on the average magnitude dirence function (AMDF) 14,

where the GCC function is debned as 56. The TDOAs are then given as

z _ nm = arg minAMDFqn( ), (10)
GCGm( ) = mm(2E Yin(2)Ym(2) €€ 72, (8)
z=1 where the AMDF function is debned as
Ykn and Yy, are the Z-point Fourier transforms of the sub- 12
band signals (se@)), E{ Y«n(2) Y\ m(2)} is the cross spectrum AMDFpm( ) = 7 Ykn( ) S Vim(k+ ) . (12)

and denotes the complex conjugate operator. z=1
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We compute the cross-correlation using vectors of 8192 sam-
ples (185 milliseconds at 44.1 KHz). For each time frame, we
search the highest correlation peaks (or lowest AMDF val-
ues) between pairs of recordings in the time window debned i
by the spacing between the corresponding couple of micro-
phones. The corresponding time delay is then chosen as the
TDOA between the two microphones for the considered time
frame.
In terms of e ciency, the complexity of AMDF-based
TDOA estimation (roughlyO(n?) in the numbern of time-
domain samples) makes it unpractical for large time delays. @) (b)
In our test cases, running on Bentium 4 Xeor8.2 GHz
processor, AMDF-based TDOA estimations required aboufigure 6: (a) A 2D probablllty hiStOgram for source location Ob'
47 seconds. per subband for one second of input audio datiined by sampling a weighted sum of hyperbolas corresponding
(using 8 ecordings, . 28 possbe pas of mictophones)? 12 11, e STl s meeiens pa ehoun
In comparison, GCC-based TDOA estimations require OnlyIocation of the frequency band at each frame. (b) A cut through a
0.83 seconds per Su_bt_’and for each second of recordlng._ 3D histogram of the same situation obtained by sampling hyper-
As can be seen iRigure 8 both approaches resulted in po|6id surfaces on a 3D grid.
comparable subband localization performance and we found
both approaches to perform reasonably well in all our test
cases. In more reverberant environments, an alternative ap-

proach could be the adaptive eigenvalue decomposita [ The Pnal histogram value in each cell is then obtained as

From a perceptual point of view, listening to virtual reren- o (15D, () DDOA;
derings, we found that the AMDF-based approach leads to H(x) = i
reduced artifacts, which seems to indicate that subband loca- ij € Mi S M;
tions are more perceptually valid in this case. However, vali- (13)
dation of this aspect would require a more thorough percep- if Djj(x) < 1, O otherwise.

tual study.

N o The exponentially decreasing function controls the OwidthO
6.2. Position estimation of the hyperboloid and provides a tradebetween localiza-

From the TDOA estimates, several technigues can be us%'c?n accuracy and robustness to noise in the TDOA estimates.

. . .—1n our examples, we use= 4. The second weighting term
to estimate the location of the actual sound source. For in- oo ;
; . reduces the contribution of large TDOASs relative to the spac-
stance, it can be calculated in a least-square sense by solv

in . )
a system of equationdT] or by aggregating all estimates into m% between the pair of microphones. Such large TDOAs lead

a probability distribution function #6, 57]. Solving for pos- to ORatO ellipsoids contributing to a large number of neigh-

. " ; boring cells in the histogram and resulting into less-accurate
sible positions in a least-square sense leads to large errorsin ... .
osition estimatesd§|.

our case, mainly due to the presence of multiple sources, sel’ The histogram is recomputed for each subband at each

eral local maxima for each frequency subband resulting irlime frame based on the corresponding TDOA estimates.

an averaged localization. Rather, we choose the latter SOI"|"he location of thékth subband is bnally chosen as the center

tion and compute a histogram corresponding to the proba- _ . . . . i
bility distribution function by sampling it on a spatial grid point ofthe cell havmg thg maximum value inthe probability
plstogram (se€&igure 5(c):

(seeFigure § whose size is dePned according to the extent o
the auditory environment we want to capture (in our various —
examples, the grid covered areas ranging from 25 to 400 m Bi= arg rr)1(a>d—| (- (14)
We then pick the maximum value in the histogram to obtain
the position of the subband.

For each cell in the grid, we sum a weighted contribution
of the distance functiom;; (x) to the hyperboloid debned by
the TDOA for each pair of microphones, j :

In the case where most of the sound sources and micro-
phones are located at similar height in a near planar conbg-
uration, the histogram can be computed on a 2D grid. This
yields faster results at the expense of some error in localiza-
tion. A naive calculation of the histogram at each time frame
(for a single frequency band and 8 microphones, i.e., 28 pos-
Dij(x) = MiSx § M;$Sx SDDOA; , (12 sible hyperboloids) on a 128128 grid requires 20 millisec-
onds on aPentium 4 XeoR®.2 GHz processor. An identical
calculation in 3D requires 2.3 seconds. on a£2828x 128
whereM; (resp.,M;) is the position of microphone (resp.,  grid. To avoid this extra computation time, we implemented
j), andx is the center of the cell, addDOA; = TDOAj/c  a hierarchical evaluation using a quadtree or octree decom-
is the signed distance dérence obtained from the calculated position [59]. We recursively test only a few candidate loca-
TDOA (in seconds) and the speed of sound tions (typically 16 to 64), uniformly distributed in each cell,
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Figure 7: Indoor validation setup using 8 microphones. The 3 @
markers (see blue, yellow, green arrows) on the ground correspond
to the location of the recorded speech signals. 5
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before subdividing the cell in which the maximum of all es- g 5
timates is found. Our hierarchical localization process sup- £
ports real-time performance requiring only 5 milliseconds to > g e 0
locate a subband in a 532512x 512 3D grid. In terms of : ; : 0§05
accuracy, it was found to be comparable to the direct, non- 04 : : : ‘ ©
hierarchical, evaluation at maximum resolution in our test $50
examples. S1- ; - - : :
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6.3. Indoor validation study ®)

To validate our approach, we conducted a test study using

8 microphones inside a 7x8.5mx 2.5m room with lim- Figure 8: Energy localization map for a 28 s.-long audio sequence
ited reverberation time (about 0.3seconds at 1 KHz). Wefeaturing 3 speakers inside a room (indicated by the three yellow
recorded three people speaking while standing at locationgosses). Light-purple dots show the location of the 8 microphones.
specibed by colored markerBigure 7 depicts the corre- The top map is computed using AMDF-based TDOA estimation

. i hile the bottom map is computed using GCC-PHAT. Both maps
sponding setup. We Prst evaluated the localization accurac:%ere computed using 8 subbands and corresponding energy is inte-

for all ;ubbands by construpting spatial energy maps of th%rated over the entire duration of the sequence.

recordings. As can be seerHigure 8 our approach properly

localizes the corresponding sources. In this case, the energy

corresponds to the signal captured by a microphone located

at the center of the room. tion. Corresponding audio Ples can be foundhétp://www-
Figure 11shows localization error over all subbands by sop.inria.fr/reves/projects/audioMatting

reference to the three possible positions for the sources. Since They exhibit good correspondence between the original

we do not knowa priori which subband belongs to which situation and our renderings showing that we properly as-

source, the error is simply computed, for each subband, asign the subbands to the correct source locations at each time

the minimum distance between the reconstructed locationframe.

of the subband and each possible source position. Our ap-

proach achieves a maximum accuracy of one centimeter ang,, 3p-AUDIO RESYNTHESIS

on average, the localization accuracy is of the order of 10 cen-

timeters. Maximum errors are of the order of a few meters.The Pnal stage of our approach is the spatial audio resyn-

However, listening tests exhibit no strong artefacts showinghesis. During a real-time simulation, the previously pre-

that such errors are likely to occur for frequency subbandsomputed subband positions can be used for rerendering

containing very little energ¥tigure 1lalso shows the energy the acquired sound Peld while changing the position of the

of one of the captured signals. As can be expected, the ovesources and listener. A key aspect of our approach is to pro-

all localization error is also correlated with the energy of thevide a spatial description of a real-world auditory scene in

signal. a manner independent of the auditory restitution system.
We also performed informal comparisons between ref-The scene can thus be rerendered by standard 3D-audio

erence binaural recordings and a spatial audio renderingdPIs: in some of our test examples, we ugscectSound

using the obtained locations, as described in the next se@D accelerated by@reativeLabs Audigy2 N§undcard and
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also implemented our own software binaural renderer, us-
ing head-related transfer function (HRTF) data from the

LISTEN HRTF database.
Inspired by binaural-cue codin@®[)], our rerendering al-
gorithm can be decomposed in two steps, that we detail in the Time — !

following sections.

Frequency—

(i) First, as the virtual listener moves throughout the en-
vironment, we construct avarped monophonic signal
based on the original recording of the microphone
closest to the current listening position. . )

(i) Second, this warped signal is spatially enhanced usinfji9ure 9: In the resynthesis phase, the frequency components of
3D-audio processing based on the location of the dif- e 5|gn_al captured by the mlcr(_)phone closest to_the location of _the
ferent frequency subbands. V|rtua! listener (shown in red) is warped according to the spatial

mapping precomputed in the cline stage.
These two steps are carried out over small time frames (of
the same size as in the analysis stage). To avoid artefacts we
use a 10% overlap to cross-fade successive synthesis frames.
cation and might actually belong to the same physical source

7.1. Warping the original recordings in the original recordings. Thus, our bPnal rendering stage

spatializesN representative point sources corresponding to

For re-rendering, a monophonic signal best matching thethe N-generated clusters, which can vary between 1 and the

current location of the virtual listener relative to the various tgtal number of subbands. To improve the temporal coher-

sources must be synthesized from the original recordings. ence of the approach, we use an additional Kalman Pltering
At each time frame, we Prst locate the microphone closstep on the resulting cluster locatior].

est to the location of the virtual listener. To ensure that we  \with each cluster we associate a weighted sum of all

remain as faithful as pOSSibIe to the Original recording, WQNarped Signa|s in each subband which depends on the Eu-

use the signal captured by this microphone as our referencglidean distance between the location of the subb&rahd
signalR(t). the location of the cluster representati@. This debnes
We then split this signal into the same frequency sub-matting coe cients , similar to alpha channels in graph-

bands used during the oline analysis stage. Each subbandics [7):

is then warped to the virtual listener location according to

the precomputed spatial mapping at the considered synthe-

sis time frame (seigure 9. 100 + CSB
This warping involves correcting the propagation delay CaB = . G B : (16)

and attenuation of the reference signal for the new listen-

ing position, according to our propagation model (s€)(

Assuming an inverse distance attenuation for point emittersjn our examples, we used= 0.1. Note that in order to pre-

the warped signa®, (t) in subbandi is thus given as serve the energy distribution, these caéents are normal-

ized in each frequency subband.
ri L These matting coecients control the blending of all sub-
R(t) = SRt 1S 2 (15)  bands rendered at each cluster location and help smooth the
2 e ects of localization errors. They also ensure a smoother re-

P . : ___construction when sources are modibed or moved around in
whererj, i are, respectively, the distance and propagation,q rerendering phase

delay from the considered time-frequency atom to the refer- - 1,4 signal for each clust&(t) is Pnally constructed as

ence microphone anth,  are the distance and propagation 5 gum of all warped subband sign&st), as described in

delay to the new listening position. the previous section, weighted by the matting ceents
(C, B):

7.2. Clustering for 3D-audio rendering
and source matting
To spatially enhance the previously obtained warped signals, S i B RO an
we run an additional clustering step to aggregate subbands
which might be located at nearby positions using the tech-
nique of [60]. The clustering allows to build groups of sub- The representative location of each cluster is used to apply
bands which can be rendered from a single representative Ighe desired 3D-audio processing (e.g., HRTFs) withzopiti-
ori knowledge of the restitution setup.
Figure 10summarizes the complete rerendering algo-

1 http://recherche.ircam.fr/equipes/salles/listen/ rithm.
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Position Signal from Warped subband Signal for 3D renderin
~of — closest — Filterbank signals clusters (see HRTFg
microphones microphone (see equation (15) equation (17)) (e.g. )
r ) T
iti Matting gains
Position of - Postionof (Szg * Position of

listener clusters

(see Figure 5) equation (16))

S N

Clustering =

Figure 10: Overview of the synthesis algorithm used to rerender the acquired soundscape based on the previously obtained subband posi-
tions.

8. APPLICATIONS AND RESULTS 8.2. Spatial recording and view interpolation

Our technique opens many interesting application areas fof-0llowing binaural cue coding principles, our approach can
interactive 3D applications, such as games or virtual/ augb€ used to eciently generate high-resolution surround
mented reality, and oline audio-visual postproduction. recordings from monophonic signals. To illustrate this ap-

can be found at the following URIhttp://www-sop.inria.fr/ N @ circle-like conbguration about 1.2 meters in diameter
reves/projects/audioMatting (seeFigure 14 to record three persons talking and the sur-

rounding ambiance (fountain, birds, etc.). Then, our pre-
processing was applied to extract the location of the sources.
8.1. Modeling complex sound sources For rerendering, the monophonic signal of a single micro-
phone was used and respatialized as describ8ddtion 7.1
Our approach can be used to render extended sound sourcessing 4 clusters (séggure 16. Please, refer to the accompa-
(or small soundscapes) which might be diult to model us-  nying video provided on the web site to evaluate the result.
ing individual point sources because of their complex acous- Another advantage of our approach is to allow for reren-
tic behavior. For instance, we recorded a real-world soundlering an acquired auditory environment from various lis-
scene involving a car which is an extended vibrating soundening points. To demonstrate this approach on a larger
radiator. Depending on the point of view around the scene,environment, we recorded two moving speakers in a wide
the sound changes signibcantly due to the relative position adirea (about 1% 5 meters) using the microphone conbg-
the various mechanical elements (engine, exhaust, etc.) andation shown inFigure 1(a) The recording also features
the e ects of sound propagation around the body of the car.several background sounds such as waand road-work
This makes an approach using multiple recordings very in-noisesFigure 15shows a corresponding spatial energy map.
teresting in order to realistically capture theseets. Unlike  The two intersecting trajectories of the moving speakers are
other techniques, such &snbisonics O-form&62], our ap-  clearly visible.
proach captures the position of the various sounding compo-  Applying our approach, we are able to rerender this audi-
nents and not only their directional aspect. In the accompa-tory scene from any arbitrary viewpoint. Although the ren-
nying examples, we demonstrate a re-rendering with a moveering is based only on thmonophonisignal of the micro-
ing listening point of a car scenario acquired using 8 micro-phone closest to the virtual listener at each time frame, the
phones surrounding the action (s&&gure 12. In this case, extracted spatial mapping allows for convincingly reproduc-
we used 4 clusters for re-rendering. Note in the accompanying the motion of the sources. Note in the example video pro-
ing video available on-line, the realistic distance and prop-ided on the accompanying web site how we properly capture
agation eects captured by the recordings, for instance onfront-to-back and left-to-right motion for the two moving
the door slamgrigure 13hows a corresponding energy map speakers.
clearly showing the low frequency exhaust noise localized at
the rear of the car and the music from the onboard stereog 3. Spatial audio compositing and post-editing
audible through the driverOs open window. Engine noise was
localized more diusely mainly due to interference with the Finally, our approach allows for post-editing the acquired au-
music. ditory environments and composite several recordings.
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Figure 11: Localization error for the same audio sequence &guare 8computed over 8 subbands. Averaged error over all subbands is
displayed in blue, maximum error in green and minimum error in red. The top (magenta) curve represents the energy dbthe input
recordings and shows its correlation with the localization error (clearly larger when the energy drops out).
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Figure 12: We capture an auditory environment featuring a com- 3 ‘ ‘ ‘ ‘ ‘ ‘ 550
plex sound source (car engine/exhaust, passengers talking, door 34 . . . . . . X
slams, and onboard stereo system) using 8 microphones surround- sS4 sS3 s2 s1 0 1 2 3 4

ing the action. X (meters)

Figure 13: Energy localization map for a 15 seconds-long record-

ing of our car scenario featuring engine/exhaust sounds and music

831 S | lizati d modibcati (on the onboard stereo system and audible through the open driver
o ource re-localization and modiPcation window). Positions were computed over 8 subbands using GCC-

Using our technique, we can selectively choose and modi HAT-based TDOA estimation. Energy is integrated over the entire
. . . : uration of the input audio sequence.

various elements of the original recordings. For instance, we

can select any spatial area in the scene and simply relocate all

clusters included in the selected region. We demonstrate an
example interactive interface for spatial modibcation wheresecond example, we select the fountain at the rear left of the

the user brst debnes a selection area then a destination lodastener and move it to the front right (séégure 16.
tion. All clusters entering the selection area are translated to
the destination location using the translation vector dePnedg 3.2, compositing

by the center of the selection box and the target location. In
the accompanying video, we show two instances of source ré&ince our recording setups are spatially calibrated, we can in-

localization where we Prst select a speaker on the left-hangrate several environments into a single composite render-
side of the listener and move him to the right-hand side. In aing which preserves the relative size and positioning of the
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various sound sources. For instance, it can be used to inte-
grate a close-miked sound situation into a drent back-
ground ambiance. We demonstrate an example of sound
Peld compositing by inserting our previous car example (see
Figure 12 into the scene with the two moving speakers (see
Figure 3. The resulting composite environment is rendered
with 8 clusters and the 16 recordings of the two original
soundscapes. Future work might include merging the repre-
sentations in order to limit the number of composite record-
ings (e.g., by OreprojectingO the recordings of one environ-
ment into the recording setup of the other and mixing the
resulting signals).

::igu_re 14: Microphone setup used to record the fountain examp_le.&g_& Real/virtual integration

n this case, the microphones are placed at the center of the action.
Our approach permits spatially consistent compositing of
virtual sources within real-world recordings. We can also in-
tegrate virtual objects, such as walls, and make them inter-

10 act with the original recordings. For instance, by performing

8] real-time ray casting between the listener and the location
61 of the frequency subbands, we can add occlusiates due
4] to a virtual obstacle using a model similar t63. Please,
7 5l refer to the accompanying examples at the previously men-
£ 0] tioned URL for a demonstration. Of course, perfect integra-
E i tion would also require correcting for the reverberation ef-
> S2QTiiiiiii 0 fects between the dérent environments to composite. Cur-
SAY o rently, we experimented only in environments with limited
?62 Pl 19525 reverberation but blind extraction of reverberation parame-
VSSZ D DR Yo ters [64] and blind deconvolution are complementary areas
1%10' S8 %6 34 32 0 2 4 8 8 10 of future research in order to better composite real and vir-

X (meters) tual sound Pelds.

Figure 15: Energy map for a recording of our moving speaker sce9. DISCUSSION

nario. The arrows depict the trajectory of the two speakers. Energy

is integrated over the entire duration of the input audio sequence.Although it is based on a simple mixing model and assumes

Note how the two intersecting trajectories are clearly reconstructedyy-disjoint orthogonality for the sources, we were able to ap-
ply our approach to real-world recording scenarios. While
not production-grade yet, our results seem promising for a
number of interactive and o-line applications.

While we tested it for both indoor and outdoor record-
ings, our approach is currently only applicable to environ-
ments with limited reverberation. Long reverberations will
have a strong impact on our localization process since exist-
ing cross-correlation approaches are not very robust to in-
terfering sound refRections. Other solutions based on blind
channel identibcation in a reverberant context could lead to
improved results$4).

Errors in localization of the frequency subbands can re-
sult in noticeable artefacts especially when moving very close
to a source. These errors can come from several factors in
our examples particularly low signal-to-noise ratio for the
source to localize, blurring from sound refRections, correla-
tion of two di erent signals in the case of widely spaced mi-

Figure 16: An example interface for source relocalization. In ’[hisCrODhoneS or several sources being present ina single fre-
example, we select the area corresponding to the fountain (in purdU€ncy subband. As a result, several overlapping sources are
ple) and translate it to a new location (shown as a yellow cross)Often fused at the location of the louder source. While the
The listener is depicted as a large red sphere, the microphone arr@ssumption of W-disjoint orthogonality has been proven to

as small yellow spheres, and the blue spheres show cluster locatiolie suitable for speech signag]| it is more questionnable
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for more general scenarios. It will only be acceptable if this  Sound source clustering and matting also strongly de-
source can perceptually mask the others. However, recent apends on the correlation and position estimates for the sub-
proaches for e cient audio rendering have shown that mask- bands. An alternative solution would be to brst separate a
ing between sources is signibcad@][ which might explain  number of sources using independent component analysis
why our approach can give satisfying results quite beyond th@CA) techniques and then run TDOA estimation on the re-
validity domain of the underlying models. Alternate decom- sulting signals71, 72. However, while ICA might improve
positions B6, 67] could also lead to sparser representationsseparation of some sources, it might still lead to signals where
and better results within the same framework. sources originating from dierent locations are combined.

The signal-to-noise ratio of the dérent sound sources is Another issue is the microphone setup used for the
also directly linked to the quality of the result when moving recordings. Any number of microphones can be used for
very close to the source since our warping is likely to amplifjocalization starting from two (which would only give di-
the signal of the original recording in this case. rectional information). If more microphones are used, the

We are working on several improvements to alleviate re2dditional TDOA estimates will increase the robustness of
maining limitations of the system and improve the rendering the localization process. From our experience, closely spaced
quality. microphones will essentially return directional information
twhile microphone setups surrounding the scene will give

Currently, we do not interpolate between recordings bu d localizati Mi h forml d
select the signal of the microphone closest to the listener |pgood localization accuracy. Microphones uniformly space
in the scene provide a good compromise between signal-

cation for subsequent warping and re-rendering. This pro- . ; d i £ 1h ial variati fth
vides a correct solution for the case of omnidirectional ane{0-N0ISe ratio and sampling of the spatial variations of the

choic point sources. In more general situations, discontinu-sgund'peld'd.We alsg %xp'enrcr;entedd WltTt gard|0|d micro-
ities might still appear when switching from one microphone PNONe€ recordings and obtained good results in our car exam-
to the next. This can be caused, for instance, by the presen@ée‘ !—|owever, for Iarger_ e.nwronments,.correlathn estimates
of a sound source with a strong directionality. A solution to are likely to become noisier due to the Increase in separation
this problem would be to warp the few microphones closes(jbetwﬁ/len d|eren.t recolrglngsk, ”.‘ak'”g tlhgm d;:ult to corre- d
to the listener and blend the result at the expense of a high _Iate. oreovet, I woud make Interpolating between record-
computing cost. Note that naive blending between micro-'N9gs more di cult in the ger?efa' case. O!”. preferred s_olu-
phone signals before warping would introduce unwanted in-tion was thus to use a set of identical omnidirectional micro-
terferences, very noticeable in the case of widely spaced nﬁ_hones. However, it ShOUI.d be possible to u.seedfnt'sets of
crophones. Another option would be to experiment with mmrophones for Iocah;a_t!qn and re-rendering Wh'Ch opens
morphing techniques§g as an alternative to our position- other interesting possibilities for content creation, for in-
based warping. We could also useetient microphones for stance, by generating consistent 3D-aud|9 Bythroughs wh|_le
each frequency subband, for instance, choosing the microghangmg the focus point on the scene using directional mi-

phone closer to the location of each subband rather than thé:rorlJ:hon”es. h | . &
one closest to the listener. This would increase the signal-to- | . inally, our approac _currenty requires an-ne stgp
noise ratio for each source and could be useful to approxi-Wh'Ch prevents it from being used for real-time analysis. Be-

mate a close-miking situation in order to edit or modify the Ing able to compute cross-correlations in real time for all
reverberation eects for instance pairs of microphones and all subbands would make the ap-

The number of bands also inBuences the quality of the re_proach usable for broadcast applications.

sult. More bands are likely to increase the spatial separation

but since our correlation estimates are signibcantly noisy, i10. CONCLUSIONS

might also make artefacts more audible. In our case, we ob-

tained better sounding results using a limited number of sub-We presented an approach to record, edit and re-render
bands (typically 8 to 16). Following the works of Faller etreal-world auditory situations. Contrary to most related ap-
al. [29 30, 69, we could also keep track of the intercorrela- proaches, we acquire the sound Peld using an unconstrained,
tion between recordings in order to precisely localize only thewidely spaced, microphone array which we spatially cali-
frames with high correlation. Frames with low correlation brate using photographs. Our approach precomputes a spa-
could be rendered as Odse,0 forming a background am- tial mapping between dierent frequency subbands of the ac-
biance which cannot be as precisely locaH.[This could  quired live recordings and the location in space from which
be seen as explicitly taking background noise or spatially exhey were emitted. We evaluated standard TDOA-based tech-
tended sound sources into account in our mixing model in- niques and proposed a novel hierarchical localization ap-
stead of considering only perfect anechoic point sources. Wproach. At run-time, we can apply this mapping to the fre-
started to experiment with an explicit separation of back-quency subbands of the microphone closest to the virtual lis-
ground noise using noise-removal techniqu@g|[ The ob-  tenerin order to resynthesize a consistent 3D sound-Peld, in-
tained foreground component can then be processed usingluding complex propagation @cts which would be dicult

our approach while the background-noise component canto simulate. An additional clustering step allows for aggregat-
be rendered separately at a lower spatial resolution. Examplag subbands originating from nearby location in order to
renderings available on the web site demonstrate improvedegment individual sound sources or small groups of sound
quality in complex situations such as a seashore recording. sources which can then be edited or moved around. To our
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knowledge, such level of editing was impossible to achievg7] T. Porter and T. Du, OCompositing digital images,OPiro-
using previous state-of-the-art and could lead to novel au- ceedings of the 11th Annual Conference on Computer Graph-
thoring tools for 3D-audio scenes. ics and Interactive Techniques (SIGGRAPH pp4253D259,

We believe that our approach opens many novel per-  Minneapolis, Minn, USA, July 1984.
spectives for interactive spatial audio rendering orlioe [8] D. L. Yewdall,Practical Art of Motion Picture Soyriebcal
post production environments, for example, to complement Press, Boston, Mass, USA, 2nd edition, 2003.
image-based rendering techniques or free-viewpoint video.[9] R. Streicher, OThe decca tree - itOs not just for stereo angmore
Moreover, it provides a compact encoding of the spatial  http://www.wesdooley.com/pdf/SurrounSioundDecca
sound beld, which is independent of the restitution system.  Tree-urtext.pdf
In the near future, we plan to run more formal perceptual [10] R. Streicher and F. A. Everest, ETfie New Stereo Soundhook
tests in order to compare our results to binaural or high- Audio Engineering Associate, Pasadena, Calif, USA, 2nd edi-
order Ambisonicsecordings in the case of bxed-viewpoint tion, 1998. ‘
scenarios and to evaluate its quality using various restitutiod11] J. Daniel, J.-B. Rault, and J.-D. Polack, OAmbisonics encoding
systems. From a psychophysical point of view, this work sug- of other audio formats for multiple listening conditions,O in

gests that real-world sound scenes can beiently encoded Proceedings of the 105th Convention of the Audio Engineering
using limited spatial information SocietySan Francisco, Calif, USA, September 1998, preprint
) 4795,

Other promising areas of future work would be to ex-
ploit perceptual localization results to improve localization [12]
estimation [73 and apply our analysis-synthesis strategy to op. 859D871, 1985,

the real-time generation of spatialized audio texturéd].[ . o , .
: : . . . : - [13] M. J. Leese, OAmbisonic surround sound FAQ (version 2.8),0
Finaly, making the calibration and analysis step Interactlvé 1998 http://members.tripod.com/martifleese/Ambisonic/

would allow the approach to be used in broadcasting appli-

M. A. Gerzon, OAmbisonics in multichannel broadcasting and
video,QJJournal of the Audio Engineering Sociely33, no. 11,

; [14] J. Merimaa, OApplications of a 3-D microphone array,0 in
cations (e.g., 3D TV). 112th AES Conventigdlunich, Germany, May 2002, preprint
5501.
ACKNOWLEDGMENTS [15] A. Laborie, R. Bruno, and S. Montoya, OA new comprehen-

sive approach of surround sound recording ®inceedings of
This research was made possible by a grant from the the 114th Convention of the Audio Engineering Sotiesyer-
region PACAand was also partially funded by the RNTL dam, The Netherlands, March 2003, preprint 5717.
project OPERA ttp://www-sop.inria.frreves/fOPERAWe  [16] J.-M. Jot, V. Larcher, and J.-M. Pernaux, OA comparative study
acknowledge the generous donation of Maya as part of the  of 3D audio encoding and rendering techniques Groceed-

Aliasresearch donation program, Alexander Olivier-Mangon ~ ings of the AES 16th International Conference on Spatial Sound
for the initial model of the car, and Frank Firsching for the ReproductigrRovaniemi, Finland, Apn! 1999.
animation. [17] T. D. Abhayapala and D. B. Ward, OTheory and design of

high order sound beld microphones using spherical micro-
phone array,O iRroceedings of IEEE International Conference
REFERENCES on Acoustics, Speech and Signal Processing (ICAS&R 22)
pp. 1949D1952, Orlando, Fla, USA, May 2002.

[1] D. G. Malham and A. Myatt, O3-D sound spatialization using [18] A. Laborie, R. Bruno, and S. Montoya, OHigh spatial resolu-

ambisonic techniques@mputer Music Journabl. 19, no. 4,

58D70. 1995 tion multi-channel recording O iRroceedings of the 116th Con-
Pp. ! ' vention of the Audio Engineering Socisylin, Germany, May
[2] Soundpbeldhttp://www.soundbeld.com/ 2004, preprint 6116.

[3] D. G. Aliaga and |. Carloom, OPlenoptic stitching: a scalabl
method for reconstructing 3D interactive walkthroughs,Q in
Proceedings of the 28th Annual Conference on Computer Graph-
ics and Interactive Techniques (SIGGRAPH ppl¥43D450,
Los Angeles, Calif, USA, August 2001.

[4] C. Buehler, M. Bosse, L. McMillan, S. Gortler, and M. Co-
hen, OUnstructured lumigraph rendering OPiroceedings of

Gf19] J. Meyer and G. Elko, OSpherical microphone arrays for
3D sound recording,0 idudio Signal Processing for Next-
Generation Multimedia Communication SysteYngArden)
Huang and J. Benesty, Eds., chapter 2, Kluwer Academic,
Boston, Mass, USA, 2004.

[20] A. J. Berkhout, D. de Vries, and P. Vogel, OAcoustic control by
the 28th Annual Conference on Computer Graphics and Inter- wave beld synthesigaurnal of the Acoustical Society of Amer-

active Techniques (SIGGRAPH, @p) 425D432, Los Angeles, ica vol. 93, no. 5, pp. 2764D2778, 1993, o
Calif, USA, August 2001. [21] M. M. Boone, E. N. G. Verheijen, and P. F. van Tol, OSpatial

[5] S.E. Chenand L. Williams, OView interpolation forimage syn- sr?und-dt?eld reproduction by wave-peld syntheslei@nal of
thesis O ifProceedings of the Annual Conference on Computer 1€ Audio Engineering Socjetyl. 43, no. 12, pp. 100391012,

Graphics and Interactive Techniques (SIGGRAPHR2)79D 1995. .

288, Anaheim, Calif, USA, August 1993. [22] T. Ajdler apd M. Vetterli, OThe plenacoustic function and its
[6] Y. Horry, K.-I. Anjyo, and K. Arai, OTour into the picture: using sampling O iProceedings of the 1st IEEE Benelux Workshop on

a spidery mesh interface to make animation from a single im- Model Based Processing and Coding of Audio (MPCA€02)

age,0 iRroceedings of the 24th Annual Conference on Computer V€M Belgil{m, November 2002. )
Graphics and Interactive Techniques (SIGGRAPH@225D  [23] M. N. Do, OToward sound-based synthesis: the far-bPeld case,O
232, Los Angeles, Calif, USA, August 1997. in Proceedings of IEEE International Conference on Acoustics,



Emmanuel Gallo et al.

15

[24]

[25]

[26]

[27]

Speech and Signal Processing (ICASSRGD2), pp. 601D604,
Montreal, Que, Canada, May 2004.

S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen,
OThe lumigraph,O iRroceedings of the 23rd Annual Confer{41]
ence on Computer Graphics and Interactive Techniques (SIG-
GRAPH '96)pp. 43B54, New Orleans, La, USA, August 1996.

M. Levoy and P. Hanrahan , OLight beld rendering Brin
ceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH, 96) 31942, New [42]
Orleans, La, USA, August 1996.

U. Horbach, A. Karamustafaoglu, R. Pellegrini, P. Mackensen,
and G. Theile, ODesign and applications of a data-based au-
ralization system for surround sound,O Rnoceedings of the [43]
106th Convention of the Audio Engineering Spéiietyich,
Germany, May 1999, preprint 4976.

R. S. Pellegrini, OComparison of data and model-based simu-
lation algorithms for auditory virtual environments, O%if6th
Convention of the Audio Engineering SqchMtyich, Ger-
many, May 1999, preprint 4953.

[40]

(44]

O. Yilmaz and S. Rickard, OBlind separation of speech mix-
tures via time-frequency maskindEEE Transactions on Sig-
nal Processingol. 52, no. 7, pp. 183001847, 2004.

C. Avendano, OFrequency-domain source identibcation and
manipulation in stereo mixes for enhancement, suppression
and re-panning applications,0 Rroceedings of IEEE Work-
shop on Applications of Signal Processing to Audio and Acoustics
(WASPAA '03)pp. 55D58, New Paltz, NY, USA, October 2003.

R. Radke and S. Rickard, OAudio interpolationPraceedings

of the AES 22nd International Conference on Virtual, Synthetic
and Entertainment Audio (AES22 '0@p. 51D57, Espoo, Fin-
land, June 2002.

R. L. Moses, D. Krishnamurthy, and R. Patterson, OAn auto-
calibration method for unattended ground sensors,®io-
ceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSPR 1af) 3, pp. 294192944, Or-
lando, Fla, USA, May 2002.

O. Faugerag;hree-Dimensional Computer Vision: A Geometric
Viewpoinf MIT Press, Cambridge, Mass, USA, 1993.

[28] A. S. BregmanAuditory Scene Analysis, The Perceptual Orgd49] B. C. J. MooreAn Introduction to the Psychology of Hearing

[29]

[30]

(31]

[32] V. Pulkki, ODirectional audio coding in spatial sound repro-

(33]

[34]

[35]

(36]
[37]

(38]

[39]

nization of SoundMIT Press, Cambridge, Mass, USA, 1990.

F. Baumgarte and C. Faller, OBinaural cue codingNpart I: psyl46]
choacoustic fundamentals and design principlEs&EE Trans-
actions on Speech and Audio Processing1, no. 6, pp. 509D
519, 2003.

C. Faller and F. Baumgarte, OBinaural cue codingNpart II:
schemes and application$fEEE Transactions on Speech and
Audio Processingpl. 11, no. 6, pp. 520D531, 2003.

J. Merimaa and V. Pulkki, OSpatial impulse response render[-48]
ing,O inProceedings of the 7th International Conference on Dig-
ital Audio E ects (DAFx '04)pp. 139D144, Naples, Italy, Octo-

ber 2004.

[47]

[49]

duction and stereo upmixing,O Rroceedings of the 28th AES
International Conferendeitea, Sweden, June 2006. 50]

P. D. O@Grady, B. A. Pearlmutter, and S. T. Rickard, OSurVEy
of sparse and non-sparse methods in source separation,O
ternational Journal of Imaging Systems and Technedbdghs,
no. 1, pp. 18D33, 2005.

E. Vincent, X. Rodet, A. ébel, et al., OA tentative typology of
audio source separation tasks,@inceedings of the 4th Inter-
national Symposium on Independent Component Analysis aﬂ%]
Blind Signal Separation (ICA '03)p. 715D720, Nara, Japan,
April 2003.

S. Rickard, OSparse sources are separated souréee2aul- 53
ings of the 14th Annual European Signal Processing Conferehcé
Florence, Italy, September 2006.

M. S. Lewicki, OEcient coding of natural soundsjature
Neuroscienceol. 5, no. 4, pp. 356D363, 2002.

P. Comon, Olndependent component analysis. A new con-
cept?@ignal Processjngl. 36, no. 3, pp. 287D314, 1994.

H. Sawada, S. Araki, R. Mukai, and S. Makino, OBlind extracf55]
tion of dominant target sources using ICA and time-frequency
masking,OEEE Transactions on Audio, Speech and Language
Processingol. 14, no. 6, pp. 2165D2173, 2006.

A. Jourjine, S. Rickard, and O. Yilmaz, OBlind separation

of disjoint orthogonal signals: demixing N sources from 2 [56]
mixtures,O irProceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSR. BQ)p.
2985D2988, Istanbul, Turkey, June 2000.

[51]

[54]

Academic Press, New York, NY, USA, 4th edition, 1997.

P. Aarabi, OThe fusion of distributed microphone arrays for
sound localization BURASIP Journal on Applied Signal Pro-
cessingol. 2003, no. 4, pp. 338347, 2003.

Y. (Arden) Huang, J. Benesty, and G. W. Elko, OMicrophone
arrays for video camera steering @@oustic Signal Processing
for Telecommunicatipnhapter 11, pp. 239D259, Kluwer Aca-

demic, Boston, Mass, USA, 2000.

C. H. Knapp and G. C. Carter, OThe generalized correlation
method for estimation of time deIayItEEE Transactions on
Acoustics, Speech, and Signal Processirg, no. 4, pp. 320D
327,1976.

H. Krim and M. Viberg, OTwo decades of array signal process-
ing research: the parametric approadEBE Signal Processing
Magazinevol. 13, no. 4, pp. 67994, 1996.

R. O. Schmidt, QMuItipIe emitter location and signal param-
eter estimation @EEE Transactions on Antennas and Propaga-
tion, vol. 34, no. 3, pp. 2765280, 1986.

J.C.Chen, K. Yao, and R. E. Hudson, OAcous}ic source localiza-
tion and beamforming: theory and practic&ORASIP Jour-

nal on Applied Signal Processuad 2003, no. 4, pp. 3599370,
2003.

J. H. DiBiase, H. F. Silverman, and M. S. Branst&licro-
phone Arrays, Signal Processing Techniques and Applications
chapter 8, Springer, New York, NY, USA, 2001.

B. Mungamuru and P. Aarabi, OEnhanced sound localization,®
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cyberneticvol. 34, no. 3, pp. 152601540, 2004.

J. Chen, J. Benesty, and Y. (Arden) Huang, OTime delay
estimation in room acoustic environments: an overview,0
EURASIP Journal on Applied Signal Processin@006, Ar-

ticle ID 26503, 19 pages, 2006.

D. V. Rabinkin, R. J. Renomeron, J. C. French, and J. L. Flana-
gan, OEstimation of wavefront arrival delay using the cross-
power spectrum phase technique,01B2nd Meeting of the
Acoustical Society of Ameridanolulu, Hawaii, USA, Decem-

ber 1996.

J. Chen, J. Benesty, and Y. (Arden) Huang, OPerformance of
GCC- and AMDF-based time-delay estimation in practical re-
verberant environmentsPURASIP Journal on Applied Signal
Processingol. 2005, no. 1, pp. 25D36, 2005.



16 EURASIP Journal on Advances in Signal Processing

[57] Y. Rui and D. Florencio, ONew direct approaches to robust dent component analysis and beamformingIGRASIP Jour-

sound source localization,O Proceedings of International nal on Applied Signal Processirgy. 2003, no. 11, pp. 1135b
Conference on Multimedia and Expo (ICME,'@8). 1, pp. 1146, 2003.
737D740, Baltimore, Md, USA, July 2003. [73] K. W. Wilson and T. Darell, OLearning a precedencece

[58] T. Ajdler, I. Kozintsev, R. Lienhart, and M. Vetterli, OAcoustic like weighting function for the generalized cross-correlation
source localization in distributed sensor networks Praceed- framework QEEE Transactions on Audio, Speech and Language

ings of the 38th Asilomar Conference on Signals, Systems and Processingol. 14, no. 6, pp. 215692164, 2006.

Computersvol. 2, pp. 1328D1332, Pacibc Grove, Calif, USA[74] L. Lu, L. Wenyin, and H.-J. Zhang, OAudio textures: theory and

November 2004. applications @EEE Transactions on Speech and Audio Process-
[59] H. SametThe Design and Analysis of Spatial Data Structures  ing, vol. 12, no. 2, pp. 1560167, 2004.

Addison-Wesley, Reading, Mass, USA, 1990.

[60] N. Tsingos, E. Gallo,.and G. Qrettakis, OE’erceptuaI au.dio reNemmanuel Gallo is currently doing his
dering of _complex virtual environmentsACM Transacthns Ph.D. thesis at the University of Nice
on Graphigsvol. 23, no. 3, pp. 249258, 2004, Proceedings Oéophia-AntipoIis, in the REVES research
SIGGRAPH 2094' project at INRIA Sophia Antipolis, France.
[61] R. E. Kalman, OA new approach to linear pltering and predicHjs research focuses on real-time 3D au-
tion problems,Aransactions of the ASME - Journal of Basic Endio rendering, audio for virtual reality and
gineeringvol. 82, pp. 35045, 1960. games, spatial audio acquisition and coding,
[62] D. G. Malham, OSpherical harmonic coding of sound objects -and perceptual audio processing.
the ambisonic OO0 format®rimceedings of the 19th AES In-
ternational Conference, Surround Sound—Techniques, Technol-
ogy, and Perceptigmp. 54D57, Schloss Elmau, Germany, Juné\icolas Tsingosholds a permanent research
2001. R position in the REVES research project
[63] N. Tsingos and J.-D. Gascuel, OFast rendering of sound occlat INRIA (The French National Institute
sion and di raction e ects for virtual acoustic environments,O for Computer Science and Control). Pre-
in Proceedings of the 104th Audio Engineering Society Conwgbusly, he was a Member of the Technical
tion, Amsterdam, The Netherlands, May 1998, preprint 4699. Sta at Bell Laboratories, Lucent Technolo-
[64] A. Baskind and O. Warusfel, OMethods for blind computa- gies in Murray Hill, NJ, USA. His current re-
tional estimation of perceptual attributes of room acoustics,0search interests include realistic audio simu-
in Proceedings of the AES 22nd International Conference on Vation for complex virtual environments, al-
tual, Synthetic and Entertainment Aydip. 402411, Espoo, gorithmic tools for interactive architectural
Finland, June 2002. acoustics, ecient, and expressive audio rendering from physi-
[65] S. Rickard and O. Yilmaz, OOn the approximate W—disjointcal siml_JIations, and scalable solutions for spatigl audio rendering
orthogonality of speech,O iRroceedings of IEEE Interna- leveraging perceptugl knowledge of_human hearing. He holds a MS
tional Conference on Acoustics, Speech and Signal Proce8&ifid”h-D- degrees in computer science from the Joseph Fourier
(ICASSP '02)vol. 1, pp. 5299532, Orlando, Fla, USA, May University in Grenoble, France.
2002.

[66] M. S. Lewickiand T. J. Sejnowski, OLearning overcomplete re
resentations Neural Computationvol. 12, no. 2, pp. 337D365, IOElectronique et du Nwrique in Lille

2000. . France, in 2000. He received at the same
[67] S. G. Mallat and Z. Zhang, OMatching pursuits with time- year an MS degree (Acoustics) from the

frequency dictionaries [EEE Transactions on Signal Processtniversit du Maine, Le Mans, France and

ing, vol. 41, no. 12, pp. 3397D3415, 1993. a Ph.D. degree (Acoustics) from the same
[68] M. Slaney, M. Covell, and B. Lassiter, OAutomatic audio mor-University in 2004, where he worked in col-

phing,0 inProceedings of IEEE International Conference daboration with the Institut de Recherche

Acoustics, Speech and Signal Processing (ICAS&®.8§)p. et Coordination Acoustique Musique (IR-

1001D1004, Atlanta, Ga, USA, May 1996. CAM) on the quality of the design of new car horn sounds. From
[69] C. Faller and J. Merimaa, OSource localization in complex lis2004 to 2006, during a postdoctoral position at the Institut Na-

tening situations: selection of binaural cues based on inter-tional de Recherche en Electronique et Automatique (INRIA) in

aural coherence@urnal of the Acoustical Society of AmericaSophia Antipolis, he worked on the perceptual evaluation of audio
vol. 116, no. 5, pp. 307503089, 2004. algorithms for virtual reality. He then joined back IRCAM (Per-

[70] Y. Ephraim and D. Malah, ®Speech enhancement using a mirception and Sound Design Team), where he is currently studying

imum mean-square error short-time spectral amplitude esti- _the perception of everyday sounds, and develops new tools aim-

mator,QEEE Transactions on Acoustics, Speech, and Signal dpg.at evaluating the functional, @bstical, and emotional aspects
cessirllg/ol 32, no. 6, pp. 110991121 1584 ' of sound design. He is a member of the French Acoustical Society

[71] G. Huang, L. Yang, and Z. He, OMultiple acoustic sources Ioca(-SFA)'

tion based on blind source separation ®inceedings of the 1st
International Conference on Natural Computation (ICNG '05)
pp. 683D687, Changsha, China, August 2005.

[72] H. Saruwatari, S. Kurita, K. Takeda, F. ltakura, T. Nishikawa,
and K. Shikano, OBIlind source separation combining indepen-

Guillaume Lemaitrereceived his Engineer-
F?ﬁg degree from the Institut Sigrieur de



	Introduction
	Related works

