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Schémas Robin-Neumann explicites pour le couplage d'un
�uide incompressible avec une structure mince

Résumé : Cet article présente une famille de schémas numériques explicites qui permet de
résoudre un problème d'interaction �uide-structure faisant intervenir un �uide visqueux incom-
pressible et une structure mince (qui peut être amortie ou non linéaire). L'outil principal de ces
méthodes réside dans une condition aux limites de type Robin pour le �uide (sans paramètre à
ajuster), qui permet le découplage entre les deux sous-problèmes et fait intervenir une extrapo-
lation de la vitesse du solide et des e�orts du �uide. Le schéma qui en résulte est partitionné.
L'article fournit des estimations d'énergie et d'erreur a priori qui permettent de montrer la sta-
bilité et la convergence du schéma pour tous les ordres d'extrapolation lorsque le problème est
linéaire. Plus précisément, on montre qu'une des variantes est à la fois inconditionnellement
stable, insensible à l'e�et de masse ajoutée et possède une précision en temps optimale (c'est-à-
dire d'ordre un). Ces résultats sont illustrés par de nombreux exemples numériques tirés de la
littérature.

Mots-clés : interaction �uide-structure, �uide incompressible, coque non-linéaire, visco-
élasticité, discrétisation en temps, schéma de couplage explicite, schéma faiblement couplé,
schéma Robin-Neumann, algorithme partitionné, méthode des éléments �nis, estimation d'erreur.



Explicit Robin-Neumann schemes 3

1 Introduction

The mechanical interaction of a deformable thin-walled structure with an incompressible �uid
�ow is a widespread multi-physics problem. Its numerical simulation is of major interest in many
engineering �elds: from sailing boats and parachutes, to heat exchanger tubes, sloshing dynamics
in tanks and the biomechanics of blood and air�ow (see, e.g., [42, 54, 49, 18, 44, 35]).

A priori, the most e�cient way to solve these coupled problems is to consider an explicit
coupling scheme, that only involves the solution of the �uid and of the structure once per time
step, through explicit interface conditions. Clearly, the resulting solution procedure is genuinely
partitioned, in the sense that it facilitates the (re-)use of independent �uid and solid solvers. This
is particularly convenient for the coupling with general thin-solid models, since their discretization
by �nite elements is known to lead to ill-conditioned matrices which require speci�c solvers (see,
e.g., [29]).

Unfortunately, for these coupled problems, the stability of standard (Dirichlet-Neumann)
explicit coupling schemes is dictated by the amount of added-mass e�ect in the system, irrespec-
tively of the discretization parameters. In particular, a large �uid/solid density ratio combined
with a slender and lengthy geometry gives rise to unconditional numerical instability (see, e.g.,
[12, 28]). This failure explains why explicit coupling schemes have been practically ruled out
for the simulation of incompressible �uid-structure interaction problems and, in part, it has mo-
tivated the tremendous amount of work devoted to improve e�ciency via alternative methods,
based on the more computationally onerous implicit and semi-implicit coupling paradigms (see,
e.g., [41, 31, 34, 23, 17, 16, 22, 52, 3, 39, 2, 32, 30, 15, 48, 45]). Although remarkable progress has
been made over the last decade, none of these approaches is able to guarantee stability and opti-
mal accuracy by invoking the �uid and the solid solvers only once per time-step, in a genuinely
partitioned fashion.

Explicit coupling schemes, circumventing the above infamous numerical instabilities, have
only recently been proposed in the literature. In [8, 10], added-mass free stability is achieved
through a speci�c Robin-Robin treatment of the interface coupling conditions, derived from
Nitsche's interface method (see, e.g., [33, 46]), and a stabilization of the interface pressure �uc-
tuations in time (weakly consistent interface compressibility). The price to pay is deterioration of
the accuracy, which demands restrictive constraints on the discretization parameters (parabolic-
CFL condition), unless enough correction iterations are performed (see [10, 19]).

For a linear coupled problem involving the Stokes equations and an undamped elastic thin-
solid model (string or membrane), added-mass free stability and optimal (�rst-order) accuracy
are obtained with the Robin-Neumann explicit coupling schemes introduced in [21, 20]. In short,
these methods are incremental displacement-correction fractional-step schemes which introduce
optimally consistent perturbations of the interface kinematic constraint. The non-incremental
variant corresponds to the so-called kinematically coupled scheme, reported in [32], which is
known to yield poor accuracy (see [21, 20]).

In this paper, we go further in the development of the ideas introduced in [21]. The �rst
novelty concerns the presence of physical dissipation (damping) in the thin-solid model. It is
well known that much materials exhibit viscoelastic behavior and this is, in particular, the case
of biological tissue (see, e.g., [38, 11, 56]). Since viscoelastic constitutive laws (e.g.,Kelvin-
Voigt model) introduce hydrodynamic e�ects within the solid equation, one can be tempted to
argue that its explicit coupling with the �uid is doomed to yield restrictive stability time-step
restrictions and added-mass issues. This explains why, so far, solid damping has been implicitly
embedded within the �uid, trough a non-standard (semi-implicit) Robin condition (see [32, 43, 7]
and Remarks 2 and 3 below). Unfortunately, this strategy yields a coupling scheme which is no
more explicit and, moreover, the resulting solution procedure is not partitioned, since the solid
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4 M.A. Fernández, J. Mullaert & M. Vidrascu

viscous contribution must be integrated within the �uid solver. In this work, the whole solid
viscoelastic contribution is explicitly coupled with the �uid.

The second contribution of this work has to do with the formulation of the explicit coupling
schemes. We propose a new Robin-Neumann coupling paradigm which enables the �uid-solid
splitting exclusively in terms of the solid velocity and �uid stress on the interface. A remarkable
feature of this new formulation is its intrinsic character, in the sense that it avoids the annoying
extrapolations of the solid viscoelastic terms within the �uid. Hence, the resulting solution
procedures are genuinely partitioned. This is, in particular, essential for the coupling with
Reissner-Mindlin shell models, commonly used in engineering practice (see, e.g, [13, 4]), and
that include transverse shear strain e�ects via rotation surface vectors (independent of the mid-
surface displacements). Indeed, the intrinsic Robin interface condition removes the ambiguity in
the extrapolation of rotation unknowns and of non-linear terms. The explicit coupling schemes
are then formulated in a fully non-linear setting, involving the incompressible Navier-Stokes
equations (ALE formalism) and a non-linear viscoelastic shell model. The main idea consists in
combining the Robin-Neumann splitting proposed with a explicit treatment of the �uid domain
motion.

The third novelty concerns the numerical analysis of the methods within a representative lin-
ear setting, involving a Stokesian �uid and a viscoelastic thin-walled solid (string or membrane).
By generalizing the arguments reported in [21], a priori energy and error estimates are provided
for all the variants. The analysis shows that the sole implicit treatment of the solid inertia is
enough to guarantee (added-mass free) stability. Sub-optimal time-convergence is expected for
the variant without extrapolation and optimal accuracy is obtained for the schemes with �rst-
and second-order extrapolations. In particular, the method with �rst-order extrapolation is (to
our knowledge) the �rst explicit coupling scheme which guaranties unconditional stability and
optimal (�rst-order) accuracy for the considered model problem.

The fourth contribution of this work deals with the partitioned solution of implicit coupling,
via the iterative Robin-Neumann procedures introduced in [2]. So far the convergence analysis
of these methods has been addressed in speci�c simpli�ed models (e.g., inviscid �uid) and in
particular geometrical con�gurations (e.g., a rectangle), using modal analysis (see [2]). In this
work, we show that the the stability analysis of the explicit Robin-Neumann coupling schemes
can be reshaped to derive, using energy arguments, a general result on the (added-mass free) con-
vergence of these iterative methods. To the best of our knowledge, the error estimate proposed is
the �rst which yields convergence towards the implicit coupling solution in such a general setting.
The key argument consists in interpreting the explicit coupling schemes as single iterations of a
parameter free Robin-Neumann iterative procedure for the solution of implicit coupling.

Finally, a comprehensive list of numerical experiments, based on di�erent linear and non-
linear �uid-structure interaction examples from the literature, supports the above �ndings.

The paper is organized as follows. In Section 2, we present the linear continuous setting
which serves as model coupled problem. In Section 3, we introduce the Robin-Neumann explicit
coupling schemes and their di�erent formulations within a linear time semi-discrete framework.
We also discuss the connections with the partitioned solution of implicit coupling. Section 4 is
devoted to the stability and convergence analysis of the methods. In Section 5, we present the
generalization of the schemes to the non-linear case. The numerical experiments are reported in
Section 6. Finally, Section 7 draws the conclusions and a few lines for further investigations.

Inria



Explicit Robin-Neumann schemes 5

2 A linear model problem

Let 
 be a domain ofRd (d = 2 , 3) and @
 = � d [ � n [ � a given partition of its boundary. In what
follows, the symbol � stands for the �uid-structure interface. We consider a low Reynolds regime
and assume that the structure undergoes in�nitesimal displacements. The �uid is described by
the Stokes equations in
 , and the structure is assumed to behave as a linear thin-solid (e.g., plate,
membrane or shell) represented by the(d � 1)-manifold � . Our coupled model problem reads
therefore as follows: �nd the �uid velocity u : 
 � R+ ! Rd, the �uid pressure p : 
 � R+ ! R,
the solid displacementd : � � R+ ! Rd and the solid velocity _d : � � R+ ! Rd such that

8
>>>><

>>>>:

� f @t u � div � (u ; p) = 0 in 
 ;

divu = 0 in 
 ;

u = 0 on � d ;

� (u ; p)n = f � on � n ;

(1)

8
>>>><

>>>>:

u = _d on � ;

� s�@t
_d + L ed + L v _d = � � (u ; p)n on � ;

_d = @t d on � ;

d = 0 on @� ;

(2)

complemented with the initial conditions

u(0) = u 0; d(0) = d0; _d(0) = _d0:

Here, � f and � s respectively denote the �uid and solid densities and� the solid thickness. The
�uid Cauchy-stress tensor is given by

� (u ; p) def= � pI + 2 � " (u ); " (u ) def=
1
2

�
r u + r u T �

;

where � stands for the �uid dynamic viscosity. The exterior unit-vector normal to @
 is denoted
by n and f � represents a given surface force on� n . The strong formulation of the thin-solid
elastic and viscous contributions are supposed to be given in terms of the surface di�erential
operators L e and L v , respectively.

The relations (2)1 and (2)2 enforce the kinematic and kinetic interface coupling conditions,
respectively. It should be noted that the latter represents also the momentum equation of the
structure. Though simpli�ed, problem (1)-(2) features some of the main numerical issues that
appear in complex nonlinear �uid-structure interaction problems involving an incompressible
�uid (see, e.g., [12, 19]).

Remark 1 A widely used form of the viscous operatorL v is given by the so-calledRayleigh
damping:

L v _d def= �� s� _d + � L e _d; (3)

where �; � > 0 are given parameters (see, e.g., [37]). For instance, the expression(3) is often
used in artery wall modeling, where the second term corresponds to theKelvin-Voigt model (see,
e.g., [38, 11, 56]), and the �rst takes into account the dissipative e�ects of external tissue on
blood vessels (see [44]).�

Examples of thin-walled solid models entering the abstract form of (2)2 are plate models and
shell models derived under theKirchho�-Love kinematical assumption, the so-calledmembrane-
bending shell models (see, e.g., [13, Section 4.2.3]). Richer shell models, such as the widespread
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6 M.A. Fernández, J. Mullaert & M. Vidrascu

Reissner-Mindlin shell models (see, e.g., [13, Sections 4.2.1-4.2.2]) which include transverse shear
strain e�ects, will be considered in this work. In this case, the relations (2) have to be replaced
by 8

>>>>>>><

>>>>>>>:

u = _d on � ;

� s�@t
_d + L e

d (d; � ) + L v
d ( _d; _� ) = � � (u ; p)n on � ;

L e
� (d; � ) + L v

� ( _d; _� ) = 0 on � ;
_d = @t d; _� = @t � on � ;

d = � = 0 on @� ;

(4)

where the surface vector� : � � R+ ! R3 (satisfying the Reissner-Mindlin kinematical as-
sumption) describes the rotation around the normal to the mid-surface. The elastic and viscous
contributions are now given in terms of the surface operators (L e

d ; L e
� ) and (L v

d ; L v
� ). In partic-

ular, the quasi-static relation (4)3 represents the additional equation for the rotations.
It should be noted that the kinematic and kinetic interface coupling (4)1;2 are enforced only

in terms of the mid-surface displacement. This approach, which amounts to neglect the e�ect
of the thickness of the shell across the interface, is a widespread modeling assumption when
coupling thin-solids with three-dimensional materials (see, e.g., [14]).

For the sake of clarity, we will consider (1)-(2) as model problem for the derivation of the ex-
plicit coupling schemes in Section 3. We brie�y discuss their extension to the case of the coupling
with the general shell model (4) in Remark 7. The stability and convergence analysis reported in
Section 4 focuses entirely on the linear coupled problem (1)-(2). In Section 6, numerical results
are presented in the case of the coupling with (2), (4) and the non-linear version of (4) (see
Section 5).

3 Robin-Neumann methods

A fundamental feature of the coupled problem (1)-(2) is its underlying Robin consistency on the
interface. Indeed, by inserting (2)1 into (2) 2 we get the expression

� (u ; p)n + � s�@t u = � L ed � L v _d on � ; (5)

which yields a Robin-like interface condition for the �uid (see, e.g., [47, 32]). Instead of formu-
lating the �uid-solid time-splitting from the original Dirichlet-Neumann coupling (2) 1 and (2)2

(see, e.g., [12, 28]), in this work we consider the Robin-Neumann interface conditions given by
(5) and (2)2. The bene�ts of this approach are threefold:

ˆ the implicit treatment of the solid inertial term in (5) guarantees (added-mass free) stability;

ˆ the explicit treatment of the solid viscoelastic terms in (5) enables the full �uid-solid split-
ting without compromising stability;

ˆ the resulting schemes are genuine partitioned methods with an intrinsic explicit Robin-
Neumann pattern (e.g., independent of the extrapolations of the right-hand side of (5)).

3.1 Explicit coupling schemes

In what follows, � > 0 denotes the time-step length,tn
def= n� , for n 2 N, and

@� xn def=
1
�

�
xn � xn � 1�

;

Inria



Explicit Robin-Neumann schemes 7

stands for the �rst-order backward di�erence. The approximation of (1)-(2) is split into two
sequential sub-steps:

1. solve for the �uid with a semi-implicit time-discretization of (5), that is, the solid inertia
is treated implicitly whereas the viscoelastic contribution is treated explicitly via extrapo-
lation. This yields the following explicit Robin condition for the �uid:

� (u n ; pn )n +
� s�
�

u n =
� s�
�

_dn � 1 � L ed? � L v _d? on � ; (6)

with

(d?; _d?) =

8
><

>:

0 if r ? = 0 ;

(dn � 1; _dn � 1) if r ? = 1 ;

(2dn � 1 � dn � 2; 2 _dn � 1 � _dn � 2) if r ? = 2

(7)

and wherer ? denotes the displacement-velocity extrapolation order;

2. solve for the solid �Neumann problem� (i.e., �uid stresses are transferred to the solid):

� s�@�
_dn + L edn + L v _dn = � � (u n ; pn )n on � : (8)

The resulting schemes enable the uncoupled sequential time-marching of the �uid and the solid
(explicit coupling scheme).

Remark 2 The implicit treatment of the solid-damping, as advocated in [32, 43, 7], yields the
following non-standard boundary condition for the �uid (see [20]):

� (u n ; pn )n +
� s�
�

u n + L v u n =
� s�
�

_dn � 1 � L ed? on � : (9)

It should be noted that, in contrast to (6), the relation (9) leads to a coupling scheme which is
neither explicit nor partitioned. In particular, for a simple Rayleigh modeling of the damping
(see Remark 1), solving the �uid with the interface condition (9) has a computational complexity
similar to the monolithic solution of a fully implicit scheme. �

Remark 3 The interface relation (9) has clear connections with the time-stepping procedures
traditionally used in the Immersed Boundary Method (see, e.g., [50, 5]), which only treat explicitly
the solid elastic contributions. Another key di�erence with respect to (6)-(8) concerns the solid
sub-step(8), which in the Immersed Boundary Method simply reduces to the displacement-velocity
relation dn = dn � 1 + � u n j � . In other words, the structure solver is never called. The price to pay
for stability is a restrictive CFL-like condition, which demands very small time-steps in practice
(see, e.g., [5, Lemma 7.3] and [55]). We shall see in Section 4.4 that the combination of(6) and
(8) �xes this issue. �

In order to avoid the extrapolations, � L ed? � L v _d?, of the solid viscoelastic contributions in
the �uid Robin-step (6), we observe that, from (8), we have

L ed? + L v _d? = � � s�@�
_d? � � (u ?; p?)n on � (10)

for n � r ? + 1 (r ? = 1 , 2) and with obvious notation for u ? and p?. Hence, by inserting (10) into
(6) we get the alternative explicit Robin interface condition

� (u n ; pn )n +
� s�
�

u n =
� s�
�

�
_dn � 1 + �@�

_d?
�

+ � (u ?; p?)n on � : (11)

RR n ° 8224



8 M.A. Fernández, J. Mullaert & M. Vidrascu

In fact, this relation holds for n � r ? + 1 and for all the extrapolations r ? = 0 , 1 and 2. A salient
feature of this new formulation is its intrinsic character: it does not depend on the structure of
the solid operator. In fact, (11) can be seen as an explicit time discretization of the following
Robin condition:

� (u ; p)n +
� s�
�

u =
� s�
�

_d + � (u ; p)n on � ; (12)

in the sense that the right-hand side of (11) is an explicit approximation of the right-hand side
of (12). As shown in Table 1, the extrapolation of the solid velocity has one order of accuracy
higher than the resulting extrapolation of the �uid stress. This compensates theO(� � 1) scaling
of the Robin coe�cient in (12).

r ? _dn � 1 + �@�
_d? � (u ?; p?)n

0 _dn � 1 0
1 2 _dn � 1 � _dn � 2 � (u n � 1; pn � 1)n
2 3 _dn � 1 � 3 _dn � 2 + _dn � 3 2� (u n � 1; pn � 1)n � � (u n � 2; pn � 2)n

Table 1: Correspondence between the solid displacement/velocity extrapolations (7) and the
resulting extrapolations of the solid velocity and the �uid stress in (11).

Algorithm 1 Explicit Robin-Neumann schemes
For n � r ? + 1 :

1. Fluid step: �nd u n : 
 � R+ ! Rd and pn : 
 � R+ ! R such that
8
>>>>>>>><

>>>>>>>>:

� f @� u n � div � (u n ; pn ) = 0 in 
 ;

divu n = 0 in 
 ;

u n = 0 on � d ;

� (u n ; pn )n = f � on � n ;

� (u n ; pn )n +
� s�
�

u n =
� s�
�

�
_dn � 1 + �@�

_d?
�

+ � (u ?; p?)n on � :

2. Solid step: �nd dn : � � R+ ! Rd and _dn : � � R+ ! Rd such that
8
><

>:

� s�@�
_dn + L edn + L v _dn = � � (u n ; pn )n on � ;

_dn = @� dn on � ;

dn = 0 on @� :

To sum up, the proposed explicit Robin-Neumann schemes are detailed in Algorithm 1, with
the di�erent extrapolations listed in Table 1.

Remark 4 It should be noted that, according to Table 1, the schemes with the �rst- and the
second-order extrapolations (r ? = 1 , 2) are multi-step methods on the interface (n � 2 and n � 3,
respectively). Hence, additional data is needed to start the time-marching. In practice, this data
can be obtained by performing one step of the scheme withr ? = 0 , this yields (u 1; p1; _d1), and
then one step of the scheme withr ? = 1 , which gives(u 2; p2; _d2). As we shall see in Section 4,
these initializations guarantee the optimal �rst-order accuracy of Algorithm 1 with r ? = 1 , 2. �

Inria



Explicit Robin-Neumann schemes 9

Remark 5 For r ? = 0 , the relations (6) and (11) coincide and, thus, the interface splittings
(6)-(8) and (11)-(8) yield the same time-marching scheme forn � 1. For r ? = 1 or r ? = 2 , the
equivalence of the interface splittings(6)-(8) and (11)-(8) holds for n � r ? + 1 . Hence, resulting
schemes are equivalent only if they are initialized using the same procedure.�

Remark 6 In the case of the coupling with an undamped thin-solid model (i.e., withL v = 0 in
(2)2), Algorithm 1 yields the explicit coupling schemes introduced in [21], provided that the same
initialization procedure is used. �

Remark 7 In the case of the coupling with the general shell model(4), the interface Robin
consistency (5) becomes

� (u ; p)n + � s�@t u = � L e
d (d; � ) � L v

d ( _d; _� ) on � :

By applying the same argument than above, we can eliminate the extrapolations of the right-hand
side in a intrinsic fashion. This yields the same interface condition (11) for the �uid. As a
result, in Algorithm 1, we only need to replace the second step by

8
>>>><

>>>>:

� s�@�
_dn + L e

d (dn ; � n ) + L v
d ( _dn ; _� n ) = � � (u n ; pn )n on � ;

L e
� (dn ; � n ) + L v

� ( _dn ; _� n ) = 0 on � ;
_dn = @� dn ; _� n = @� � n on � ;

dn = � n = 0 on @� ;

(13)

which corresponds to the implicit �rst-order time-discretization of the shell model (4)2� 5. This
clearly demonstrates the intrinsic nature of the explicit Robin interface condition (11) and, in
return, the partitioned features of Algorithm 1. �

3.2 Iterative partitioned solution of implicit coupling

Algorithm 1 can be interpreted as a single iteration (with appropriate initializations) of a Robin-
Neumann method for the partitioned solution of the following implicit coupling scheme:

8
>>>>>>><

>>>>>>>:

� f @� u n � div � (u n ; pn ) = 0 in 
 ;

divu n = 0 in 
 ;

u n = 0 on � d ;

� (u n ; pn )n = f � on � n ;

u n = _dn on � :

(14)

8
><

>:

� s�@�
_dn + L edn + L v _dn = � � (u n ; pn )n on � ;

_dn = @� dn on � ;

dn = 0 on @� :

(15)

The corresponding Robin-Neumann iterations are detailed in Algorithm 2, where _d0 and � (u 0; p0)n
are initialized, respectively, with _dn � 1 + �@�

_d? and � (u ?; p?)n for n � r ? + 1 (see Table 1).
This kind of iterative solution procedures has been introduced in [2], as added-mass free

alternatives to the standard Dirichlet-Neumann iterations. It should be noted that the Robin
coe�cient � s�=� involved in (16), has no free parameter and di�ers from the one originally
proposed in [2]. In fact, only inertial e�ects are included since Algorithm 1 explicitly treats the
whole viscoelastic contribution of the structure, as usual in explicit coupling schemes.

As we shall see in Section 4.5, the energy stability analysis of Algorithm 1 yields a new result
on the convergence properties of Algorithm 2.
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10 M.A. Fernández, J. Mullaert & M. Vidrascu

Algorithm 2 Partitioned Robin-Neumann iterations

1. Initialize _d0 and � (u 0; p0)n .

2. For k = 1 ; : : : until convergence:

ˆ Fluid step:
8
>>>>>>>>>><

>>>>>>>>>>:

� f

�

�
u k � u n � 1�

� div � (u k ; pk ) = 0 in 
 ;

divu k = 0 in 
 ;

u k = 0 on � d ;

� (u k ; pk )n = f � on � n ;

� (u k ; pk )n +
� s�
�

u k =
� s�
�

_dk � 1 + � (u k � 1; pk � 1)n on � :

(16)

ˆ Solid step:
8
><

>:

� s�
�

� _dk � _dn � 1�
+ L edk + L v _dk = � � (u k ; pk )n on � ;

_dk =
1
�

�
dk � dn � 1�

:
(17)

4 Stability and convergence analysis

This section is devoted to the stability and convergence analysis of the explicit Robin-Neumann
schemes introduced in the previous section (after �nite element discretization in space). In
what follows, the symbols . and & will indicate inequalities up to a multiplicative constant
(independent of the physical and discretization parameters).

4.1 Notation and weak formulation

In what follows, we will consider the usual Sobolev spacesH m (! ) (m � 0), with norm k � km;! .
The closed subspacesH 1

0 (! ), of functions in H 1(! ) with zero trace on @!, and L 2
0(! ), of functions

in L 2(! ) with zero mean in ! , will also be used. The scalar product inL 2(! ) is denoted by(�; �)!

and its norm by k � k0;! . In order to ease the notation, we set(�; �) def= ( �; �) 
 . We consider the
�uid velocity and pressure functional spaces

V def=
�

v 2 [H 1(
)] 3 �
v j � d = 0

	
; V�

def=
�

v 2 V
�

v j � = 0
	

and Q def= L 2(
) , equipped with the norms

kvkV
def= k�

1
2 r vk0;
 ; kqkQ = k� � 1

2 qk0;
 :

The spaceW � [H 1
0 (�)] 3 stands for the space of admissible displacements. At last, the following

bi-linear and linear forms a : V � V ! R, b : Q � V ! R and l : V ! R, given by

a(u ; v) def= 2 �
�
" (u ); " (v)

�
; b(q;v) def= � (q;divv); l (v) def= ( f � ; v) � n

Inria



Explicit Robin-Neumann schemes 11

will be used.
The strong formulation of the thin-solid viscoelastic contributions is supposed to be given in

terms of densely de�ned, self-adjoint and unbounded linear operators

L e : D e � [L 2(�)] 3 ! [L 2(�)] 3; L v : D v � [L 2(�)] 3 ! [L 2(�)] 3;

and we de�ne two bilinear forms ae and av by

ae�
d; w

�
=

�
L ed; w

�
� ; av � _d; w

�
=

�
L v _d; w

�
� (18)

for all d 2 D e, _d 2 D v and w 2 W . We further assume that ae and av are inner-products into
W and that, endowed with the inner-product ae, W is a Hilbert space. We set

kwke
def=

�
ae(w ; w )

� 1
2 ; kwkv

def=
�
av (w ; w )

� 1
2 ;

and we assume that the following continuity estimate holds

kwk2
e � � ekwk2

1;�

for all w 2 W , and where� e is a positive constant.
The weak form of the linear coupled problem (1)-(2) reads as follows: �nd(u (t); p(t); d(t); _d(t)) 2

V � Q � W � W such that
8
>>>><

>>>>:

u j � = _d;

� f � @t u; v
�

+ a(u ; v) + b(p;v) � b(q;u )

+ � s�
�
@t

_d; w
�

� + ae(d; w ) + av � _d; w
�

= l(v);

_d = @t d

(19)

for all (v ; q;w ) 2 V � Q � W with vj � = w.

4.2 Space discretization: fully discrete schemes

Let fT h g0<h � 1 be a family of quasi-uniform triangulations of 
 . The subscript h 2 (0; 1] refers
to the level of re�nement of the triangulation. In what follows, we let X h and M h denote,
respectively, the standard spaces of continuous and (possibly) discontinuous piecewise polynomial
functions of degreek � 1 and l � 0 (k � 1 � l � k):

X h
def=

�
vh 2 C0(
)

�
vhjK 2 Pk (K ) 8K 2 Th

	
;

M h
def=

�
qh 2 Q

�
qhjK 2 Pl (K ) 8K 2 Th

	
:

For the approximation of the �uid velocity we will consider the space Vh
def= [ X h ]d \ V and

for the pressure we will use eitherQh
def= M h or Qh

def= M h \ C0(
) . Whenever the considered
velocity/pressure pair fails to satisfy the standard inf-sup condition, we consider a symmetric
pressure stabilization method (see [9, 21]), given in terms of a positive and symmetric bi-linear
form sh : Qh � Qh ! R.

The discrete space for the solid displacement and velocity is chosen as the trace spaceW h
def=�

vh j �
�

vh 2 Vh
	

\ W : Hence, the �uid and solid space discretizations match at the interface.
At last, we introduce the standard �uid-sided discrete lifting operator L h : W h ! Vh , such that,
for all wh 2 W h , (L h wh )j � = wh and L h wh vanishes in all nodal values whose support is out
of the interface.

After �nite element discretization in space, the fully discrete version of Algorithm 1 is detailed
in Algorithm 3. In particular, it is worth noting that �uid stresses on the interface are evaluated
in a consistent fashion, as variational residuals, in terms of the discrete lifting operatorL h .
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12 M.A. Fernández, J. Mullaert & M. Vidrascu

Algorithm 3 Explicit Robin-Neumann schemes (fully discrete)
For n � r ? + 1 :

1. Fluid step: Find (u n
h ; pn

h ) 2 V f � Qh such that
8
>>><

>>>:

� f � @� u n
h ; vh

�
+ a(u n

h ; vh ) + b(pn
h ; vh ) � b(qh ; u n

h ) + sh (ph ; qh )

+
� s�
�

�
u n

h ; vh
�

� =
� s�
�

� _dn � 1
h + �@�

_d?
h ; vh

�
�

+ � f � @� u ?
h ; L h vh

�

 + a(u ?

h ; L h vh ) + b(p?
h ; L h vh ) + l(vh )

(20)

for all (vh ; qh ) 2 Vh � Qh with vh j � 2 W h .

2. Solid step: Find
� _dn

h ; dn
h

�
2 W h � W h , such that

8
>><

>>:

_dn
h = @� dn

h ;

� s�
�
@�

_dn
h ; wh

�
� + ae(dn

h ; wh ) + av ( _dn
h ; wh )

= � � f � @� u n
h ; L h wh

�
� a(u n

h ; L h wh ) � b(pn
h ; L h wh )

(21)

for all wh 2 W h .

4.3 Kinematic perturbation of implicit coupling

In what follows, we shall make use of discrete reconstructions,L e
h : W ! W h and L v

h : W !
W h , of the elastic and viscous solid operators, de�ned by the relations

(L e
h w; wh ) � = ae(w ; wh ); (L v

h w; wh ) � = av (w ; wh ) (22)

for all (w ; wh ) 2 W � W h .
An important feature of Algorithm 3 is that it can be interpreted as kinematic perturbations

of an underlying implicit coupling scheme. Indeed, replacingn by ? in (21)2 with wh = vh j �
and adding the resulting expression to (20) yields

� f � @� u n
h ; vh

�
+ a(u n

h ; vh ) + b(pn
h ; vh ) � b(qh ; u n

h ) + sh (ph ; qh )

+
� s�
�

�
u n

h ; vh
�

� =
� s�
�

� _dn � 1
h ; vh

�
� � ae(d?

h ; vh ) � av ( _d?
h ; vh ) + l(vh ) (23)

for all (vh ; qh ) 2 Vh � Qh with vh j � 2 W h and n � r ? +1 . Hence, by taking (vh ; qh ) = ( L h wh ; 0)
in (23), subtracting the resulting expression from (21)2 and sincel(L h wh ) = 0 , we obtain

� s�
�

� _dn
h � u n

h ; wh
�

� + ae(dn
h � d?

h ; wh ) + av ( _dn
h � _d?

h ; wh ) = 0 (24)

for all wh 2 W h and n � r ? + 1 . Hence, owing to (22), we get

u n
h j � = _dn

h +
�

� s�

�
L e

h (dn
h � d?

h ) + L v
h ( _dn

h � _d?
h )

�
(25)

for n � r ? + 1 . In addition, taking vh j � = wh in (23) and adding the resulting expression to
(24) yields

� f � @� u n
h ; vh

�
+ a(u n

h ; vh ) + b(pn
h ; vh ) � b(qh ; u n

h ) + sh (pn
h ; qh )

+ � s�
�
@�

_dn
h ; wh

�
� + ae(dn

h ; wh ) + av � _dn
h ; wh

�
= l(vh )

(26)
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Explicit Robin-Neumann schemes 13

for all (vh ; qh ; wh ) 2 Vh � Qh � W h with vh j � = wh and n � r ? + 1 .
In summary, the relations (25) and (26) are nothing but an implicit time-discretization of

(19) with the perturbed kinematic constraint (25). Therefore, in order to asses the stability and
accuracy of Algorithm 3, we only need to investigate how this kinematic perturbation a�ects
the stability and accuracy of the underlying implicit coupling scheme. This will be the topic of
Sections 4.4 and 4.6 below.

4.4 A priori energy estimates

We de�ne the total discrete energy, E n
h , and dissipation, D n

h , at time-step tn by

E n
h

def= � f ku n
h k2

0 + � s� k _dn
h k2

0;� + kdn
h k2

e;

D n
h

def= � f ku n
h � u n � 1

h k2
0 + � ku n

h k2
V + � jpn

h j2sh
+ � s� k _dn

h � _dn � 1
h k2

0;�

+ kdn
h � dn � 1

h k2
e + � k _dn

h k2
v ;

where jpn
h jsh

def=
�
sh (pn

h ; pn
h )

� 1
2 . The following result states the energy stability of the explicit

Robin-Neumann schemes given by Algorithm 3.

Theorem 1 Assume thatf � = 0 (free system) and letf (u n
h ; pn

h ; dn
h ; _dn

h )gn � r ? +1 be the sequence
given by Algorithm 3. The initialization procedure of Remark 4 is considered for the schemes
with extrapolation (r ? � 1). The following a priori energy estimates hold:

ˆ Without extrapolation ( r ? = 0 ) or with �rst-order extrapolation ( r ? = 1) :

E n
h +

nX

m = r ? +1

D m
h . E 0

h (27)

for n � r ? + 1 .

ˆ Second-order extrapolation (r ? = 2 ):

E n
h +

nX

m =3

D m
h . exp

�
tn 

1 � � 

�
E 0

h (28)

for n � 3, provided that (3) and the following conditions hold

8
>>>><

>>>>:

� 2� 2 + � 2� 2 (! e)4

h4 �
�
4

;

� 5(! e)6

h6 + 2 �
� 2(! e)2

h2 + 2 �� 2 (! e)4

h4 �

2

;

�  < 1;

(29)

where ! e def= Cinv
p

� e=(� s� ), Cinv denotes the constant of an inverse estimate,0 � � � 1
and  > 0.

Proof 1 See A.

Theorem 1 yields the unconditionally energy stability of the proposed explicit Robin-Neumann
schemes without extrapolations and with the �rst-order extrapolations. Moreover, the energy
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14 M.A. Fernández, J. Mullaert & M. Vidrascu

estimates (27) are derived without any major assumption on the solid damping operatorL v , only
symmetric and positiveness are required for the corresponding bi-linear form (18). In the case
of a Rayleigh modeling of the solid damping (3), the variant with second-order extrapolations is
energy stable, provided that the CFL-like conditions (29) are satis�ed.

It is worth noting that all these variants are energy stable, irrespectively of the amount of
added-mass e�ect in the system. This demonstrates that the implicit treatment of the solid
inertial term in (5) is enough to guarantee added-mass free stability.

Remark 8 Theorem 1 generalizes the stability results reported in [21, Theorem 1] to the case
L v 6= 0 . In particular, for r ? = 2 and in the case of the coupling with an undamped thin-solid
model (i.e., L v = 0) the relations (29) reduce to the 6/5-CFL condition � (! e)

6
5 . h

6
5 derived

in [21]. �

Remark 9 The nature of the stability condition (29) depends on the Rayleigh coe�cient � in-
volved in (3). For � = 0 , the relations (29) are ful�lled under a 6/5-CFL condition � = O(h

6
5 ),

while a parabolic-CFL constraint � = O(h2) is required for � > 0. �

4.5 Convergence of the iterative solution procedure

A salient feature the arguments involved in the energy based stability analysis of Section 4.4 is
that they can be reshaped to prove the convergence of Algorithm 2 towards the implicit coupling
solution (14)-(15). This result is stated in the next theorem where, for the sake of simplicity, we
have considered only the time semi-discrete version of the methods.

Theorem 2 For n � 1, let
�
u n ; pn ; _dn ; dn ) be given by the implicit scheme(14)-(15) and�

(u k ; pk ; _dk ; dk )
	

k � 1 be the sequence of approximations given by Algorithm 2. Then, the fol-
lowing estimate holds

1X

k=1

�
� f ku k � u n k2

0;
 + � s� k _dk � _dn k2
0;� + kdk � dn k2

e

�

. kd0 � dn k2
e + � k _d0 � _dn k2

v +
� 2

� s�
kL e(d0 � dn ) + L v ( _d0 � _dn )k2

0;� : (30)

In particular, we have

lim
k !1

�
ku k � u n k0;
 + k _dk � _dn k0;� + kdk � dn ke

�
= 0 :

Proof 2 See B.

To the best of our knowledge, the result stated in Theorem 2 is the �rst which guarantees
the convergence of a Robin-Neumann iterative procedure towards the implicit coupling solution
(14)-(15). A second valuable consequence of Theorem 2 is that the pure inertial character of the
Robin coe�cient � s�=� is enough to guarantee the convergence of the iterations.

4.6 A priori error estimates

In what follows, we shall make use of the Riesz projectors� e
h : W ! W h and � v

h : W ! W h

associated to the inner-productsae and av given by (18). Thus, for all w 2 W , � e
h w 2 W h and

� v
h w 2 W h are respectively de�ned by the relations

ae(w � � e
h w; wh ) = 0 ; av (w � � v

h w; wh ) = 0 (31)

Inria



Explicit Robin-Neumann schemes 15

for all wh 2 W h . We assume that the following error estimates hold

kw � � e
h wke . hk (� e)

1
2 kwkk+1 ;� ;

kw � � v
h wk0 + hkw � � v

h wk1;� . hk+1 kwkk+1 ;�

(32)

for all w 2
�
H k+1 (�)

� 3
\ W . For the �uid velocity, we consider the Stokes-like operator(Ph ; Rh ) :

V ! Vh � Qh de�ned, for all v 2 V , by
8
><

>:

Ph vj � = � v
h (v j � ) ;

a(Ph v; vh ) + b(Rh v; vh ) = a(v; vh ) 8vh 2 V� ;h ;

b(qh ; Ph v) = sh (qh ; Rh v) 8qh 2 Qh :

We assume that the following approximation properties hold forPh (see [21, Lemma 3]):

kv � Ph vkV + jRh vjsh . �
1
2 hk kvkk+1 ;
 ;

kv � Ph vk0;
 . hk+1 �
c� �

1
2 kvkk+1 ;
 + ~c� kvkk+1 ;�

� (33)

for all v 2 [H k+1 (
)] d with vj � 2 [H k+1 (�)] d and divv = 0 . The symbols c� and ~c� denote
positive constants depending only on
 and � .

Remark 10 The estimates (33) hold for inf-sup compatible velocity/pressure approximations
(with sh = 0 ) or under suitable assumptions on the symmetric stabilization operatorsh (see [21,
Section 3.1.1]). In particular, the consistency of sh is said to be of order~l 2 f l; l + 1g if there
exits a projection operator � h : Q ! Qh such that

j� h qjsh . � � 1
2 h

~l kqk~l; 
 8q 2 H
~l (
) ;

kq � � h qkQ . � � 1
2 hl +1 kqkl +1 ;
 8q 2 H l +1 (
) :

(34)

Examples of such stabilization operators are discussed in [9].�

We assume that the exact solution of problem (19) has the following regularity, for a given
�nal time T � � :

u 2
�
H 1�

0; T; H k+1 (
)
�� d

; u j � 2
�
H 1�

0; T; H k+1 (�)
�� d

;

@tt u 2
�
L 2�

0; T; L 2(
)
�� d

; @tt u j � 2
�
L 2�

0; T; L 2(�)
�� d

;

p 2 C0�
[0; T]; H

~l (
)
�

(35)

and

L ed + L v _d 2

8
>><

>>:

�
C0�

[0; T]; L 2(�)
�� d

if r ? = 0 ;
�
H 1�

0; T; L 2(�)
�� d

if r ? = 1 ;
�
H 2�

0; T; L 2(�)
�� d

if r ? = 2 :

(36)

In (35), the symbol ~l 2 f l; l + 1g denotes the consistency order ofsh (see Remark 10). We take
~l = l in the case of inf-sup compatible velocity/pressure approximations.

At last, we de�ne the energy-norm of the error, at the time step tn , as

En
h

def= ( � f )
1
2 ku(tn ) � u n

h k0;
 +

 
nX

m = r ? +1

� ku (tm ) � u m
h k2

V

! 1
2

+

 
nX

m = r ? +1

� jpm
h j2sh

! 1
2

+ ( � s� )
1
2 k _d(tn ) � _dn

h k0;� + kd(tn ) � dn
h ke +

 
nX

m = r ? +1

� k _d(tm ) � _dm
h k2

v

! 1
2
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16 M.A. Fernández, J. Mullaert & M. Vidrascu

for n � r ? + 1 . The following result states an priori error estimate for the fully discrete explicit
Robin-Neumann schemes introduced in Section 4.2.

Theorem 3 Let (u ; p;d; _d) be the solution of the coupled problem(19) and f (u n
h ; pn

h ; dn
h ; _dn

h )gn � r ? +1

be the discrete solution given by Algorithm 3 with initial data
�
u 0

h ; d0
h ; _d0

h

�
=

�
Ph u 0; � e

h d0; � v
h

_d0
�
:

The initialization procedure of Remark 4 is considered for the schemes with with extrapolation
(r ? � 1). Suppose that (32)-(34) hold and that the exact solution has the regularity(35)-(36).
For the scheme withr ? = 2 we assume, in addition, that (3) and the stability condition (29)
hold. Then, we have the following error estimates, forn � r ? + 1 such asn� < T :

En
h . c?

1hk + c?
2h

~l + c?
3� + c?

4

8
><

>:

�
1
2 if r ? = 0 ;

� if r ? = 1 ;

� 2 if r ? = 2 :

(37)

Here, the symbolsf c?
i g4

i =1 denote positive constants independent ofh and � , but which depend
on the physical parameters and on the regularity of(u ; p;d; _d).

Proof 3 See C.

Theorem 3 shows that, for regular enough solutions, the proposed explicit Robin-Neumann
schemes converge to the solution of (1)-(2). The last term of (37) represents the truncation
error introduced by the Robin-Neumann splitting, that is, the time-consistency of the kinematic
perturbation in (25). For the variant without extrapolation, the error estimate (37) predicts
a sub-optimal O(�

1
2 ) time-convergence rate in the energy-norm. This is due to the low-order

consistency of the perturbation in the caser ? = 0 . On the contrary, for the variants with
extrapolation the consistency of the perturbations scale asO(� ) and O(� 2), respectively. An
overall optimal convergence-rateO(hk + h~l + � ) is hence recovered.

In view of Theorems 1 and 3, the explicit Robin-Neumann scheme withr ? = 1 simultaneously
yields stability and optimal accuracy with no restrictions on the discretization parameters nor
on the polynomial order.

Remark 11 Theorem 3 generalizes the error estimates reported in [21, Section 5] to the case
L v 6= 0 . �

5 Formulation in the non-linear case

In this section we extend the explicit Robin-Neumann paradigm of Section 3.1 to the case of a non-
linear �uid-structure problem, involving a viscous incompressible �uid and thin-walled structure.
The �uid is described by the incompressible Navier-Stokes equations in ALE formalism (see, e.g.,
[27, Chapter 3]) and the structure by a non-linearReissner-Mindlin shell model (see, e.g., [13, 4]).

5.1 The non-linear coupled problem

Let 
 [ � be a reference con�guration of the system. The current con�guration of the �uid

domain, 
( t), is parametrized by the ALE map A def= I 
 + df as 
( t) = A (
 ; t), where df :

 � R+ ! Rd stands for the displacement of the �uid domain. In practice, df = Ext( dj � ),
where Ext(�) denotes any reasonable lifting operator from the (reference) interface� into the
(reference) �uid domain 
 . For instance, an harmonic lifting operator is used in the numerical
experiments reported in Section 6.
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Explicit Robin-Neumann schemes 17

The non-linear �uid-structure problem under consideration reads as follows: Find the �uid
domain displacementdf : 
 � R+ ! Rd, the �uid velocity u : 
 � R+ ! Rd, the �uid pressure
p : 
 � R+ ! Rd the solid displacement d : � � R+ ! Rd and the surface vector �eld � :
� � R+ ! R3 such that

8
>>>>>>><

>>>>>>>:

df = Ext( dj � ); w = @t df ; A def= I 
 + df ; 
( t) = A (
 ; t);

� f @t jA u + � f (u � w ) � r u � r � � (u ; p) = 0 in 
( t);

r � u = 0 in 
( t);

u = 0 on � d ;

� (u ; p)n = f � on � n ;

(38)

8
>>>>>>><

>>>>>>>:

u = _d on � ;

� s�@t
_d + L e

d (d; � ) + L v
d ( _d; _� ) = � J � (u ; p)F � T n on � ;

L e
� (d; � ) + L v

� ( _d; _� ) = 0 on � ;
_d = @t d; _� = @t � on � ;

d = � = 0 on @� ;

(39)

where @t jA represents the ALE time derivative, F def= rA the �uid domain gradient of de-

formation and J def= det F the Jacobian. The surface elastic and viscous operators, (L e
d ; L e

� )
and (L v

d ; L v
� ), can be non-linear. As usual, a �eld de�ned in the reference �uid domain, 
 , is

evaluated in the current �uid domain, 
( t), by composition with A � 1(�; t).

5.2 Explicit Robin-Neumann schemes

The proposed fully explicit coupling schemes combine an explicit treatment of the interface
geometrical compatibility (38) 1 with an explicit Robin-Neumann treatment of the interface kine-
matical and kinetic coupling (39)1;2. Following the initial argument of Section 3, the interface
Robin consistency of the coupled problem (38)-(39) is given by the relation

J � (u ; p)F � T n + � s�@t u = � L e
d (d; � ) � L v

d ( _d; _� ) on � :

Nevertheless, in order to avoid the extrapolation of the viscoelastic non-linear terms in the
right-hand side, we instead consider the non-linear counterpart of the alternative condition given
by (12), that is,

J � (u ; p)F � T n +
� s�
�

u =
� s�
�

_d + J � (u ; p)F � T n on � ; (40)

which motivates the following intrinsic explicit Robin condition for the �uid

J n � (u n ; pn )(F n ) � T n +
� s�
�

u n =
� s�
�

�
_dn � 1 + �@�

_d?
�

+ t ? on � ; (41)

where _d? = 0, _dn � 1, 2 _dn � 1 + _dn � 2 and

t ? =

8
><

>:

0;

J n � 1� (u n � 1; pn � 1)(F n � 1) � T n ;

2J n � 1� (u n � 1; pn � 1)(F n � 1) � T n � J n � 2� (u n � 2; pn � 2)(F n � 2) � T n ;

(42)
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18 M.A. Fernández, J. Mullaert & M. Vidrascu

Algorithm 4 Explicit Robin-Neumann schemes (non-linear problems)
For n � r ? + 1 :

1. Fluid domain update:

df ;n = Ext( dn � 1j � ); w n = @� df ;n ; A n def= I 
 + df ;n ; 
 n def= A n �



�

and we setF n = rA n and J n = det F n .

2. Fluid step: �nd u n : 
 � R+ ! R3 and pn : 
 � R+ ! R such that
8
>>>>>>>><

>>>>>>>>:

� f @� jA u n + � f (u n � 1 � w n ) � r u n � r � � (u n ; pn ) = 0; in 
 n ;

divu n = 0 in 
 n ;

u n = 0 on � d ;

� (u n ; pn )n = f � on � n ;

J n � (u n ; pn )(F n ) � T n +
� s�
�

u n =
� s�
�

� _dn � 1 + �@�
_d?�

+ t � on � ;

with the �uid stress extrapolations t ? given by (42).

3. Solid step: �nd dn : � � R+ ! R3 and � n : � � R+ ! R3 such that
8
>>>><

>>>>:

� s�@�
_dn + L e

d (dn ; � n ) + L v
d ( _dn ; _� n ) = � J n � (u n ; pn )(F n ) � T n on � ;

L e
� (dn ; � n ) + L v

� ( _dn ; _� n ) = 0 on � ;
_d = @� dn ; _� n = @� � n on � ;

dn = � n = 0 on @� :

stands, respectively, for the zeroth-(r ? = 0) , �rst- (r ? = 1) and second-order(r ? = 2) extrap-
olations of the solid velocity, _d, and of the interface �uid stress in the reference con�guration,
J � (u ; p)F � T n . The explicit Robin condition (41) corresponds to the non-linear counterpart of
(11). The resulting explicit coupling schemes are detailed in Algorithm 4.

It should be noted that the geometrical quantities involved in (41) and (42) do not need any
speci�c treatment and appear because the interface relation (40) is formulated in the reference
con�guration. In practice, the interface �uid stresses are consistently evaluated as variational
residuals in the deformed con�gurations, while the solid inertial contributions are integrated in
the reference con�guration. These hybrid characteristics of the explicit Robin condition (41) are
handled in a natural manner by the ALE formalism.

6 Numerical experiments

In order to assess the behavior and robustness of the explicit Robin-Neumann schemes, we have
considered a number of �uid-structure interaction examples from the literature. Section 6.1
presents a convergence study in 2D, using the linear model problem (1)-(2). Numerical results
with 3D geometries and non-linear models (38)-(39) are reported in the subsequent Sections 6.2-
6.5.
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Explicit Robin-Neumann schemes 19

6.1 Convergence study in a two-dimensional test-case

The �rst example simulates a pressure wave propagation within a compliant channel in 2D (see,
e.g., [32, 21]). We couple the Stokes equations with a damped generalized string model. More
precisely, in (2) we take

d =
�

0
dy

�
; L ed =

�
0

� � 1@xx dy + � 0dy

�
; L v _d =

�
0

�� s� _dy � �� 1@xx
_dy

�
;

with � 1
def= E�= (2(1+ � )) and � 0

def= E�= (R2(1� � 2)) : As usual, hereE denotes the Young modulus
and � the Poisson ratio of the solid. All the quantities will be given in the CGS system. The �uid
domain and the �uid-solid interface are, respectively, 
 = [0 ; L ] � [0; R]; � = [0 ; L ] � f Rg; with
L = 6 and R = 0 :5. At x = 0 we impose a sinusoidal normal traction of maximal amplitude2�104
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Figure 1: Snapshots of the �uid pressure and solid displacement att = 0 :005; 0:01; 0:015 (from
top to bottom). Algorithm 3 with �rst-order extrapolation, � = 10 � 4 and h = 0 :05.

during 5 � 10� 3 seconds, corresponding to half a period. Zero traction is enforced atx = 6 and a
symmetry condition is applied on the lower wall y = 0 . The solid is clamped at its extremities,
x = 0 ; L . The �uid physical parameters are given by � f = 1 :0 and � = 0 :035; while for the solid
we have� s = 1 :1 , � = 0 :1, E = 0 :75� 106, � = 0 :5, � = 1 and � = 10 � 3.

Continuous piece-wise a�ne approximations are considered for both the �uid and the struc-
ture, with the symmetric pressure stabilization method introduced in [6]. We have reported in
Figure 1 a few snapshots of the pressure and displacement �elds obtained using Algorithm 3 with
the �rst-order extrapolation, � = 10 � 4 and h = 0 :05. All the computations have been performed
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Figure 2: Time-convergence history of the displacement att = 0 :015, with h = O(� ).
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(a) i = 0 .
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(b) i = 1 .
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(c) i = 2 .
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(d) i = 3 .

Figure 3: Comparison of the solid displacements att = 0 :015 for di�erent levels of (�; h )-
re�nement, given by (43) with i = 0 ; : : : ; 3.

with FreeFem++ [51]. The numerical solution remains stable, as predicted by Theorem 1, and
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a propagating pressure-wave is observed.
In order to highlight the h-uniformity of the convergence in time, we have re�ned both in

time and in space at the same rate, with the following set of discrete parameters:

(�; h ) 2
�

2� i �
5 � 10� 4; 0:1

�	 4

i =0 : (43)

A reference solution has been generated using a fully implicit scheme with a high space-time grid
resolution (h = 3 :125� 10� 3, � = 10 � 6). Figure 2 reports the corresponding time-convergence
history of the solid displacement at time t = 0 :015, in the relative elastic energy-norm, for the
proposed explicit Robin-Neumann schemes (with and without extrapolation) and the implicit
scheme. The explicit Robin-Neumann schemes with �rst- and second-order extrapolation yield an
overall O(� ) optimal accuracy, while a sub-optimalO(�

1
2 ) rate is observed without extrapolation.

Thus, in agreement with the error estimates provided by Theorem 3. The impact of the sub-
optimal rate is clearly visible in Figure 3, where we have displayed the interface displacements
associated to Figure 2 (�rst four points of each curve). For comparison purposes, the reference
displacement is also shown. Observe that, even with the smallest time-steps sizes (e.g., Figure
3(d)), the Robin-Neumann scheme without extrapolation provides a rather poor approximation.
On the contrary, the extrapolated variants are able to retrieve the accuracy of the implicit
coupling scheme. In the case of the coupling with an undamped structure (i.e., with� = � = 0 ),
a similar behavior was observed in [21].

6.2 Pressure wave propagation in a straight tube

The second example is the three-dimensional test-case proposed in [26] (see also [27, Chapter 12]).
The �uid domain is a straight tube of radius R = 0 :5 and of length L = 5 . All the units are
given in the CGS system. The �uid is governed by the incompressible Navier-Stokes equations
in ALE formism, discretized in space with Q1=Q1 �nite elements and a SUPG/PSPG stabilized
formulation. The vessel wall is described by the linear shell model (4) (we refer to [13, Section
4.2.1] for the details), discretized in space by quadrilateral MITC4 shell elements (see [13, Section
8.2.1]). The �uid physical parameters are given by � f = 1 :0 and � = 0 :035; while for the solid
we have� s = 1 :2; � = 0 :1; E = 3 � 106 and � = 0 :5: We will consider the case of both a Rayleigh
solid damping, viz., L v

d ( _d; _� ) = �� s� _d + � L e
d ( _d; _� ); L v

� ( _d; _� ) = � L e
� ( _d; _� ); with � = 1 , � = 10 � 3,

and an undamped solid (� = � = 0 ).
The overall system is initially at rest. During the time-interval [0; 5�10� 3], an over pressure of

1:3332� 104 is imposed on the inlet boundary. The simulations are carried out over 150 time-steps
of length � = 10 � 4. Figure 4 shows the �uid pressure and the solid deformation (ampli�ed by a
factor 10) at di�erent time instants obtained with Algorithm 4 and the �rst-order extrapolation,
� = 10 � 4. A stable pressure wave propagation is observed. The impact of the solid damping is
also clearly visible.

For comparison purposes, Figure 5 reports the interface mid-point displacement magnitudes
obtained with Algorithm 4 and the implicit coupling scheme. Once more, the Robin-Neumann
scheme without extrapolation provides a very poor approximation, while the extrapolated vari-
ants are able to retrieve the accuracy of the implicit coupling scheme. It is worth noting that
the solid damping has a rather limited impact on the numerical solution without extrapolation.
This suggests that the arti�cial dissipation of the scheme (due to itsO(�

1
2 ) loss in accuracy) is at

least of the same order than the physical dissipation considered in the solid. Similar conclusions
can be inferred from Figure 6, which reports the out-�ows obtained with the di�erent schemes.
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Figure 4: Snapshots of the �uid pressure at t = 0 :005; 0:01; 0:015 (from top to bottom).
Algorithm 4 with �rst-order extrapolation, � = 10 � 4. Left: Shell model without damping
(� = � = 0 ). Right: Shell model with damping ( � = 1 , � = 10 � 3).

Figure 5: Comparison of the implicit and Robin-Neuman explicit coupling schemes: interface
mid-point displacement magnitude vs. time. Left: Shell model without damping ( � = � = 0 ).
Right: Shell model with damping (� = 1 , � = 10 � 3).
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Figure 6: Comparison of the implicit and Robin-Neuman explicit coupling schemes: out-�owvs.
time. Left: Shell model without damping ( � = � = 0 ). Right: Shell model with damping ( � = 1 ,
� = 10 � 3).

6.3 Blood �ow in an abdominal aortic aneurysm

We consider the numerical example presented in [1] using anin vitro aneurysm geometry. The
�uid computational domain is the idealized abdominal aortic aneurysm given in Figure 7 (left).
We refer to [53] for the details. The whole compliant wall has a uniform thickness of0:17
and length of 22:95. All the units are given in the CGS system. The �uid is governed by the

Figure 7: Aneurysm geometry (left) and in-�ow rate data (right)

incompressible Navier-Stokes equations in ALE formism, discretized in space withQ1=Q1 �nite
elements and a SUPG/PSPG stabilized formulation. The vessel wall is described by the linear
shell model (4), discretized in space by quadrilateral MITC4 shell elements. The �uid physical
parameters are given by� f = 1 :0 and � = 0 :035, while for the solid we have� s = 1 :2 , � = 0 :1,
E = 3 � 106, � = 0 :5, � = 1 and � = 10 � 3. The overall system is initially at rest. An in-�ow
rate corresponding to a cardiac cycle, see Figure 7(right), is imposed on the inlet boundary. A
resistive-like boundary condition is prescribed on the outlet boundary, the value of the resistance
being Rout = 6 � 102.

We have simulated 2000 time-steps of size� = 4 :2 � 10� 4 s, which corresponds to a full
cardiac cycle. Figure 8 shows the �uid velocity and the solid deformation at di�erent time
instants obtained with Algorithm 4 and the �rst-order extrapolation. For comparison purposes,
Figure 9 reports the interface mid-point displacement magnitudes and out-�ow obtained with
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Figure 8: Snapshots of the �uid velocity t = 0 :084; 0:168; 0:336; 0:672 (from left to right and
top to bottom). Algorithm 4 with �rst-order extrapolation, � = 4 :2 � 10� 4.

Figure 9: Comparison of the implicit and Robin-Neuman explicit coupling schemes: Left: Inter-
face displacement. Right: Out-�ow.

Algorithm 4 and the implicit coupling scheme. The Robin-Neumann schemes with �rst- and
second-order extrapolation provide numerical solutions close to the implicit coupling scheme.
The superior accuracy of the higher order kinematic perturbation introduced by the second-
order extrapolation is clearly visible. At last, the Robin-Neumann scheme without extrapolation
yields an extremely poor approximation. Once more, this illustrates the striking impact of the
O(�

1
2 )-loss on the accuracy of the scheme without extrapolation.
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6.4 Driven cavity with �exible bottom

We consider the classical shear-driven cavity problem with a �exible bottom (see, e.g., [28]).
The �uid domain is the unit square 
 = [0 ; 1] � [0; 1] with the �uid-solid interface on the lower
boundary � = [0 ; 1] � f 0g. All the units are given in the SI system. The overall system is
initially at rest and an oscillating shear velocity pro�le is imposed on the upper boundary u(t) =
(1� cos(0:4�t ); 0)T on [0; 1]�f 1g: A non-slip condition is enforced on the portionsf 0; 1g� [0; 0:9]

Figure 10: Snapshots of the �uid velocity magnitude at t = 3 :5; 8; 14; 21 (from left to right and
top to bottom). Algorithm 4 with �rst-order extrapolation, � = 0 :1.

of the lateral cavity walls. The system is described by the non-linear coupled problem (38)-(39),
with a non-linear shell model and a Saint Venant-Kirchho� constitutive law (see [13]). The �uid
equations are discretized in space withQ1=Q1 �nite elements and a SUPG/PSPG stabilized
formulation. Quadrilateral MITC4 shell elements are considered for the structure. The �uid
physical parameters are given by� f = 1 :0 and � = 0 :01; while for the solid (undamped) we have
� s = 250; � = 0 :002; E = 250; and � = 0 :

The simulations are performed in three-dimensions, by imposing symmetry conditions along
the extrusion direction, and carried out over 800 time-steps of size� = 0 :1. Figure 10 shows the
�uid velocity and the solid deformation at di�erent time instants obtained with Algorithm 4 and
the �rst-order extrapolation.

For comparison purposes, Figure 11 reports the interface mid-point displacement magnitudes
obtained with Algorithm 4 and the implicit coupling scheme. Once again, the superior accuracy
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Figure 11: Comparison of the implicit and Robin-Neuman explicit coupling schemes: interface
mid-point displacement magnitude vs. time.

of the Robin-Neumann schemes with �rst- and second-order extrapolation is noticeable.

6.5 Damped structural instability

The last example considers a bended �uid domain surrounded by two thin structures with dif-
ferent sti�ness, as proposed in [40]. Both structures are �xed on their extremities. A constant
parabolic velocity pro�le is prescribed on the left and right in�ow boundaries, with maximal
magnitudes 10 and 10:1, respectively (to avoid perfect symmetry). All the units are given in
the SI system. Zero velocity is enforced on the remaining �uid boundaries. The �uid is loaded
with the volume force f = (0 ; � 1)T : As in the previous example, the system is described by the
non-linear coupled problem (38)-(39), with a non-linear shell model and a Saint Venant-Kirchho�
constitutive law. We consider also the same spatial discretization. The �uid physical parameters
are given by � f = 1 :0 and � = 9 , while for the top and bottom (undamped) structures we have
� s = 500; � = 0 :1; E top = 9 � 105; Ebottom = 9 � 108 and � = 0 :3: The simulations are performed
in three-dimensions by imposing symmetry conditions along the extrusion direction.

A salient di�culty of this ballon-type problem is that it cannot be solved via standard
Dirichlet-Neumann procedures, since the interface solid velocity does not necessarily satisfy the
compatibility condition enforced by the incompressibility of the �uid (unless directly prescribed
in the structure [40]). The explicit Robin-Neumann coupling schemes given by Algorithm 4 get
rid of this issue without any extra adjustment. Indeed, the consistent perturbation of the kine-
matic coupling induced by the Robin-Neumann interface conditions removes the constraint on
the interface solid velocity.

In Figure 12 we have reported the �uid velocity magnitude snapshots and the solid defor-
mations at di�erent time instants, obtained with Algorithm 4 (�rst-order extrapolation) and
time-step length of � = 0 :005. As in [40], the deformation is �rst mainly visible in the upper
(more �exible) structure and then, when the �uid pressure reaches a critical value, the lower
structure buckles.

Figure 13 reports the interface mid-point displacement magnitude of the bottom structure
obtained with Algorithm 4 and the implicit coupling scheme. The poor accuracy of the Robin-
Neumann scheme without extrapolation is striking: the lower order perturbation of the kinematic
coupling yields an excess of mass-loss across the interface which prevents the buckling. On the
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Figure 12: Snapshots of the �uid velocity t = 0 :5; 1; 1:5; 2; 2:5; 3; 3:5; 4 (from left to right and
top to bottom). Algorithm 4 with �rst-order extrapolation.

contrary, the variants with the �rst- and second-order extrapolations give practically the same
result than the implicit scheme and predict the collapse of the bottom structure.
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Figure 13: Comparison of the of the implicit and Robin-Neuman explicit coupling schemes:
interface mid-point displacement magnitude of the bottom structure vs. time.

7 Conclusion

We have introduced and analyzed a class of explicit Robin-Neumann schemes for the coupling
of a viscous incompressible �uid and a general thin-walled structure (including damping and
non-linear behavior). The basis of these methods is the underlying Robin consistency of the
interface coupling. This has motivated an explicit Robin interface condition for the �uid, which
combines extrapolations of the solid viscoelastic contributions with an implicit treatment of the
solid inertia. The former enables full �uid-solid splitting (i.e., explicit coupling), while the latter
guarantees added-mass free stability (Theorem 1).

The schemes admit an intrinsic explicit Robin-Neumann formulation which makes them gen-
uinely partitioned: only extrapolations of the solid velocity and interface �uid stress are necessary.
The methods have been interpreted as single iterations, with appropriate initializations, of a (pa-
rameter free) Robin-Neumann iterative solution procedure of implicit coupling. New insights on
the convergence of these procedures (Theorem 2) have been derived from this connection.

The error analysis (Theorem 3) has shown that the variants with extrapolation yield an
optimal �rst time-accuracy in the energy-norm, while a sub-optimal convergence rate is expected
without extrapolation. In summary, the key result is that the explicit Robin-Neumann scheme
with �rst-order extrapolation simultaneously yields added-mass free unconditional stability and
optimal (�rst-order) time accuracy.

A comprehensive list of numerical tests from the literature con�rmed these �ndings, and
indicate that the proposed methods provide a simple and robust approach to the explicit cou-
pling of �uid-structure interaction problems, involving an incompressible �uid and a thin-walled
structure.

Although not addressed herein, the techniques proposed can also be used to consider the case
of thin-walled structures with constraints (e.g., inextensibility) enforced via Lagrange multipliers.
An important setting, not covered by the present analysis, is the case of the coupling with thick-
walled structures, for which the relation (5) is not valid anymore. A �rst attempt in this direction
can be found in [25] (see also [24]), which generalizes the notion of interface Robin consistency
using a mass lumping approximation in the solid. The resulting explicit coupling paradigm
yields added-mass free stability (as in Theorem 1), but numerical evidence indicates that the
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optimality of the accuracy (as in Theorem 3) is not necessarily preserved. Further extensions of
this work can explore various directions. We can address, for instance, the case of un�tted �uid-
solid meshes and the development of second-order time-accurate schemes. Ongoing work focuses
on the combination of the present explicit coupling paradigm with an overall fractional-step
time-marching (fully decoupled state computation).

A Proof of Theorem 1

We proceed by extending the arguments reported in [21, Section 4]. Using (25), we take

(vh ; qh ) = � (u n
h ; pn

h ); wh = � _dn
h +

� 2

� s�

�
L e

h (dn
h � d?

h ) + L v
h ( _dn

h � _d?
h )

�

as test functions in (26) for n � r ? + 1 . Thus, sincef � = 0, we get the following discrete energy
equation

� f

2

�
�@� ku n

h k2
0;
 + ku n

h � u n � 1
h k2

0;


�
+ 2 �� k" (u n

h )k2
0;
 + � jpn

h j2sh

+
� s�
2

�
�@� k _dn

h k2
0;� + k _dn

h � _dn � 1
h k2

0;�

�
+

1
2

�
�@� kdn

h k2
e + kdn

h � dn � 1
h k2

e

�

+ � k _dn
h k2

v + � 2
�

@�
_dn
h ; L e

h (dn
h � d?

h ) + L v
h

� _dn
h � _d?

h

� �

�| {z }
T1

+
� 2

� s�

�
L e

h dn
h + L v

h
_dn
h ; L e

h (dn
h � d?

h ) + L v
h

� _dn
h � _d?

h

� �

�
| {z }

T2

= 0 (44)

for n � r ? + 1 . To complete the proof, we only need to control the termsT1 and T2. We proceed
by treating each case separately, depending on the extrapolation orderr ?.
(i) Without extrapolation ( r ? = 0 ). In this case, using Young's inequality, we have

T1 + T2 � �
� s�
3

k _dn
h � _dn � 1

h k2
0;� +

� 2

4� s�
kL e

h dn
h + L v

h
_dn
h k2

0;� (45)

for n � 1. Hence, the estimate (27) follows by inserting this expression into (44), applying Korn's
inequality to the �uid viscous dissipation and summing over m = 1 ; : : : ; n.
(ii) First-order extrapolation ( r ? = 1 ). In this case we have

T1 =
� 2

2

�
�@�


 _dn

h


 2

e +

 _dn

h � _dn � 1
h


 2

e

�
+ �


 _dn

h � _dn � 1
h


 2

v (46)

and

T2 =
� 2

2� s�

�
�@�


 L e

h dn
h + L v

h
_dn
h


 2

0;� +

 L e

h (dn
h � dn � 1

h ) + L v
h ( _dn

h � _dn � 1
h )


 2

0;�

�
(47)

for n � 2. Hence, by inserting this expression into (44), use Korn's inequality and summing over
m = 2 ; : : : ; n we get the estimate

E n
h +

nX

m =2

D m
h . E 1

h +
� 2

2
k _d1

h


 2

e +
� 2

2� s�


 L e

h d1
h + L v

h
_d1
h


 2

0;� :
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The last two terms, related to the initialization of the scheme (see Remark 4), can be bounded
using (27) with r ? = 0 , n = 1 and the additional control given by (45). This yields the estimate
(27) for n � 2.
(iii) Second-order extrapolation ( r ? = 2 ). In this case, we need the following estimates:

kwh k2
e �

� eC2
inv

h2 kwh k2
0;� ; (48)

kL e
h wh ke �

� eC2
inv

h2 kwh ke; (49)

kL e
h wh k0;� �

(� e)
1
2 Cinv

h
kwh ke; (50)

kL e
h wh kv �

� eC2
inv

h2 kwh kv ; (51)

for all wh 2 W h and with Cinv > 0 the constant of an inverse estimate. Details on the derivation
of (48)-(50) are given in [21, Lemma 1], while (51) is a direct consequence of (3) and (48)-(50).
For term T1 in (44) we simply have

T1 = � 2

 _dn

h � _dn � 1
h


 2

e +
�
2

�
�@�


 _dn

h � _dn � 1
h


 2

v +

 _dn

h � 2 _dn � 1
h + _dn � 2

h


 2

v

�
: (52)

Term T2 is split as follows

T2 =
� 2

� s�

�
L v

h
_dn
h ; L e

h (dn
h � 2dn � 1

h + dn � 2
h )

�

�
| {z }

T2;1

+
� 2

� s�

�
L e

h dn
h ; L e

h (dn
h � 2dn � 1

h + dn � 2
h )

�
�

| {z }
T2;2

+
� 2

� s�

�
L e

h dn
h + L v

h
_dn
h ; L v

h ( _dn
h � 2 _dn � 1

h + _dn � 2
h )

�

�
| {z }

T2;3

(53)

and we estimate each term separately. Using (3), for the �rst term we have

T2;1 = �� 3� _dn
h ; L e

h ( _dn
h � _dn � 1

h )
�

� +
�� 3

� s�

�
L e

h
_dn
h ; L e

h ( _dn
h � _dn � 1

h )
�

�

=
�� 3

2

�
�@� k _dn

h k2
e + k _dn

h � _dn � 1
h k2

e

�

+
�� 3

2� s�

�
�@� kL e

h
_dn
h k2

0;� + kL e
h ( _dn

h � _dn � 1
h )k2

0;�

�
:

(54)

The second term is treated as in [21, Page 38] using (48) and (49), which yields

T2;2 � � � 6 (! e)6

h6 kdn
h k2

e �
� s�
4

k _dn
h � _dn � 1

h k2
0;� ; (55)

where we have used the notation! e def= Cinv
p

� e=(� s� ). For the last term, we �rst use relation
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(3) to obtain

T2;3 � �
� 2

� s�
kL e

h dn
h + L v

h
_dn
h kv k _dn

h � 2 _dn � 1
h + _dn � 2

h kv

� �
2� 3

(� s� )2 kL e
h dn

h k2
v �

2� 3

(� s� )2 kL v
h

_dn
h k2

v �
�
4

k _dn
h � 2 _dn � 1

h + _dn � 2
h k2

v

� �
2� 3

� s�

�
� kL e

h dn
h k2

0;� +
�

� s�
kL e

h dn
h k2

e

�

� 4� 3
�

� 2k _dn
h k2

v +
� 2

(� s� )2 kL e
h

_dn
h k2

v

�
�

�
4

k _dn
h � 2 _dn � 1

h + _dn � 2
h k2

v :

Then, using (49)-(51), we get

T2;3 � �
2� 3(! e)2

h2

�
� +

� 2(! e)2

h2

�
kdn

h k2
e

� 4� 3
�

� 2 +
� 2(! e)4

h4

�
k _dn

h k2
v �

�
4

k _dn
h � 2 _dn � 1

h + _dn � 2
h k2

v :
(56)

Finally, by collecting the estimates (55)-(56) and using the conditions (29)1;2, we obtain

T2;2 + T2;3 � � �

2

kdn
h k2

e � � � k _dn
h k2

v �
� s�
4

k _dn
h � _dn � 1

h k2
0;�

�
�
4

k _dn
h � 2 _dn � 1

h + _dn � 2
h k2

v :
(57)

We now proceed by inserting (52), (54) and (57) into (44), using Korn's inequality and
summing overm = 3 ; : : : ; n. The last three negative terms of (57) are controlled by the physical
and numerical dissipations provided by (44) and (52), while the �rst is handled via Gronwall's
Lemma (see, e.g., [36, Lemma 5.1]) under the condition (29)3. This yields the bound

E n
h +

nX

m =3

D m
h . exp

�
tn 

1 � � 

��
E 2

h + � k _d2
h � _d1

h k2
v + �� 3k _d2

h k2
e

+
�� 3

� s�
kL e

h
_d2
h k2

0;�

�
:

The estimate (28) then follows by using the energy estimate (27) withr ? = 1 and n = 2 , the
additional control provided by (46) and (47), and the stability condition (29).

B Proof of Theorem 2

For k � 1, we consider (17)1 at the (k � 1)-th iteration and add the resulting expression to (16)5.
This yields

� s�
�

�
u k � _dn � 1�

+ L edk � 1 + L v _dk � 1 = � � (u k ; pk )n on � :

Hence, by combining this relation with (17)1 we get

u k = _dk +
�

� s�

�
L e(dk � dk � 1) + L v ( _dk � _dk � 1)

�
on � : (58)
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It should be noted that d0 is de�ned through (17)1, with k = 0 , in terms of _d0 and � (u 0; p0)n .
We now introduce the following errors between thek-th iteration of Algorithm 2 and the n-th
step of (14)-(15):

eu
k

def= u k � u n ; ep
k

def= pk � pn ; e
_d

k
def= _dk � _dn ; ed

k
def= dk � dn : (59)

By subtracting (14)-(15) from (16) 1� 4, (17) and (58), we get the following system of equations
for the errors:

8
>>>>>>>>><

>>>>>>>>>:

� f

�
eu

k � div � (eu
k ; ep

k ) = 0 in 
 ;

diveu
k = 0 in 
 ;

eu
k = 0 on � d ;

� (eu
k ; ep

k )n = 0 on � n ;

eu
k = e

_d
k +

�
� s�

�
L e(ed

k � ed
k � 1) + L v (e

_d
k � e

_d
k � 1)

�
on � ;

(60)

8
><

>:

� s�
�

e
_d k + L eed

k + L v e
_d

k = � � (eu
k ; ep

k )n on � ;

e
_d

k =
1
�

ed
k :

(61)

We now proceed similarly to the proof of Theorem 1 with the �rst-order extrapolation. We
�rst multiply (60) 1 by � eu

k and integrate by parts in 
 . Then we multiply (61) 2 by � eu
k j � and

integrate the resulting expression over� . By adding these two expressions and using (61)1;3 we
get

� f keu
k k2

0;
 + 2 �� k" (eu
k )k2

0;
 + � s� ke
_d k k2

0;� + ked k k2
e + � ke

_d k k2
v

+ �
�

e
_d

k ; L e(ed
k � ed

k � 1) + L v (e
_d

k � e
_d

k � 1)
�

�| {z }
T1

+
� 2

� s�

�
L eed

k + L v e
_d

k ; L e(ed
k � ed

k � 1) + L v (e
_d

k � e
_d

k � 1)
�

�
| {z }

T2

= 0 ; (62)

where it only remains to estimate the termsT1 and T2. For the �rst term, using (61) 3, we have

T1 =
1
2

�
ked

k k2
e � k ed

k � 1k2
e + ked

k � ed
k � 1k2

e

�
+

�
2

�
ke

_d
k k2

v � k e
_d

k � 1k2
v + ke

_d
k � e

_d
k � 1k2

v

�
;

while, for the second, we get

T2 =
� 2

2� s�

�
kL eed

k + L v e
_d

k k2
0;� � k L eed

k � 1 + L v e
_d

k � 1k2
0;�

�

+
� 2

2� s�
kL e(ed

k � ed
k � 1) + L v (e

_d
k � e

_d
k � 1)k2

0;�

The estimate (30) follows by inserting these last two identities into (62) and after summation
over k = 1 ; : : : ; 1 .
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C Proof of Theorem 3

We proceed by extending the arguments reported in [21, Section 5]. The error estimate (37) is
based on the following decomposition of the error

u (tn ) � u n
h = u(tn ) � Ph u(tn )

| {z }
� n

�

+ Ph u(tn ) � u n
h| {z }

� n
h

;

p(tn ) � pn
h = p(tn ) � � h p(tn )

| {z }
yn

�

+ � h p(tn ) � pn
h| {z }

yn
h

;

d(tn ) � dn
h = d(tn ) � � e

h d(tn )
| {z }

� n
�

+ � e
h d(tn ) � dn

h| {z }
� n

h

;

_d(tn ) � _dn
h = _d(tn ) � � v

h
_dn

| {z }
_� n
�

+ � v
h

_d(tn ) � _dn
h| {z }

_� n
h

;

(63)

where the projection operatorsPh , � h , � e
h and � v

h are de�ned in Section 4.6. Hence, owing to
(32)-(34), it only remains to estimate the discrete contributions � n

h , yn
h , � n

h and _� n
h . An a priori

bound for these terms is stated in Lemma 4 below, with the energy-norm of the discrete error
being de�ned by

Z n
h

def= ( � f )
1
2 k� n

h k0;
 +

 
nX

m = r ? +1

� k� m
h k2

V

! 1
2

+

 
nX

m = r ? +1

� jym
h j2sh

! 1
2

+ ( � s� )
1
2 k _� n

h k0;� + k� n
h ke +

 
nX

m = r ? +1

� k _� m
h k2

v

! 1
2

for n � r ? + 1 .

Lemma 4 Under the assumptions of Theorem 3, the following error estimates hold:

ˆ Without extrapolation ( r ? = 0 ):

Z n
h . c1hk + c2h

~l + c3� + c4�
1
2

�
T

� s�

� 1
2

kL ed + L v _dkL 1 (0 ;T ;L 2 (�)) (64)

for n � 1.

ˆ First-order extrapolation ( r ? = 1 ):

Z n
h . c1hk + c2h

~l + c3� + c4�
�

T
� s�

� 1
2

k@t (L ed + L v _d)kL 2 (0 ;T ;L 2 (�)) (65)

for n � 2.

ˆ Second-order extrapolation (r ? = 2 ):

Z n
h . c5hk + c6h

~l + c7� + c8� 2
�

T
� s�

� 1
2

k@tt (L ed + L v _d)kL 2 (0 ;T ;L 2 (�)) (66)

for n � 3.
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Here, the symbolsf ci g8
i =1 denote positive constants independent ofh and � , but which depend on

the physical parameters and on the regularity of(u ; p;d; _d).

Proof 4 We �rst recall the following properties of the discrete solid operatorsL e
h and L v

h (see,
e.g., [21, Lemma 1]), which will be used below:

L e
h � e

h = L e
h ; L v

h � v
h = L v

h (67)

and
kL e

h wk0;� � k L ewk0;� ; kL v
h _wk0;� � k L v _wk0;� (68)

for all w 2 D e and _w 2 D v .
We consider the continuous problem(19) at time t = tn with (v; q;w ) = ( vh ; qh ; wh ) 2

Vh � Qh � W h , and subtract (26) from the resulting expression. This yields the following modi�ed
Galerkin orthogonality:

� f (@� (u n � u n
h ); vh ) + a(u (tn ) � u n

h ; vh ) + b(p(tn ) � pn
h ; vh ) � b(qh ; u (tn ) � u n

h )

+ � s�
�
@� ( _d(tn ) � _dn

h ); wh
�

� + ae�
d(tn ) � dn

h ; wh
�

+ av � _d(tn ) � _dn
h ; wh

�

= � � f � (@t � @� )u (tn ); vh
�

� � s�
�
(@t � @� ) _d(tn ); wh

�
� + sh (pn

h ; qh ) (69)

for all (vh ; qh ; wh ) 2 Vh � Qh � W h with vh j � = wh . Hence, using (63), we infer the following
equation for the discrete errors� n

h , yn
h , � n

h and _� n
h :

� f � @� � n
h ; vh

�
+ a

�
� n

h ; vh
�

+ b
�
yn

h ; vh
�

� b
�
qh ; � n

h

�
+ sh

�
yn

h ; qh
�

+ � s�
�
@�

_� n
h ; vh

�
� + ae�

� n
h ; vh

�
+ av � _� n

h ; vh
�

= � � f � (@t � @� )u (tn ); vh
�

� � f (@� � n
� ; vh )

| {z }
T1(vh )

� � s�
�
(@t � @� ) _d(tn ); vh

�
� � � s�

�
@�

_� n
� ; vh

�
�| {z }

T2(vh )

+ sh
�
� h pn ; qh

�
� a

�
� n

� ; vh
�

� b
�
yn

� ; vh
�

+ b
�
qh ; � n

�

�

| {z }
T3(vh ; qh )

� ae�
� n

� ; vh
�

| {z }
= 0

� av � _� n
� ; vh

�

| {z }
= 0

(70)

for all (vh ; qh ) 2 Vh � Qh with vh j � 2 W h and n � r ? + 1 . It should be noted that last two terms
vanish due to de�nition (31) of the solid projection operators.

Moreover, by combining (25) and (67) with (63), we have

� n
h j � = _� n

h +
�

� s�

�
L e

h (� n
h � � ?

h ) + L v
h ( _� n

h � _� ?
h )

�

�
�

� s�

�
L e

h (d(tn ) � d?) + L v
h ( _d(tn ) � _d?)

� (71)

for n � r ? + 1 , with the natural notations � ?
h

def= � e
h d? � d?

h , _� ?
h

def= � v
h

_d? � _d?
h and

�
d?; _d?�

=

8
><

>:

0 if r ? = 0 ;
�
d(tn � 1); _d(tn � 1)

�
if r ? = 1 ;

�
2d(tn � 1) � d(tn � 2); 2 _d(tn � 1) � _d(tn � 2)

�
if r ? = 2 :
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Similarly, from (21)1 and (63), it follows that

_� n
h = @� � n

h + � v
h

_d(tn ) � � e
h @� d(tn )

| {z }
zn

h

: (72)

In order to control the perturbation introduced by the last term (72), we shall make use of the
following estimates

kzn
h ke . (� e)

1
2

�
hk ku(tn )kk+1 ;� + �

1
2 k@t ukL 2 ( t n � 1 ;t n ;H 1 (�))

�
;

kzn
h � zn � 1

h ke . (� e)
1
2 �

1
2 hk k@t ukL 2 ( t n � 1 ;t n ;H k +1 (�))

+ ( � e)
1
2 �

3
2 k@tt ukL 2 ( t n � 1 ;t n ;H 1 (�)) ;

(73)

which can be inferred from (32) and standard Taylor expansions.

Taking (vh ; qh ) = � (� n
h ; yn

h ) in (70), and using (71)-(72), yields the following energy equation
for the discrete errors:

� f

2

�
�@� k� n

h k2
0;
 + � 2k@� � n

h k2
0;


�
+ 2 �� k" (� n

h )k2
0;
 + � jyn

h j2sh

+
� s�
2

�
�@� k _� n

h k2
0;� + � 2k@�

_� n
h k2

0;�

�
+

1
2

�
�@� k� n

h k2
e + � 2k@� � n

h k2
e

�

+ � k _� n
h k2

v + � 2
�

@�
_� n
h ; L e

h (� n
h � � ?

h ) + L v
h

� _� n
h � _� ?

h

� �

�| {z }
T5

+
� 2

� s�

�
L e

h � n
h + L v

h
_� n
h ; L e

h (� n
h � � ?

h ) + L v
h

� _� n
h � _� ?

h

� �

�
| {z }

T6

= T1(� � n
h ) + T2(� � n

h ) + T3(� � n
h ; �y n

h ) � �a e(� n
h ; zn

h )
| {z }

T4

+ � 2
�

@�
_� n
h ; L e

h (d(tn ) � d?) + L v
h

� _d(tn ) � _d?� �

�| {z }
T7

+
� 2

� s�

�
L e

h � n
h + L v

h
_� n
h ; L e

h (d(tn ) � d?) + L v
h

� _d(tn ) � _d?� �

�
| {z }

T8

(74)

for n � r ? + 1 . The terms T1,. . . , T4 are estimated as in [21, Section 5], using(32)-(34), (73)
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and Taylor expansions. We simply recall the corresponding bound

4X

i =1

Ti .
(� f � )2

"1�
k@tt uk2

L 2 ( t n � 1 ;t n ;L 2 (
)) +
(� f c� )2

"1
h2k+2 k@t uk2

L 2 ( t n � 1 ;t n ;H k +1 (
))

+
�

(� f ~c� )2

"1�
+

(� s� )2

"2�

�
h2k+2 k@t uk2

L 2 ( t n � 1 ;t n ;H k +1 (�))

+
(� s�� )2

"2�
k@tt uk2

L 2 ( t n � 1 ;t n ;L 2 (�)) + � 2� eTk@t uk2
L 2 ( t n � 1 ;t n ;H 1 (�))

+ �

 
�h 2k

"3
ku(tn )k2

k+1 ;
 +
h2~l

"3�
kp(tn )k2

~l; 
 + h2k � eTku(tn )k2
k+1 ;�

!

+ � ("1 + "2 + "3)k� n
h k2

V + �" 3jyn
h j2sh

+
�
T

k� n
h k2

e;

(75)

where " i , i = 1 ; : : : ; 3, are free positive parameters. In (75), the terms involving k� n
h k2

V and
jyn

h j2sh
can be absorbed by the left-hand side of(74), by choosing" i su�ciency small, while the

last term is controlled via Gronwall's Lemma.
As regards the remaining termsT5; : : : ; T8 in (74), we proceed by treating each extrapolation

separately.
(i) Without extrapolation ( r ? = 0 ). Terms T5 and T6 are bounded as termsT1 and T2 in A,
which yields

T5 + T6 � �
� s�
3

k _� n
h � _� n � 1

h k2
0;� +

� 2

4� s�
kL e

h � n
h + L v

h
_� n
h k2

0;� : (76)

For the remaining terms, using Young's inequality and (68), we have

T7 + T8 �
� s�
8

k _� n
h � _� n � 1

h k2
0;� +

� 2

8� s�
kL e

h � n
h + L v

h
_� n
h k2

0;�

+
4� 2

� s�
kL ed(tn ) + L v _d(tn )k2

0;� :
(77)

The estimate (64) then follows by inserting(75), (76) and (77) into (74), using Korn's inequality,
summing overm = 1 ; : : : ; n, and applying Gronwall's lemma.
(ii) First-order extrapolation ( r ? = 1 ). Terms T6 is treated as term T2 in A, yielding

T6 =
� 2

2� s�

�
�@�


 L e

h � n
h + L v

h
_� n
h


 2

0;� + � 2

 @� (L e

h � n
h + L v

h
_� n
h )


 2

0;�

�
: (78)

For term T5, we have

T5 =
� 2

2

�
�@�


 _� n

h


 2

e +

 _� n

h � _� n � 1
h


 2

e

�
+ �


 _� n

h � _� n � 1
h


 2

v + � 2ae� _� n
h � _� n � 1

h ; zn
h

�
;

where the last contribution is due to the modi�ed displacement-velocity relation(72). Thus, using
(73), we get

T5 &
� 2

2

�
k _� n

h k2
e � k _� n � 1

h k2
e

�
+ �


 _� n

h � _� n � 1
h


 2

v � � eh2k � 2ku(tn )k2
k+1 ;�

� � e� 3k@t uk2
L 2 ( t n � 1 ;t n ;H 1 (�)) :
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For the terms T7 and T8, using Taylor expansions and(68), we have

T7 + T8 �
� s�
2T

�
k _� n

h k2
0;� + k _� n � 1

h k2
0;�

�
+

3T � 2

2� s�
kL e@t d + L v @t

_dk2
L 2 ( t n � 1 ;t n ;L 2 (�))

+
� 3

2� s�T
kL e

h � n
h + L v

h
_� n
h k2

0;� ;

where last term can be treated via Gronwall's Lemma, using the control provided by(78).
In summary, the estimate (65) follows by inserting the above bounds into(74), using Korn's

inequality, summing overm = 2 ; : : : ; n, and applying Gronwall's Lemma. The part of the discrete
error corresponding to the initialization step is bounded from(64) with n = 1 and T = � .
(iii) Second-order extrapolation (r ? = 2) . Terms T5 and T6 are treated as termsT1 and T2 in
A, apart from the additional contribution of the modi�ed displacement-velocity relation (72). We
have

T5 = � 2

 _� n

h � _� n � 1
h


 2

e +
�
2

�
�@�
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 2
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h
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| {z }
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;

where the last term is bounded, using(73), as follows
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For T6, using (72), we have
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The last term in this bounded through(3), (48), (50) and (51) as follows
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(79)
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where we have used the notation! e def= Cinv
p

� e=(� s� ). Hence, using (29) and (73), we �nally
infer that

T6;1 & � � 2� eT
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2

� 2
3
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e �
� 3
4T

k _� n
h k2

v :
(80)

The �rst of the last two terms is controlled via Gronwall's Lemma, while the second can be
absorbed by the left-hand side of(74).

We conclude the proof with the estimation of the remaining terms in the right-hand side of
(74). For T7, using a Taylor expansion, we simply have

T7 � �
� s�
2T

�
k _� n

h k2
0;� + k _� n � 1

h k2
0;�

�
+

T � 4

2� s�
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_dk2
L 2 ( t n � 1 ;t n ;L 2 (�))

where the �rst term can be controlled via Gronwall's Lemma. At last, for T8, using a Taylor
expansion and proceeding similarly to(79), there follows

T8 �
� 3

� s�T

�
kL e
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+
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L 2 ( t n � 1 ;t n ;L 2 (�)) :

Hence, from (29), we infer that

T8 �
�
T

� � 
2

� 1
3

k� n
h k2

e +
� 2�

1
2

T
k _� n

h k2
v +

T � 4

2� s�
kL e@tt d + L v @tt

_dk2
L 2 ( t n � 1 ;t n ;L 2 (�)) ;

where the �rst two terms are controlled as in (80), via Gronwall's Lemma and the left-hand side
of (74), respectively.

In summary, the estimate (66) follows by inserting the above bounds into(74), using Korn's
inequality, summing overm = 3 ; : : : ; n, and applying Gronwall's Lemma. The remaining terms,
corresponding to the initialization step, are bounded via(65) with n = 2 and T = 2 � .
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