Nonlinear Filtering with Transfer Operator

Abstract : This paper presents a new nonlinear filtering algorithm that is shown to outperform state-of-the-art particle filters with resampling. Starting from the Itˆo stochastic differential equation, the proposed algorithm harnesses Karhunen- Lo'eve expansion to derive an approximate non-autonomous dynamical system, for which transfer operator based density computation can be performed in exact arithmetic. It is proved that the algorithm is asymptotically consistent in mean-square sense. Numerical results demonstrate that explicitly accounting prior dynamics entail significant performance improvement for nonlinear non-Gaussian estimation problems with infrequent measurement updates, as compared to the performance of particle filters.
Type de document :
Communication dans un congrès
IEEE American Control Conference, Jun 2013, Washington, D.C., United States. IEEE, pp.3069-3074, 2013, 〈10.1109/ACC.2013.6580302〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00785159
Contributeur : Parikshit Dutta <>
Soumis le : mardi 5 février 2013 - 15:04:48
Dernière modification le : mercredi 11 avril 2018 - 01:59:16
Document(s) archivé(s) le : lundi 17 juin 2013 - 19:26:10

Fichier

KLPFfilterACC2013Final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Parikshit Dutta, Abhishek Halder, Raktim Bhattacharya. Nonlinear Filtering with Transfer Operator. IEEE American Control Conference, Jun 2013, Washington, D.C., United States. IEEE, pp.3069-3074, 2013, 〈10.1109/ACC.2013.6580302〉. 〈hal-00785159〉

Partager

Métriques

Consultations de la notice

433

Téléchargements de fichiers

273