N

N

Hypergraph Partitioning
Umit V. Catalyurek, Bora Ucar, Cevdet Aykanat

» To cite this version:

Umit V. Catalyurek, Bora Ucgar, Cevdet Aykanat. Hypergraph Partitioning. David A. Padua. Ency-
clopedia of Parallel Computing, Springer, pp.871-881, 2011. hal-00786552

HAL Id: hal-00786552
https://inria.hal.science/hal-00786552
Submitted on 9 Nov 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/hal-00786552
https://hal.archives-ouvertes.fr

Hypergraph Partitioning

Umit V. Catalyiirek* Bora Ucar' Cevdet Aykanat?

[The original version of this document appears in
Encyclopedia of Parallel Computing, David A. Padua (ed.), Springer 2011, pp. 871-881.

Slight updates in Nov 2019. |

1 DEFINITION

Hypergraphs are generalization of graphs where each edge (hyperedge) can connect more than
two vertices. In simple terms, the hypergraph partitioning problem can be defined as the task of
dividing the vertices of hypergraph into two or more roughly equal sized parts such that a cost
function on the hyperedges connecting vertices in different parts is minimized.

2 DISCUSSION

2.1 Introduction

During the last decade, hypergraph-based models gained wide acceptance in the parallel comput-
ing community for modeling various problems. By providing natural way to represent multi-way
interactions and unsymmetric dependencies, hypergraph can be used to elegantly model complex
computational structures in parallel computing. Here, some concrete applications will be presented
to show how hypergraph models can be used to cast a suitable scientific problem as an hypergraph
partitioning problem. Some insights and general guidelines for using hypergraph partitioning meth-
ods in some general classes of problems are also given.

2.2 Formal Definition of Hypergraph Partitioning

A hypergraph H=(V, ) is defined as a set of vertices (cells) V and a set of nets (hyperedges) N
among those vertices. Every net n € A is a subset of vertices, i.e., n CV. The vertices in a net n
are called its pins. The size of a net is equal to the number of its pins. The degree of a vertex is
equal to the number of nets it is connected to. Graph is a special instance of hypergraph such that
each net has exactly two pins. Vertices can be associated with weights, denoted with w[-], and nets
can be associated with costs, denoted with ¢[-].

I={V1,Va,...,Vk} is a K-way partition of H if the following conditions hold:
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e cach part Vj is a nonempty subset of V, i.e., Vi, CV and Vi # 0 for 1 <k < K,
e parts are pairwise disjoint, i.e., Vi NVy =0 forall 1 <k </ < K

e union of K parts is equal to V, i.e., Uszl Vi=V.

In a partition IT of H, a net that has at least one pin (vertex) in a part is said to connect that
part. Connectivity A, of a net n denotes the number of parts connected by n. A net n is said to
be cut (external) if it connects more than one part (i.e., A\, > 1), and uncut (internal) otherwise
(i.e., A, = 1). A partition is said to be balanced if each part Vj satisfies the balance criterion:

Wi < Wapg(1+¢), for k=1,2,... K. (1)

In (1), weight W}, of a part Vj is defined as the sum of the weights of the vertices in that part
(e, Wi =3 ey, w[v]), Wayg denotes the weight of each part under the perfect load balance
condition (i.e., Wavg = (D _,cp w[v])/K), and € represents the predetermined maximum imbalance
ratio allowed.

The set of external nets of a partition IT is denoted as Ng. There are various [20] cutsize
definitions for representing the cost x(II) of a partition II. Two relevant definitions are:
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In (2), the cutsize is equal to the sum of the costs of the cut nets. In (3), each cut net n contributes
c[n](An,—1) to the cutsize. The cutsize metrics given in (2) and (3) will be referred to here as cut-net
and connectivity metrics, respectively. The hypergraph partitioning problem can be defined as the
task of dividing a hypergraph into two or more parts such that the cutsize is minimized, while a
given balance criterion (1) among part weights is maintained.

A recent variant of the above problem is the multi-constraint hypergraph partitioning [9, 18]
in which each vertex has a vector of weights associated with it. The partitioning objective is the
same as above, and the partitioning constraint is to satisfy a balancing constraint associated with
each weight. Here, w[v,i] denotes the C' weights of a vertex v for i = 1,...,C. Hence, the balance
criterion (1) can be rewritten as

Wii <Waygi(1+¢e)fork=1,...,Kand i=1,...,C. (4)

where the ith weight W}, ; of a part V}, is defined as the sum of the ith weights of the vertices in
that part (i.e., Wy;=>_,cy, wlv,i]), and Wayg; is the average part weight for the ith weight (i.e.,
Wavg,i = (2_pey w[v,i])/K), and € again represents allowed imbalance ratio.

Another variant is the hypergraph partitioning with fized vertices, in which some of the vertices
are fixed in some parts before partitioning. In other words, in this problem, a fized-part function is
provided as an input to the problem. A vertex is said to be free if it is allowed to be in any part
in the final partition, and it is said to be fixed in part k if it is required to be in Vi in the final
partition II.



Yet another variant is multi-objective hypergraph partitioning in which there are several ob-
jectives to be minimized [1, 21]. Specifically, a given net contributes different costs to different
objectives.

2.3 Sparse Matrix Partitioning

One of the most elaborated applications of hypergraph partitioning (HP) method in the parallel
scientific computing domain is parallelization of sparse matrix-vector multiply (SpMxV) operation.
Repeated matrix-vector and matrix-transpose-vector multiplies that involve the same large, sparse
matrix are the kernel operations in various iterative algorithms involving sparse linear systems.
Such iterative algorithms include solvers for linear systems, eigenvalues, and linear programs. The
pervasive use of such solvers motivates the development of HP models and methods for efficient
parallelization of SpMxV operations.

Before discussing the HP models and methods for parallelizing SpMxV operations, it is favorable
to discuss parallel algorithms for SpMxV. Consider the matrix-vector multiply of the form y <+ A x,
where the nonzeros of the sparse matrix A as well as the entries of the input and output vectors x
and y are partitioned arbitrarily among the processors. Let map(-) denote the nonzero-to-processor
and vector-entry-to-processor assignments induced by this partitioning. A parallel algorithm would
execute the following steps at each processor P.

1. Send the local input-vector entries x;, for all j with map(z;) = Py, to those processors that
have at least one nonzero in column j.

2. Compute the scalar products a;; z; for the local nonzeros, i.e., the nonzeros for which map(a;;) =
Pi, and accumulate the results yf for the same row index 1.

3. Send local nonzero partial results y¥ to the processor map(y;)# Py, for all nonzero y¥.

4. Add the partial yf results received to compute the final results y; = ny for each i with
map(y;) = Pg.

As seen in the algorithm, it is necessary to have partitions on the matrix A and the input-
and output-vectors z and y of the matrix-vector multiply operation. Finding a partition on the
vectors x and y is referred to as the vector partitioning operation, and it can be performed in three
different ways: by decoding the partition given on A; in a post-processing step using the partition
on the matrix; or explicitly partitioning the vectors during partitioning the matrix. In any of these
cases, the vector partitioning for matrix-vector operations is called symmetric if x and y have the
same partition, and non-symmetric otherwise. A vector partitioning is said to be consistent, if each
vector entry is assigned to a processor that has at least one nonzero in the respective row or column
of the matrix. The consistency is easy to achieve for the nonsymmetric vector partitioning; x; can
be assigned to any of the processors that has a nonzero in the column j, and y; can be assigned to
any of the processors that has a nonzero in the row 7. If a symmetric vector partitioning is sought,
then special care must be taken to assign a pair of matching input- and output-vector entries, e.g.,
x; and y;, to a processor having nonzeros in both row and column . In order to have such a
processor for all vector entry pairs, the sparsity pattern of the matrix A can be modified to have a
zero-free diagonal. In such cases, a consistent vector partition is guaranteed to exist, because the
processors that own the diagonal entries can also own the corresponding input- and output-vector
entries; x; and y; can be assigned to the processor that holds the diagonal entry a;;.



In order to achieve an efficient parallelism, the processors should have balanced computational
load and the inter-processor communication cost should have been minimized. In order to have
balanced computational load, it suffices to have almost equal number of nonzeros per processor
so that each processor will perform almost equal number of scalar products, e.g., a;;z;, in any
given parallel system. The communication cost, however, has many components (the total volume
of messages, the total number of messages, maximum volume/number of messages in a single
processor, either in terms of sends or receives or both) each of which can be of utmost importance
for a given matrix in a given parallel system. Although there are alternatives and more elaborate
proposals, the most common communication cost metric addressed in hypergraph partitioning-
based methods is the total volume of communication.

Loosely speaking, hypergraph partitioning-based methods for efficient parallelization of SpMxV
model the data of the SpMxV (i.e., matrix and vector entries) with the vertices of a hypergraph.
A partition on the vertices of the hypergraph is then interpreted in such a way that the data
corresponding to a set of vertices in a part are assigned to a single processor. More accurately, there
are two classes of hypergraph partitioning-based methods to parallelizing SpMxV. The methods in
the first class build a hypergraph model representing the data and invoke a partitioning heuristic
on the so-built hypergraph. The methods in this class can be said to be models rather than being
algorithms. There are currently three main hypergraph models for representing sparse matrices,
and hence there are three methods in this first class. These three main models are described below
in the next section. Essential property of these models is that the cutsize (3) of any given partition
is equal to the total communication volume to be incurred under a consistent vector partitioning
when the matrix elements are distributed according to the vertex partition. The methods in the
second class follow a mix-and-match approach and use the three main models, perhaps, along
with multi-constraint and fixed-vertex variations in an algorithmic form. There are a number of
methods in this second class, and one can develop many others according to application needs and
matrix characteristics. Three common methods belonging to this class are described later, after the
three main models. The main property of these algorithms is that the sum of the cutsizes of each
application of hypergraph partitioning amounts to the total communication volume to be incurred
under a consistent vector partitioning (currently these methods compute a vector partitioning after
having found a matrix partitioning) when the matrix elements are distributed according to the
vertex partitions found at the end.

Three main models for matrix partitioning

In the column-net hypergraph model [11] used for 1D rowwise partitioning, an M x N matrix A
with Z nonzeros is represented as a unit-cost hypergraph Hr = (Vg, N¢) with |Vg| = M vertices,
INc| = N nets, and Z pins. In Hg, there exists one vertex v; € Vg for each row i of matrix A.
Weight wlv;] of a vertex v; is equal to the number of nonzeros in row i. The name of the model
comes from the fact that columns are represented as nets. That is, there exists one unit-cost net
nj € N¢ for each column j of matrix A. Net n; connects the vertices corresponding to the rows
that have a nonzero in column j. That is, v; €n; if and only if a;; #0.

In the row-net hypergraph model [11] used for 1D columnwise partitioning, an M x N matrix A
with Z nonzeros is represented as a unit-cost hypergraph He = (Ve, Ng) with |Veo| = N vertices,
|INr|=M nets, and Z pins. In Hc, there exists one vertex v; € V¢ for each column j of matrix A.
Weight w(v;] of a vertex v; € Vg is equal to the number of nonzeros in column j. The name of the
model comes from the fact that rows are represented as nets. That is, there exists one unit-cost



JAGGED-LIKE-PARTITIONING(A, K = P X Q,¢€1,€2)
Input: a matrix A, the number of processors K = P x @, and the imbalance ratios 1, 5.
Output: map(a;;) for all a;; # 0 and totalVolume.
: Hr = (Vr,N¢) + columnNet(A)
Iz ={R1,...,Rp} « partition(Hg, P,e1) > rowwise partitioning of A
expand Volume« cutsize(Ilg)
foldVolume<+ 0
for p=1to P do
Rp = {TiZUi ERP}
A, +— A(R,,:) > submatrix indexed by rows R,
Hy = (Vp, Np) < rowNet(A,)
IS = {C},...,C¥} « partition(H,, Q,e2) > columnwise partitioning of A,
foldVolume<foldVolume +cutsize(ILS)
for all a;; # 0 of A, do
map(ai;) = Ppq < c; €CJ
: return totalVolume<—expandVolume+foldVolume

—_ = =
WLy o

Figure 1: Jagged-like partitioning.

net n; € Ny for each row i of matrix A. Net n; C Ve connects the vertices corresponding to the
columns that have a nonzero in row i. That is, v; €n; if and only if a;; #0.

In the column-row-net hypergraph model, otherwise known as the fine-grain model [13], used for
2D nonzero-based fine-grain partitioning, an M x N matrix A with Z nonzeros is represented as
a unit-weight and unit-cost hypergraph Hz = (Vz, Nge) with |Vz| = Z vertices, |Nge|= M+ N
nets and 27 pins. In V7, there exists one unit-weight vertex v;; for each nonzero a;; of matrix A.
The name of the model comes from the fact that both rows and columns are represented as nets.
That is, in Nzc, there exist one unit-cost row-net r; for each row 7 of matrix A and one unit-cost
column-net ¢; for each column j of matrix A. The row-net 7; connects the vertices corresponding
to the nonzeros in row 7 of matrix A, and the column-net ¢; connects the vertices corresponding
to the nonzeros in column j of matrix A. That is, v;; €r; and v;; € ¢; if and only if a;; #0. Note
that each vertex v;; is in exactly two nets.

Some other methods for matrix partitioning

The jagged-like partitioning method [16] uses the row-net and column-net hypergraph models. It is
an algorithm with two steps, in which each step models either the expand phase or the fold phase
of the parallel SpMxV algorithm. Therefore, there are two alternative schemes for this partitioning
method. The one which models the expands in the first step and the folds in the second step is
described below.

Given an M x N matrix A and the number K of processors organized as a P x () mesh, the
jagged-like partitioning model proceeds as shown in Fig. 1. The algorithm has two main steps.
First, A is partitioned rowwise into P parts using the column-net hypergraph model Hz (lines 1
and 2 of Fig. 1). Consider a P-way partition IIg of Hg. From the partition IIz, one obtains P
submatrices A, for p = 1,..., P each having roughly equal number of nonzeros. For each p, the
rows of the submatrix A, correspond to the vertices in R, (lines 6 and 7 of Fig. 1). The submatrix
A, is assigned to the pth row of the processor mesh. Second, each submatrix A, for 1 <p < P is
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Figure 2: First step of 4-way jagged-like partitioning of a matrix; (a) 2-way partitioning IIz of
column-net hypergraph representation Hr of A, (b) 2-way rowwise partitioning of matrix A
obtained by permuting A according to the partitioning induced by II; the nonzeros in the same
partition are shown with the same shape and color; the deviation of the minimum and maximum
numbers of nonzeros of a part from the average are displayed as an interval imbal; vol denotes the
number of nonzeros and the total communication volume.

independently partitioned columnwise into @) parts using the row-net hypergraph H, (lines 8 and 9
of Fig. 1). The nonzeros in the ith row of A are partitioned among the @) processors in a row of the
processor mesh. In particular, if v; € R, at the end of line 2 of the algorithm, then the nonzeros in
the ith row of A are partitioned among the processors in the pth row of the processor mesh. After
partitioning the submatrix A, columnwise, the map array contains the partition information for
the nonzeros residing in A,,.

For each ¢, the volume of communication required to fold the vector entry y; is accurately
represented as a part of “foldVolume” in the algorithm. For each j, the volume of communica-
tion regarding the vector entry x; is accurately represented as a part of “expandVolume” in the
algorithm.

Figure 2(a) illustrates the column-net representation of a sample matrix to be partitioned among
the processors of a 2 x 2 mesh. For simplicity of the presentation, the vertices and the nets of the
hypergraphs are labeled with letters “r” and “c” to denote the rows and columns of the matrix. The
matrix is first partitioned rowwise into 2 parts, and each part is assigned to a row of the processor
mesh, namely to processors {P;, P»} and {Ps, Py}. The resulting permuted matrix is displayed in
Fig. 2(b). Figure 3(a) displays the two row-net hypergraphs corresponding to each submatrix A,
for p = 1,2. Each hypergraph is partitioned independently; sample partitions of these hypergraphs
are also presented in this figure. As seen in the final symmetric permutation in Fig. 3(b), the
nonzeros of columns 2 and 5 are assigned different parts, resulting Ps to communicate with both
P; and P, in the expand phase.

The checkerboard partitioning method [14] is also a two-step method, in which each step models
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Figure 3: Second step of 4-way jagged-like partitioning: (a) Row-net representations of submatrices
of A and 2-way partitionings, (b) Final permuted matrix; the nonzeros in the same partition are
shown with the same shape and color; the deviation of the minimum and maximum numbers
of nonzeros of a part from the average are displayed as an interval imbal; nnz and vol denote,
respectively, the number of nonzeros and the total communication volume.

either the expand phase or the fold phase of the parallel SpMxV. Similar to jagged-like partitioning,
there are two alternative schemes for this partitioning method. The one which models the expands
in the first step and the folds in the second step is presented below.

Given an M x N matrix A and the number K of processors organized as a P X () mesh, the
checkerboard partitioning method proceeds as shown in Fig. 4. First, A is partitioned rowwise into
P parts using the column-net model (lines 1 and 2 of Fig. 4), producing I[Ig = {R1,...,Rp}. Note
that this first step is exactly the same as that of the jagged-like partitioning. In the second step,
the matrix A is partitioned columnwise into () parts by using the multi-constraint partitioning
to obtain II¢ = {C1,...,Cq}. In comparison to the jagged-like method, in this second step the
whole matrix A is partitioned (lines 4 and 8 of Fig. 4), not the submatrices defined by IIz. The
rowwise and columnwise partitions Iz and Il¢ together define a 2D partition on the matrix A,
where map(ai;) = Ppq < r; € R, and ¢ € Cy.

In order to achieve a load balance among processors, a multi-constraint partitioning formulation
is used (line 8 of the algorithm). Each vertex v; of H¢ is assigned P weights: w[i,p], for p =
1,...,P. Here, wi,p] is equal to the number of nonzeros of column ¢; in rows R,, (line 7 of Fig. 4).
Consider a -way partitioning of H¢e with P constraints using the vertex weight definition above.
Maintaining the P balance constraints (4) corresponds to maintaining computational load balance
on the processors of each row of the processor mesh.

Establishing the equivalence between the total communication volume and the sum of the
cutsizes of the two partitions is fairly straightforward. The volume of communication for the fold
operations corresponds exactly to the cutsize(Ilg). The volume of communication for the expand



CHECKERBOARD-PARTITIONING(A, K = P X Q,1,¢32)
Input: a matrix A, the number of processors K = P x @, and the imbalance ratios 1, 5.
Output: map(a,;) for all a;; # 0 and totalVolume.

— = =

Hr = (Vr,N¢) + columnNet(A)
g ={R1,...,Rp} + partition(Hr, P,c1) > rowwise partitioning of A
expand Volume« cutsize(Ilg)
He = Ve, Ng) < rowNet(A)
for j =1 to |V¢| do

for p=1to P do

wjp ={n; NRp}|

IIe = {C1,...,Cq} < MCPartition(Hc¢, Q, w,e2) > columnwise partitioning of A
foldVolume«— cutsize(Il¢)
for all a;; # 0 of A do

map(a;j) = Ppq < 1 € Rp and ¢ € Cy

: totalVolume<—expand Volume+fold Volume

Figure 5: Second step of 4-way checkerboard partitioning: (a) 2-way multi-constraint partitioning
I1¢ of row-net hypergraph representation H¢ of A, (b) Final checkerboard partitioning of A induced
by (IIg,Il¢); the nonzeros in the same partition are shown with the same shape and color; the
deviation of the minimum and maximum numbers of nonzeros of a part from the average are
displayed as an interval imbal; nnz and vol denote, respectively, the number of nonzeros and the

Figure 4: Checkerboard partitioning.
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ORB-PARTITIONING (A, dim, K'min, Kmazx, €)
Input: a matrix A, the part numbers Kmin (at initial call, it is equal to 1) and Kmax (at initial call it is
equal to K, the desired number of parts), and the imbalance ratio e.
Output: map(a;;) for all a;; #0 .
1: if Kmax — Kmin > 0 then

2:  mid + (Kmax — Kmin +1)/2
3: II= (A1, As) +Dbisect(A,dim,e) > Partition A along dim into two, producing two submatrices
4:  totalVolume<—totalVolume +cutsize(II)
> Recursively partition each submatrix along the orthogonal direction
5: mapl(A;) + ORB-PARTITIONING(A 1, —dim, Kmin, Kmin + mid — 1,¢)
6:  map2(As) < ORB-PARTITIONING(Ay — dim, Kmin + mid, Kmax,€)
7. map(A) < mapl(A1) Umap2(As)
8: else
9:  map(A) < Kmin

Figure 6: Orthogonal recursive bisection (ORB)

operations corresponds exactly to the cutsize(Ilg).

Figure 5(b) displays the 2 x 2 checkerboard partition induced by (IIg,Il¢). Here, Iz is a
rowwise 2-way partition giving the same figure as shown in Fig. 2, and Il¢ is a 2-way multi-
constraint partition Il¢ of the row-net hypergraph model H¢ of A shown in Fig. 5(a). In Fig. 5(a),
wl]9,1]=0 and w[9, 2] =4 for internal column cy of row stripe Ro, whereas w[5,1]=2 and w[5,2]=4
for external column cs.

Another common method of matrix partitioning is the orthogonal recursive bisection (ORB) [27].
In this approach, the matrix is first partitioned rowwise into two submatrices using the column-net
hypergraph model, and then each part is further partitioned columnwise into two parts using the
row-net hypergraph model. The process is continued recursively until the desired number of parts
is obtained. The algorithm is shown in Fig. 6. In this algorithm, dim represents either rowwise or
columnwise partitioning, where —dim switches the partitioning dimension.

In the ORB method shown above, the step bisect(A,dim,e) corresponds to partitioning the
given matrix either along the rows or columns with, respectively, the column-net or the row-
net hypergraph models into two. The total sum of the cutsizes (3) of each each bisection step
corresponds to the total communication volume. It is possible to dynamically adjust the € at each
recursive call by allowing larger imbalance ratio for the recursive call on the submatrix A; or As.

2.4 Some other applications of hypergraph partitioning

As said before, the initial motivations for hypergraph models were accurate modeling of the nonzero
structure of unsymmetric and rectangular sparse matrices to minimize communication volume
for iterative solvers. There are other applications that can make use of hypergraph partitioning
formulation. Here, a brief overview of general classes of applications is given along with the names
of some specific problems. Further application classes are given in bibliographic notes.

Parallel reduction or aggregation operations form a significant class of such applications, in-
cluding the MapReduce model. The reduction operation consists of computing M output elements
from N input elements. An output element may depend on multiple input elements, and an input
element may contribute to multiple output elements. Assume that the operation on which reduc-



tion is performed is commutative and associative. Then, the inherent computational structure can
be represented with an M x N dependency matrix, where each row and column of the matrix
represents an output element and an input element, respectively. For an input element x; and an
output element y;, if y; depends on z;, a;; is set to 1 (otherwise zero). Using this representation,
the problem of partitioning the workload for the reduction operation is equivalent to the problem
of partitioning the dependency matrix for efficient SpMxV.

In some other reduction problems, the input and output elements may be pre-assigned to
parts. The proposed hypergraph model can be accommodated to those problems by adding K
part vertices and connecting those vertices to the nets which correspond to the pre-assigned input
and output elements. Obviously, those part vertices must be fixed to the corresponding parts
during the partitioning. Since the required property is already included in the existing hypergraph
partitioners [6, 12, 19], this does not add extra complexity to the partitioning methods.

Tterative methods for solving linear systems usually employ preconditioning techniques. Roughly
speaking, preconditioning techniques modify the given linear system to accelerate convergence. Ap-
plications of explicit preconditioners in the form of approximate inverses or factored approximate
inverses are amenable to parallelization. Because, these techniques require SpMxV operations with
the approximate inverse or factors of the approximate inverse at each step. In other words, pre-
conditioned iterative methods perform SpMxV operations with both coefficient and preconditioner
matrices in a step. Therefore, parallelizing a full step of these methods requires the coefficient and
preconditioner matrices to be well partitioned, e.g., processors’ loads are balanced and communi-
cation costs are low in both multiply operations. To meet this requirement, the coefficient and
preconditioner matrices should be partitioned simultaneously. One can accomplish such a simulta-
neous partitioning by building a single hypergraph and then partitioning that hypergraph. Roughly
speaking, one follows a four-step approach: (i) build a hypergraph for each matrix, (ii) determine
which vertices of the two hypergraphs need to be in the same part (according to the computations
forming the iterative method), (iii) amalgamate those vertices coming from different hypergraphs,
(iv) if the computations represented by the two hypergraphs of the first step are separated by
synchronization points then assign multiple weights to vertices (the weights of the vertices of the
hypergraphs of the first step are kept), otherwise assign a single weight to vertices (the weights of
the vertices of the hypergraphs of the first step are summed up for each amalgamation).

The computational structure of the preconditioned iterative methods is similar to that of a
more general class of scientific computations including multi-phase, multi-physics, and multi-mesh
simulations.

In multi-phase simulations, there are a number of computational phases separated by global
synchronization points. The existence of the global synchronizations necessitates each phase to be
load balanced individually. Multi-constraint formulation of hypergraph partitioning can be used to
achieve this goal.

In multi-physics simulations, a variety of materials and processes are analyzed using different
physics procedures. In these types of simulations, computational as well as the memory require-
ments are not uniform across the mesh. For scalability issues, processor loads should be balanced in
terms of these two components. The multi-constraint partitioning framework also addresses these
problems.

In multi-mesh simulations, a number of grids with different discretization schemes and with
arbitrary overlaps are used. The existence of overlapping grid points necessitates a simultaneous
partitioning of the grids. Such a simultaneous partitioning scheme should balance the computational
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loads of the processors and minimize the communication cost due to interactions within a grid
as well as the interactions among different grids. With a particular transformation (the vertex
amalgamation operation, also mentioned above), hypergraphs can be used to model the interactions
between different grids. With the use of multi-constraint formulation, the partitioning problem in
the multi-mesh computations can also be formulated as a hypergraph partitioning problem.

In obtaining partitions for two or more computation phases interleaved with synchronization
points, the hypergraph models lead to the minimization of the overall sum of the total volume
of communication in all phases (assuming that a single hypergraph is built as suggested in the
previous paragraphs). In some sophisticated simulations, the magnitude of the interactions in one
phase may be different than that of the interactions in another one. In such settings, minimizing the
total volume of communication in each phase separately may be advantageous. This problem can
be formulated as a multi-objective hypergraph partitioning problem on the so-built hypergraphs.

There are certain limitations in applying hypergraph partitioning to the multi-phase, multi-
physics, and multi-mesh-like computations. The dependencies must remain the same throughout
the computations, otherwise the cutsize may not represent the communication volume requirements
as precisely as before. The weights assigned to the vertices, for load balancing issues, should be
static and available prior to the partitioning; the hypergraph models cannot be used as naturally
for applications whose computational requirements vary drastically in time. If, however, the com-
putational requirements change gradually in time, then the models can be used to re-partition the
load at certain time intervals (while also minimizing the redistribution or migration costs associated
with the new partition).

Ordering methods are quite common techniques to permute matrices in special forms in order
to reduce the memory and running time requirements, as well as to achieve increased parallelism
in direct methods (such as LU and Cholesky decompositions) used for solving systems of linear
equations. Nested-dissection is a well-known ordering method that has been used quite efficiently
and successfully. In the current state-of-the-art variations of the nested-dissection approach, a
matrix is symmetrically permuted with a permutation matrix P into doubly bordered block diagonal
form

A11 AlS
Ago Aog
App = PAPT S
Axk Aks
| As1 As2 - Askg  Ass |

where the nonzeros are only in the marked blocks (the blocks on the diagonal and the row and
column borders). The aim in such a permutation is to have reduced numbers of rows/columns
in the borders and to have equal sized square blocks in the diagonal. One way to achieve such a
permutation when A has symmetric pattern is as follows. Suppose a matrix B is given (if not, it
is possible to find one) where the sparsity pattern of BTB equals to that of A (here arithmetic
cancellations are ignored). Then, one can permute B nonsymmetrically into the singly bordered

form
B BlS

By — QBP” Baa Bas
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so that BEBBSB = PAPT; that is one can use the column permutation of B resulting in Bgp to
obtain a symmetric permutation for A which results in A pg. Clearly, the column dimension of By
will be the size of the square matrix Ay and the number of rows and columns in the border will be
equal to the number of columns in the column border of Bgg. One can achieve such a permutation
of B by partitioning the column-net model of B while reducing the cutsize according to the cut-net
metric (2), with unit net costs, to obtain the permutation P as follows. First, the permutation Q
is defined to be able to define P. Permute all rows corresponding to the vertices in part k before
those in a part ¢, for 1 < k < £ < K. Then, permute all columns corresponding to the nets that
are internal to a part k before those that are internal to a part ¢, for 1 < k < ¢ < K, yielding the
diagonal blocks, and then permute all columns corresponding to the cut nets to the end, yielding
the column border (the order of column defining a diagonal block). Clearly the correspondence
between the size of the column border of Bgp and the doubly border of App is exact, and hence
the cutsize according to the cut-net metric is an exact measure. The requirement to have almost
equal sized square blocks Ay, decoded as the requirement that each part should have an almost
equal number of internal nets in the partition of the column-net model of B. Although such a
requirement is neither the objective nor the constraint of the hypergraph partitioning problem, the
common hypergraph-partitioning heuristics easily accommodate such requirements.

3 RELATED ENTRIES

PaToH

Graph partitioning

Parallel graph algorithms

Sparse matrix algorithms

Linear algebra

Preconditions and sparse iterative algorithms
Data distribution

BIBLIOGRAPHIC NOTES AND FURTHER READING

The first use of the hypergraph partitioning methods for efficient parallel sparse matrix-vector
multiply operations is discussed by Catalyiirek and Aykanat [10]. A more comprehensive study
[11] describes the use of the row-net and column-net hypergraph models in 1D sparse matrix
partitioning. There are different views and alternatives on vector partitioning [5, 22, 24].

A fair treatment of parallel sparse matrix-vector multiplication, analysis and investigations on
certain matrix types along with the use of hypergraph partitioning is given by Bisseling [4, Chapter
4]. Further analysis of hypergraph partitioning on some model problems is given by Ucar and
Catalytirek [25].

Hypergraph partitioning schemes for preconditioned iterative methods are given by Ucar and
Aykanat [23], where vertex amalgamation and multi-constraint weighting to represent different
phases of computations are given. Discussions on application of such methodology for multi-phase,
multi-physics, and multi-mesh simulations are also included in the same paper.

Some different methods for sparse matrix partitioning using hypergraphs are presented by Ucar
et al. [26], including jagged-like and checkerboard partitioning methods, and by Vastenhouw and
Bisseling [27], the orthogonal recursive bisection approach. A recipe to choose a partitioning method
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for the objective of the communication volume reduction for a given matrix is given by Catalytiirek
et al. [16].

The use of hypergraph models for permuting matrices into special forms such as singly bordered
block-diagonal form is presented by Aykanat et al. [3]. This permutation can be leveraged to develop
hypergraph partitioning-based symmetric [9, 15] and nonsymmetric [17] nested-dissection orderings.

The standard hypergraph partitioning and the hypergraph partitioning with fixed vertices for-
mulation, respectively, is used for static and dynamic load balancing for some scientific applica-
tions [7, 8].

Some other applications of hypergraph partitioning are briefly summarized by Aykanat et al. [2].
These include image-space parallel direct volume rendering, parallel mixed integer linear program-
ming, data declustering for multi-disk databases, scheduling file-sharing tasks in heterogeneous
master-slave computing environments, and work-stealing scheduling, road network clustering meth-
ods for efficient query processing, pattern-based data clustering, reducing software development and
maintenance costs, processing spatial join operations, and improving locality in memory or cache
performance.
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