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Abstract—This paper studies the problem of self-
organizing heterogeneous LTE systems. We propose a model
that jointly considers several important characteristics of
heterogeneous LTE system, including the usage of or-
thogonal frequency division multiple access (OFDMA), the
frequency-selective fading for each link, the interference
among different links, and the different transmission ca-
pabilities of different types of base stations. We also con-
sider the cost of energy by taking into account the power
consumption, including that for wireless transmission and
that for operation, of base stations and the price of energy.
Based on this model, we aim to propose a distributed
protocol that improves the spectrum efficiency of the system,
which is measured in terms of the weighted proportional
fairness among the throughputs of clients, and reduces
the cost of energy. We identify that there are several im-
portant components involved in this problem. We propose
distributed strategies for each of these components. Each
of the proposed strategies requires small computational
and communicational overheads. Moreover, the interactions
between components are also considered in the proposed
strategies. Hence, these strategies result in a solution that
jointly considers all factors of heterogeneous LTE systems.
Simulation results also show that our proposed strategies
achieve much better performance than existing ones.

Index Terms—Self-organizing networks, LTE, OFDMA, pro-
portional fairness, energy effieincy.

I. INTRODUCTION

With the foreseen exponentially increasing number of
users and traffic in 4G and LTE/LTE-Advanced (LTE-A)
systems [1], existing deployment and practice of cellular
radio networks that strongly rely on highly hierarchical
architectures with centralized control and resource man-
agement becomes economically unsustainable. Network
self-organization and self-optimization are among the key
targets of future cellular networks so as to relax the heavy
demand of human efforts in the network planning and
optimization tasks and to reduce the system’s capital and
operational expenditure (CAPEX/OPEX) [2].

The next-generation mobile networks are expected to
provide a full coverage of broadband wireless service and
support fair and efficient resource utilization with a high
degree of operation autonomy and system intelligence
[3]. In addition, energy efficiency has emerged as an
important concern for future mobile networks. It is ex-
pected that energy consumption by the information and

communications technology (ICT) industry will be rising
at 15 − 20% per year [4], and hence energy bills will
become an important portion of operational expenditure.
To reduce the impacts on both revenue and environment
caused by energy consumption, while providing satisfac-
tory services to customers, a mechanism that jointly im-
proves spectrum and energy efficiency for self-organizing
networks is needed.

In this paper, we study the problem of self-organizing
heterogeneous LTE systems and aim to achieve both spec-
trum and energy efficiency. We propose a generic model
that jointly takes into account the key characteristics of
today’s LTE networks [5], including the usage of orthog-
onal frequency division multiple access (OFDMA) in the
air interface, the nature of frequency-selective fading for
each link, multi-cell multi-link interference occured, and
the different transmission (power) capabilities of different
types of base stations, which could be macro and small
cells [6]. We also consider the cost of energy by taking
into account the power consumption, including that for
wireless transmission and that for the operation of base
stations.

Based on this unified model, we propose a distributed
protocol that improves the spectrum efficiency of the
system, which one can apply weighted proportional fair-
ness among the throughputs of clients, and reduces the
cost of energy. Our protocol consists of four components.
First, each base station needs to make scheduling de-
cisions for its clients. Second, each base station needs
to allocate transmission powers on different frequencies
by considering the influence on the throughputs of its
clients, the interference caused on others, and the cost of
energy. Third, each client needs to choose a suitable base
station to be associated with. Finally, each base station
needs to determine whether to be in active mode and
serve clients, or to be in sleep mode to improve energy
efficiency. We propose an online scheduling policy for
the first component and shows that it achieves globally
optimum performance when the solutions to the other
three components are fixed. We also propose distributed
strategies for the other three components and show that
each of them achieves locally optimal performance under
some mild approximation of the system. We show that



these strategies only require small computational and
communicational overheads, and hence are easily imple-
mentable. Moreover, these strategies take the interactions
of different components into account. Thus, an integrated
solution that applies all these strategies jointly consider
all factors of heterogeneous LTE systems.

We also conduct extensive simulations. Simulation re-
sults verify that each of the proposed strategies improves
system performance. They also show that the integrated
solution achieve much better performance than existing
policies in a large scale heterogeneous network.

The rest of the paper is organized as follows. Section
II summarizes existing work. Section III describes the
system model and problem setup. Section IV presents the
online scheduling policy for the first component. Section V
introduces a distributed heuristic for the second compo-
nent. Section VI discusses both the third and the fourth
components, as they are tightly related. Section VII shows
the simulation results. Finally, Section VIII concludes the
paper.

II. RELATED WORK

There has been some work on self-organized wireless
systems. Chen and Baccelli [7] has proposed a distributed
algorithm for the self optimization of radio resources that
aims to achieve potential delay fairness. Hu et al [8] has
proposed a distributed protocol for load balancing among
base stations. Borst, Markakis, and Saniee [9] studies
the problem of utility maximization for self-organizing
networks for arbitrary utility functions. Lopez-Perez et al
[10], Hou and Gupta [11], and Hou and Chen [12] have
considered the problems of jointly optimizing different
components in self-organizing networks under various
system models. These works do not take energy efficient
into considerations.

On the other hand, techniques for improving cellular
radio energy efficiency have recently attracted much at-
tention. Auer et al [13] has investigated the amount of
power consumptions for various types of base stations.
Mclaughlin et al [14] has discussed various techniques for
improving energy efficiency. Conte et al [15] has proposed
to turn base stations to sleep mode when the network
traffic is small to save energy. Son et al [16], Zhou et
al [17], and Gong, Zhou, and Niu [18] have proposed
various policies of allocating clients so that clients are
mostly allocated to a few base stations. As a result, many
base stations that do not have any clients can be turned to
sleep mode to save energy. However, these studies require
the knowledge of traffic of each client, and cannot be
applied to scenarios where clients’ traffic is elastic. Chen
et al [19] has studied the trade-off between spectrum
efficiency and energy efficiency. Miao et al [20] and Li
et al [21] have provided extensive surveys on energy-
efficient wireless communications. However, they do not
consider the interference and interactions between base

stations, and are hence not applicable to self-organizing
networks.

III. SYSTEM MODEL AND PROBLEM SETUP

Consider a reuse-1 radio system with several base
stations and clients that operate and use LTE OFDMA.
The base stations can be of different types, including
macro, micro, pico, and femto base stations. LTE di-
vides frequency bandwidth into subcarriers, and time into
frames, which are further divided into 20 time slots. The
bandwidth of a subcarrier is 15 kHz while the duration
of a time frame is 10 ms. In this paper, we consider LTE
frequency division duplex (FDD), the downlink transmis-
sion, and resource scheduling. In LTE, a resource block
consists of 12 consecutive subcarriers and one time slot of
duration 0.5 ms. Under the OFDMA, each user can be al-
located any number of resource blocks. However, for each
base station, a resource block cannot be allocated to more
than one user. LTE can thus achieve both time-division
multiplexing and frequency-division multiplexing.

We hereby define M to be the set of base stations, I

to be the set of clients, and Z = F × Q to be set of
resource blocks, where each f ∈ F represents a collection
of 12 consecutive subcarriers and each q ∈ Q represents
a time slot. In the sequel, we use both z ∈ Z and (f, q) to
denote a resource block for the notational convenience.
Note that here we consider reuse-1 systems. However, the
result could be extended to other systems.

We consider the energy consumptions of base stations
by breaking them into two categories: operation power

and transmission power. When a base station has no
clients to serve, the base station can be turned into
sleep mode to save power. On the other hand, when the
base station has some clients associated to it, it needs
to remain in active mode. In addition to transmission
power, a base station in active mode also consumes more
power for computation, cooling, etc, than one in sleep
mode. We call the sum of energy consumption other than
transmission power as the operation power. We denote by
Cm as the difference of operation powers consumed when
base station m ∈ M is in active mode and when it is in
sleep mode.

We denote by Pm,z the amount of transmission power
that a base station m ∈ M assigns on resource block
z. If base station m does not operate in resource block
z, we have Pm,z = 0. The time-average transmission
power consumed base station m can then be expressed as
∑

z∈Z
Pm,z/|Q|. Further, we assume that each base station

m has a fixed power budget Wm for every time slot, and it
is required that

∑

f Pm,(f,q) ≤Wm, for all m and q, which
is also known as the per base station transmit power
constraint. We note that the values of Cm and Wm can
be different from base station to base station, as different
types of base stations may consume different amounts of
operation powers and have different power budgets. For



example, a macro base station has a much larger Cm and
Wm than a femto base station.

Propagation loss and path condition are captured by
the channel gain. Note that in each resource block, one
can consider that the channel gain is usually flat over the
subcarriers given that the channel coherence bandwidth is
greater than 180 kHz [5, Ch.12]. It is also time invariant
in each time slot given that the channel coherence time is
greater than 0.5 ms [5, Ch.23]. However, the channel gain
of a user may change from one resource block to another
in the frequency and time domain. Let Gi,m,z be the chan-
nel gain between base station m and client i on resource
block z. To be more specific, when the base station m
transmits with power Pm,z, the received power at client i
on resource block z is Gi,m,zPm,z. The received power,
Gi,m,zPm,z , of client i is considered to be its received
signal strength if base station m is transmitting data to
client i, and is considered to be interference, otherwise.
Therefore, when base station m is transmitting data to
client i on resource block z, the signal-to-interference-
plus-noise ratio (SINR) of client i on z is expressible as
SINRi,z =

Gi,m,zPm,z

Ni,z+
∑

l 6=m Gi,l,zPl,z
, where Ni,z is the thermal

noise experienced by client i on resource block z. The
throughput of this transmission can then be described by
the Shannon capacity as B log(1 + SINRi,z), where B is
the bandwidth of a resource block.

Each client i is associated with one base station m(i) ∈
M. In each frame, base station m schedules one client
that is associated with m in each of the resource blocks
in the frame. The base station may change the client
scheduled in a particular resource block from frame to
frame. Let φi,m,z be the proportion of frames that client
i is scheduled in resource block z by base station m. To
simplify problem formulation, we assume that Gi,m,z does
not vary over time. We will then discuss in the following
sections how to take channel time variation into account.
The influence of channel fading is also demonstrated by
simulations in Section VII.

Consider that Gi,m,z does not vary over the time, the
overall throughput of client i, which is the sum of its
throughput over all the resource blocks, can hence be
written as:

ri :=
∑

z∈Z
φi,m(i),zB log(1 +

Gi,m,zPm,z

Ni,z+
∑

l 6=m Gi,l,zPl,z
). (1)

In this work, we aim to jointly achieve both spec-
trum efficiency and energy efficiency by considering the
tradeoff between them. For spectrum efficiency, we aim
to achieve weighted proportional fairness among all the
clients when the cost of total power consumption is fixed.
Let wi be the priority weight of client i or user-dependent
priority indicator. The weighted proportional fairness can
be achieved by maximizing

∑

i∈I
wi log ri. On the other

hand, we also aim to minimize the cost of total power
consumption. We denote by ζm as the price of energy
for base station m. We then formulate the problem of

joint spectrum and energy efficiency as the following
optimization problem:

Max
∑

i∈I
wi log ri −

∑

m∈M,z∈Z
ζmPm,z/|Q|

−
∑

m∈M:∃i∈I s.t. m(i)=m ζmCm (2)

s.t.
∑

i:m(i)=m φi,m(i),z = 1, ∀m ∈M, z ∈ Z, (3)
∑

f∈F
Pm,(f,q) ≤Wm, ∀m ∈ M, q ∈ Q, (4)

over m(i) ∈M, ∀i ∈ I, (5)

Pm,z ≥ 0, φi,m(i),z ≥ 0, ∀i,m, z. (6)

There are three terms involved in the objective func-
tion (2). The first term,

∑

i∈I
wi log ri can be called as

the Weighted Proportional Fairness Index, as the system
achieves weighted proportional fairness by maximizing
it. The second term,

∑

m∈M,z∈Z
ζmPm,z/|Q|, is the cost

of power consumption on transmission powers of all
base stations. In the last term, we note that a base
station is only active when it has at least one client,
hence,

∑

m∈M:∃i∈I s.t. m(i)=m ζmCm, is the cost of power

consumption on operation powers of all base stations.
In sum, we aim to maximize {Weighted Proportional
Fairness Index} − {Total cost of power consumption}.
In particular, we note that if any of the clients are not
covered, i.e., ri = 0, for some i, then the value of (2)
is −∞. Therefore, by aiming at maximizing (2), we also
guarantee that all clients are covered.

There are two constraints in the formulation. (3) states
that, for each base station, it can only allocate a resource
block to one client in each frame. However, for a fixed
resource block, the base station may change the client
that it is allocated to from frame to frame. The second
constraint, (4), states that the total amount of power that
a base station allocates on all subcarriers cannot exceed
its power budget. The variables that we are able to control
are listed in (5) and (6), which include the base station
that each client is associated to, m(i), the transmission
power that each base station allocates on each resource
block, Pm,z, and the scheduling decision of each base
station on each resource block, φi,m(i),z . Finally, we note
that a base station only needs to be in active mode when
at least one client is associated with it, and can be in sleep
mode when no clients are associated with it. Therefore,
the decision on whether a base station is in sleep mode
or in active mode is implicitly determined by the choices
of m(i), for all i.

This formulation shows that there are several impor-
tant components involved. In each frame, a base station
needs to decide which client should be scheduled in each
resource block. This essentially determines the values of
φi,m(i),z so as to maximize

∑

i∈I
wi log ri. We call this

component the Scheduling Problem. In each frame, a base
station also needs to decide how much power it should
allocate in each resource block, subject to the constraint
on its power budget. This component is referred as the
Power Control Problem. The Power Control Problem influ-



Fig. 1: Solution overview.

ences both the spectrum efficiency,
∑

i∈I
wi log ri, and the

cost of transmission power,
∑

m∈M,z∈Z
ζmPm,z. Besides,

every client needs to choose an active base station to be
associated with. Base stations also need to decide whether
to be in active mode to serve clients, or to be in sleep
mode to save energy. We denote both the clients’ decisions
on associated base stations and base stations’ decisions
on whether to be in active or sleep mode as the Client

Association Problem, as these two components are tightly
related. Hence, the Client Association Problem influences
both spectrum efficiency and the total cost of operation
power,

∑

m∈M:∃i∈I s.t. m(i)=m ζmCm.

Further, we notice that there is a natural timescale sep-
aration between the three components: The Scheduling
Problem is updated on a per time slot basis. On the other
hand, the Power Control Problem is updated in a slower
timescale. Finally, the Client Association Problem must
only be updated infrequently, as the overheads for clients
to change the associated base stations, and for the base
stations to switch between sleep/active mode are large.
In the following, we first propose an online algorithm
for the Scheduling Problem, given solutions to the Power
Control Problem and the Client Association Problem. We
then propose a heuristic for the Power Control Problem by
considering solutions to the Scheduling Problem. Finally,
we develop a protocol for the Client Association Problem.
The protocol uses the knowledge of the Power Control
Problem as well as the influences on the Scheduling
Problem. Figure 1 illustrates an overview of our approach
and the timescales of different components.

IV. ONLINE ALGORITHM FOR THE SCHEDULING PROBLEM

In this section, we study the Scheduling Problem, given
solutions to the Power Control Problem and the Client
Association Problem, i.e., values of Pm,z and m(i). We
thus define

Hi,m(i),z := B log(1 +
Gi,m(i),zPm(i),z

Ni,z +
∑

l 6=m(i) Gi,l,zPl,z

), (7)

which is the throughput of client i on resource block z
when it is scheduled by base station m(i), to simplify the

notations. With Pm,z and m(i) fixed, solving (2)-(6) is
equivalent to solving the following:

Max
∑

i∈I
wi log ri =

∑

i∈I
wi log(

∑

z∈Z
φi,m(i),zHi,m(i),z)

(8)

s.t.
∑

i:m(i)=m φi,m(i),z = 1, ∀m ∈M, z ∈ Z, (9)

φi,m(i),z ≥ 0, ∀i, z. (10)

One can see that the above optimization problem is
in fact convex and hence can be solved by standard
techniques of convex optimization. To further simplify the
computation overhead, we propose an online schedul-
ing policy for the Scheduling Problem. Let φi,m(i),z [k]
be the proportion of frames that base station m(i) has
scheduled client i for resource block z in the first k − 1
frames. Similarly, let ri[k] =

∑

z∈Z
φi,m(i),z [k]Hi,m(i),z be

the average throughput of client i in the first k frames.
We then have φi,m(i),z [k + 1] = k−1

k
φi,m(i),z [k] +

1
k

, if
client i is scheduled for z in the (k + 1)-th frame, and
φi,m(i),z [k + 1] = k−1

k
φi,m(i),z [k], otherwise.

In our online scheduling policy, the base station sched-
ules the client i that maximizes wiHi,m(i),z/ri[k]. This
is indeed the well-known proportional fair scheduling
[22], and it has been shown that, when the solutions
to the Power Control Problem and the Client Association
Problem are fixed, the online scheduling policy converges
to the optimal solution to the Scheduling Problem.

Theorem 1 ( [22]): Using the above scheduling policy,
the value of lim infk→∞

∑

i∈I
wi log ri[k] achieves the max-

imum of the optimization problem (8)–(10).
Note that in the previous discussions, we have assumed

that the channel gain, Gi,m,z , does not vary over time.
In practice, however, channel gains fluctuate due to fad-
ing. To take fading into account, we let Ĝi,m,z be the

instantaneous time-varying channel gain, and Ĥi,m(i),z

be the instantaneous throughput that client i can get
from resource block z if it is scheduled by base station
m(i). Our scheduling policy can then be easily modified
such that the base station schedules the client with the
largest wiĤi,m(i),z/ri[k] on resource block z. In Section
VII, we show that this modification can further improve
performance.

V. A HEURISTIC FOR THE POWER CONTROL PROBLEM

In this section, we discuss the Power Control Problem,
i.e., how the base stations choose Pm,z so as to solve (2)–
(6).

Obviously, base stations need to know the solution
of the Scheduling Problem {φi,m,z} and the values of
channel gains {Gi,m,z}, in order to choose suitable Pm,z.
To reduce computation and communication overhead and
maintain operational simplicity, the base stations assume
that for all clients i associated with base station m, the
perceived thermal noises are all Nm,z, the channel gains
between them and base station m are all Gm,m,z, and the
channel gains between them and base station l (6= m)



are all Gm,l,z on resource block z. In practice, Nm,z

and Gm,m,z can be set to be the average value of the
noise powers and the average value of the channel gains
between m and its clients, respectively, and Gm,l,z can
be set to be the channel gain between base station m and
base station l on resource block z. Under this assumption,
one can see that the optimal solution to the Scheduling
Problem (8)–(10) is given by: φi,m(i),z = wi∑

j:m(j)=m(i) wj
.

Let wm :=
∑

i:m(i)=m wi be the sum weight of the

clients that are associated with base station m. Under a
fixed solution to the Client Association Problem and the
above approximation to the Scheduling Problem, (2)-(6)
can be rewritten as:

Max
∑

m∈M
wm log

∑

z∈Z
B log(1 +

Gm,m,zPm,z

Nm,z+
∑

l 6=m Gm,l,zPl,z
)

−
∑

m∈M,z∈Z
ζmPm,z/|Q| (11)

s.t.
∑

f∈F
Pm,(f,q) ≤W, ∀m ∈M, q ∈ Q, (12)

Pm,z ≥ 0, ∀i,m, z. (13)

This problem is non-convex and it may be in-
feasible to find the global optimal solution. In-
stead, we propose a distributed heuristic that em-
ploys the gradient method, which converges to a lo-
cal optimum [23]. Let P be the vector consisting
of {Pm,z}, SINRm,z(P ) :=

Gm,m,zPm,z

Nm,z+
∑

l 6=m Gm,l,zPl,z
, and

U(P ) :=
∑

m∈M
wm log[

∑

z∈Z
B log(1 + SINRm,z(P ))] −

∑

m∈M,z∈Z
ζmPm,z/|Q|. We have:

∂U(P )

∂Pm,z

=
wm

∑

y∈Z
log(1 + SINRm,y(P ))

×
Gm,m,z

Nm,z +
∑

l Gm,l,zPl,z

+
∑

o 6=m

wo

∑

y∈Z
log(1 + SINRo,y(P ))

× [
Go,m,z

No,z +
∑

l Go,l,zPl,z

−
Go,m,z

No,z +
∑

l 6=o Go,l,zPl,z

]− ζm/|Q|.

Each base station updates its power periodically. When
base station m updates its power, it sets its power on
resource block (f, q) to be:































[Pm,(f,q) + α ∂U(P )
∂Pm,(f,q)

]+,

if
∑

e[Pm,(e,q) + α ∂U(P )
∂Pm,(e,q)

]+ ≤Wm,

W
[Pm,(f,q)+α

∂U(P )
∂Pm,(f,q)

]+

∑
e[Pm,(e,q)+α

∂U(P )
∂Pm,(e,q)

]+
, otherwise,

(14)

where x+ := max{x, 0} and α is a small constant. Base

station m needs to compute ∂U(P )
∂Pm,z

to update its power

on each resource block. The computation of ∂U(P )
∂Pm,z

can

be further simplified by setting Go,m,z = 0 for all o such
that Go,m,z is small and has little influence on the value of
∂U(P )
∂Pm,z

. Thus, to compute ∂U(P )
∂Pm,z

, base station m exchanges

information with base station o that is physically close to
it so as to know:

• the sum weight of clients associated with o, i.e., wo,
• the channel gain Go,m,z from m to o,
• the sum of interference and noise No,z +

∑

l 6=o Go,l,zPl,z at o,
• the received signal strength Go,o,zPo,z at o, and
• the average total throughput

∑

y∈Z
log(1 +

SINRo,y(P )) in the downlink of base station o,

for all o that Go,m,z is large. In LTE, the above information
can be obtained through periodic channel quality indica-
tor and reference signal reports.

This method is easy to implement and only requires
limited information exchange between neighbor cells. We
assume that the neighbor cell communication takes place
between base stations and is supported by the wired
backhaul network.

VI. A PROTOCOL FOR THE CLIENT ASSOCIATION PROBLEM

In the following, we discuss how to solve the Client
Association Problem, i.e., how each client i should choose
a base station m(i). Our solution consists of two parts:
In the first part, each client i estimates its throughput
when it associates with each base station. The client i
then selfishly chooses the base station that maximizes its
throughput. In the second part, each base station decides
whether to be in active mode or in sleep mode by jointly
considering the effects on spectrum efficiency and energy
consumption.

A. A Selfish Strategy of Clients

We assume that each client i is selfish and would
like to choose a base station m that maximizes its own
throughput when it is associated with m. We make this
assumption under two main reasons. First, this conforms
to the selfish behaviors of clients. Second, in a dense
network, the decision of m(i) by one client i only has
a limited and indirect impact on the overall performance
of other clients.

We define Hi,m,z as in (7), and φ̂i,m,z be the proportion
of frames that base station m would schedule i if i is
associated with m. The client i then selects the base
station m that maximizes r̂i,m :=

∑

z∈Z
φ̂i,m,zHi,m,z.

In practice, client i can only be associated with base
stations that are in active mode and whose Hi,m,z is above
some threshold for some z ∈ Z. To compute r̂i,m for all
such base stations, client i needs to know the values of
Hi,m,z and φ̂i,m,z. Client i assumes that the transmission
powers used by base stations are not influenced much
by its choice, which is true in a dense network. Thus,
client i only needs to know its perceived SINR with each
base station on each resource block to compute Hi,m,z. It

remains for the client i to compute the value of φ̂i,m,z .
We propose two different approaches to compute this
value. In the first approach, which we call the Exact

Simulator (ES), client i first obtains the values of wj

and Hj,m,z for all clients j that are associated with m.
Client i can then simulates the scheduling decisions of



Algorithm 1 Approximate Estimator

1: Sort all resource blocks such that
Hm,1

Hi,m,1
≤

Hm,2

Hi,m,2
≤

Hm,3

Hi,m,3
≤ . . .

2: φ̂i,m,z ← 0, ∀z ∈ Z

3: r̂i,m ← 0, ∀i ∈ I

4: rm ←
∑

z∈Z
Hm,z

5: for z = 1→ |Z| do

6: if
wiHi,m,z

r̂i,m+Hi,m,z
>

wm
−iHm,z

rm−Hm,z
then

7: φ̂i,m,z ← 1
8: r̂i,m ← r̂i,m +Hi,m,z

9: rm ← rm −Hm,z

10: else if
wiHi,m,z

r̂i,m
<

wm
−iHm,z

rm
then

11: Break
12: else

13: φ̂i,m,z ←
rmwiHi,m,z−r̂i,mwm

−iHm,z

(wm
−i+wi)Hi,m,zHm,z

14: r̂i,m ← r̂i,m + φ̂i,m,zHi,m,z

15: rm ← rm − φ̂i,m,zHm,z

16: Break
17: return r̂i,m

base station m by running the online scheduling policy
introduced in Section IV, and obtains the value of φ̂i,m,z

on each resource block z. While this approach offers an
accurate estimation on φ̂i,m,z and r̂i,m, it requires high
computation and communication overhead.

In the second approach, which we call the Approximate

Estimator (AE), client i only obtains the values of wm
−i :=

∑

j:j 6=i,m(j)=m wj , and Hm,z :=
∑

j:m(j)=m φj,m,zHj,m,z,
which is the average throughput of base station m on
resource block z. Client i assumes that, when another
client j is scheduled by base station m on resource block
z, its throughput on z equals the average throughput
Hm,z. Client i can then estimate ri by Algorithm 1. The
complexity of Algorithm 1 is O(|Z|), and therefore this
approach is much more efficient than the Exact Simulator.
Moreover, the following theorem suggests that the Ap-
proximate Simulator provides reasonably good estimates
on the throughput of client i if it is associated with base
station m.

Theorem 2: If for each client j other than i that is
associated m, Hj,m,z = Hm,z, then, under the online
scheduling policy introduced in Section IV, the through-
put of client i equals the value of r̂i,m obtained by
Algorithm 1 when it is also associated with m.

Proof: Please refer to Appendix B for the proof.
After obtaining the value of r̂i,m, client i selects m(i) =

argmaxm r̂i,m and associates with base station m(i).
Moreover, client i reports the estimated rate with m(i),
r̂i,m(i), and the second largest estimated rate among all
base stations, maxm 6=m(i) r̂i,m, to m(i). We define m∗(i) :=
argmaxm 6=m(i) r̂i,m, and hence r̂i,m∗(i) = maxm 6=m(i) r̂i,m.
These values are used for base stations to decide whether

to switch to sleep mode, which is discussed in the follow-
ing section.

In summary, when the Approximate Estimator is ap-
plied, each base station m only needs to periodically
broadcasts a total number of |Z| + 1 values, that is, the
values of wm, from which each client i can compute wm

−i,

and Hm,z for all z ∈ Z. On the other hand, when a client
i decides to be associated with a base station m(i), it only
needs to report two values: r̂i,m(i) and r̂i,m∗(i). Thus, the
communication overhead for the Approximate Estimator
is small.

B. A Distributed Protocol of Base Stations

We now discuss how base stations decide whether to
be in active mode or in sleep mode. The protocol consists
of two parts: one for a base station in active mode to
decide whether to switch to sleep mode, and one for a
base station in sleep mode to decide whether to switch to
active mode.

First, consider a base station m0 that is in ac-
tive mode. Given the solution to the Power Control
Problem, m0 aims to maximize

∑

i:m(i)=m0
wi log ri −

ζm0Cmo
1{m0 is in active mode}, where 1{·} is the indi-

cator function. When m0 is in active mode, it estimates
that ri = r̂i,m(i), which is the estimated throughput that
client i reports to m0 as discussed in the previous section.
Therefore, we have:

∑

i:m(i)=m0

wi log ri − ζm0Cmo
1{m0 is in active mode}

=
∑

i:m(i)=m0

wi log r̂i,m(i) − ζm0Cmo
. (15)

On the other hand, when m0 is in sleep mode, it assumes
that its clients will be associated with the base station
other than m0 that provides the largest throughput, and
the resulting throughput of client i will be r̂i,m∗(i). We
then have:

∑

i:m(i)=m0

wi log ri − ζm0Cmo
1{m0 is in active mode}

=
∑

i:m(i)=m0

wi log r̂i,m∗(i). (16)

The base station m0 simply compares the values of (15)
and of (16). If the latter is larger than the former, m0

switches to sleep mode.

Next, consider a base station m1 that is in sleep mode.
Base station m1 periodically wakes up and broadcasts
beacon messages on all resource blocks, where it uses
equal amounts of power on all resource blocks. Each client
i then measures the SINR from m1 on each resource block
and obtains the values of Hi,m1,z for all z. Each client i
computes r̂i,m1 =

∑

z∈Z
Hi,m1,z, which is the estimated

throughput of i if i is the only client associated with m1.
If r̂i,m1 is larger than ri, the current throughput of client



Algorithm 2 Wakeup Estimator

1: Sort all clients that report to m1 such that
r̂1,m1

r1
w1 ≥

r̂2,m1

r2
w2 ≥ · · · ≥

r̂j,m1

rj
wj

2: S ← NULL
3: ŵm1 ← 0
4: for i = 1→ j do

5: if
r̂i,m1

ri
wi > ŵm1 + wi then

6: S ← S ∪ {i}
7: ŵm1 ← ŵm1 + wi

8: return S, ŵm1

i, client i reports the values of wi, r̂i,m1 , and ri to base
station m1.

Base station m1 needs to estimate the throughput of
clients that will be associated with it when it switches to
active mode. We note that the value of r̂i,m1 is not a good
estimate of the throughput of i when m1 is in active mode
and i associates with m1. Recall that r̂i,m1 is the estimated
throughput of client i when i is the only client associated
with m1. When m1 is in active mode, it is possible that m1

will have more than one clients, and hence the throughput
of i may be much less than r̂i,m1 when i is associated
with m1. To better estimate clients’ throughputs when m1

is in active mode, m1 assumes that frequency-selective
fading is not significant, and the values of Hi,m1,z is the
same for all z when i is fixed. Under this assumption,
our online scheduling policy will result in φi,m1,z = wi

wm1

for all clients that are associated with m1 and z ∈ Z,
where wm1 =

∑

i:m(i)=m1
wi. Base station m1 then runs

Algorithm 2 and estimates that the set S of clients that
will be associated with m1 when m1 switches to active
mode. Hence wm1 is estimated to be ŵm1 , and each client
i in S is estimated to have a throughput of r̂i,m1φi,m1,z =
r̂i,m1

wi

wm1
.

We now discuss the intuitions of Algorithm 2. Let i∗

be the largest value in S, and thus the value of ŵm1 is
last updated in Line 7 of the i∗-th iteration in Algorithm

2. We then have
r̂i∗,m1

ri∗
wi∗ > ŵm1 = wm1 . For each i

in S, we have
r̂i,m1

ri
wi ≥

r̂i∗,m1

ri∗
wi∗ > wm1 , and hence

r̂i,m1

wi

wm1
> ri, that is, client i is estimated to have higher

throughput when it is associated with mi. This justifies
the estimation that client i will leave its current base
station to be associated with m1. On the other hand, for

each client i′ that is not in S, we have
r̂i′,m1

ri′
wi′ ≤ wm1

and r̂i′,m1

wi′

wm1
≤ ri′ , justifying the estimation that i′ will

stay with its current base station and not be associated
with m1. Therefore, Algorithm 2 provides a reasonable
estimation on the set of clients that will be associated
with m1 when m1 switches to active mode. Moreover, the
complexity of Algorithm 2 is only O(j log j), where j is
the number of clients that report to m1.

Finally, base station m1 compares the value of
∑

i∈S wi log(r̂i,m1

wi

wm1
) − ζm1Cm1 against the value

of
∑

i∈S wi log ri. If the former is larger, that is,
∑

i∈S wi[log(r̂i,m1

wi

wm1
)−log ri]−ζm1Cm1 > 0, base station

m1 switches to active mode.

VII. SIMULATION RESULTS

In the following, we present the simulation results.
We first present simulation results on three simple and
small-scale systems. While these systems may be over-
simplified, they provide insights on our solutions for the
components discussed in the paper, namely, the Schedul-
ing Problem, the Power Control Problem, and the Client
Association Problem. We then present simulation results
for a large-scale system.

We consider a reuse-1 LTE-FDD system with a band-
width of 10 MHz, which can accommodate 600 subcarri-
ers [24] and there are 600

12 × 20 = 1000 resource blocks.
Channel gains are derived from the following equation:

PL(d) = 128.1 + 37.6 log10(d) +X + Y, (17)

where PL(d) is the channel gain in dB and d is distance
in km. X and Y represent shadowing and fast fading,
respectively. X is the log-normal shadowing with mean 0
and standard deviation 8 dB. Since X is a slow fading,
we consider that it is time invariant. However, it will vary
in frequency, in every 180 kHz. On the other hand, Y
represents Rayleigh fast fading with a Doppler of 5 Hz.
It also varies in frequency. The thermal noise is randomly
generated in [3.5, 4.5]× 10−15 W.

Auer et al. [13] has investigated the amount of power
needed to operate a base station. It has shown that a
macro base station consumes 75W when it is in sleep
mode, and consumes 130W when it is in active mode.
Therefore, we set the operation power of a macro base
station to be 55W. It has also shown that the power
budget of a macro base station is 20W. Similarly, we set
the operation power and transmission power budget of a
micro base station to be 17W and 6.3W, respectively.

We have implemented the proposed online scheduling
policy, power control, and Approximate Estimator. We
compare our mechanisms against other mechanisms. We
consider two policies for the Scheduling Problem, round-
robin (RR) and the scheduling policy proposed in Section
IV (PF). For the Power Control Problem, we assume that
other mechanisms use the same amount of power on each
resource block. We consider two policies for the Client
Association Problem. One of the policies associate each
client to the closest base station, and is called Default.
The other policy adapts the ones proposed in Son et al
[16] and Zhou et al [17]. In this policy, which we call Son-

Zhou, each client i chooses to be associated with the base
station m that maximizes {Data rate of i when served by
m}×{Number of clients associated m}/{Operation power
of m}. The intuition is that clients prefer to be associated
with base stations with many clients. As a result, some
of the base stations will have very few clients and can be
turned into sleep mode. We assume that a base station is



RR Slow Feedback Fast Feedback
180

185

190

195

200

205

210
P

er
fo

rm
an

ce

Fig. 2: Performance comparison for scheduling.

turned into sleep mode if the total weight of its clients is
below a certain threshold. We have exhaustively evaluated
the performance of Son-Zhou using different thresholds
and found that setting the threshold to be 2 achieves
the best performance under all evaluated price of energy.
Hence, we set the threshold to be 2.

We compare the performance of different mechanisms
by their resulting values of (2), where the throughput of
a client, ri, is measured in kbits/sec. We also evaluate and
present the achieved total weighted throughput, defined
as

∑

i wiri, total power consumption, and/or energy effi-
ciency of each mechanism under various scenarios.

We first consider a system with one macro base station
and 25 clients to demonstrate the performance of our
solution to the Scheduling Problem. Clients are uniformly
placed as a 5× 5 grid, where the distance between adja-
cent clients is 100m. We compare the RR policy against
our PF policy, where we consider both cases when the
base station has instant knowledge of channel gains and
where base stations only have knowledge of long-term
average channel gains, denoted by Fast Feedback and Slow

Feedback, respectively. We set the price of energy, ζm, to
be zero for this system, as we are only interested in the
performance of scheduling policies. Figure 2 and Figure
3 show the simulation results on both the values of (2)
and the total throughput of the system. It is observed that
both Fast Feedback and Slow Feedback achieve more than
50% higher throughput than the RR policy, as they both
use knowledge on channel gains for scheduling decisions.
Fast Feedback has better performance than Slow Feedback
since it takes effects of fast fading into account.

Next, we demonstrate the performance of our solution
to the Power Control Problem. We consider a system
with two macro base stations. Each of these base stations
has two clients associated with it, and the distance be-
tween a client and its associated base station is 50m. We
compare a policy that uses both our scheduling policy
and power control algorithm against one that only uses
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Fig. 3: Throughput comparison for scheduling.

500 1000 1500 2000
105

110

115

Distance between base stations (m)

P
er

fo
rm

an
ce

 

 

With power control
Only scheduling

Fig. 4: Performance comparison for power control.

our scheduling policy and allocates equal power on all
resource blocks. We consider the performance of the two
policies by varying the distance between the two base
stations. We also set the price of energy to be zero for
this system. Simulation results are shown in Figure 4
and Figure 5. It is observed that when the two base
stations are far apart, the two policies achieve similar
performance. However, as the distance between the two
base stations decreases, the performance of the policy
without power control degrades greatly, as it suffers much
from the interference between the two base stations. On
the other hand, by using our power control algorithm,
the two base stations start to operate in disjoint resource
blocks as the distance between them decreases. Hence,
the performance of the policy using power control does
not suffer too much from interference.

We now consider the Client Association Problem. We
consider a system with two macro base stations that
are separated by 500m. There are four clients uniformly
distributed between them. We consider the performance
of our proposed mechanism under various price of energy.
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Fig. 6: System performance under various energy prices.

Simulation results are shown in Figure 6. We can see that
when the price is small, the performance of the system
degrades quickly with price. However, at a price of 0.06,
the performance increases, and then degrades with price,
but with a smaller slope. This is because, at a price of
0.06, our mechanism determines that it is better to shut
down one of the base stations in order to save power
and increase energy efficiency. Figure 7 also shows that
the total power consumption of this system decreases by
about half at a price of 0.06.

Finally, we present our simulation results for a large
scale system. The topology of this system is illustrated in
Figure 8. We consider a 3000m by 3000m area with 9
macro base stations forming a 3 by 3 grid. In addition,
there are 16 micro base stations uniformly distributed in
the area [1000, 3000]× [1000, 3000]. We assume that there
are 81 clients uniformly distributed in the area [0, 3000]×
[0, 3000]. Clients within the area of [0, 1000]×[0, 1000]have
weights wi = 2, while all other clients have weights wi =
1.

Fig. 9 shows the performance comparison between our
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Fig. 7: Power consumption under various energy prices.
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Fig. 8: Topology of the simulation.

proposed and other mechanisms. Fig. 10 compares the
weighted total throughput,

∑

i wiri, and Fig. 11 com-
pares the energy efficiency, defined as (

∑

i wiri)/(total
power consumption), for the various mechanisms. Our
proposed protocol achieves better performance than all
other mechanisms, especially when the price of energy
is high. Further, as the price of energy increases, our
proposed protocol turns some base stations into sleep
mode, which results in smaller weighted total throughput
but improves energy efficiency. Thus, our proposed pro-
tocol can achieve tradeoff between energy efficiency and
spectrum efficiency by choosing suitable price of energy.

VIII. CONCLUSION

In this paper, we propose a distributed protocol for
self-organizing LTE systems that considers both spectrum
efficiency and energy efficiency. This protocol jointly opti-
mizes several important components, including resource
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Fig. 9: Performance comparison under various energy
prices.
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Fig. 10: Total weighted throughput under various energy
prices.

block scheduling, power allocation, client association,
and the decisions of being in active or sleep mode. The
protocol requires small computational and communica-
tional overheads. Further, simulation results show that
our proposed protocol achieves much better performance
than the existing policy.
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APPENDIX A
PROOF OF THEOREM 2

Theorem 1 has shown that the online scheduling
policy in Section IV achieves the optimum solution
to the Scheduling Problem. We claim that, by setting
φi,m,z as that derived in Algorithm 1 and φj,m,z =

wj∑
k 6=i,m(k)=m wk

(1 − φi,m,z), for all j 6= i, m(j) = m, the

resulting ri and {rj |j 6= i,m(j) = m} also achieve the
optimum solution to the Scheduling Problem.

In the proof of Theorem 1, it has been shown that
{φj,m,z|m(j) = m} maximizes

∑

j:m(j)=m wj log rj if and

only if φj,m,z ≥ 0, for all j, z,
∑

j φj,m,z = 1, for all m, z,

and ∂L
∂φj,m,z

=
wjHj,m,z

rj
= maxk:m(k)=m

wkHk,m,z

rk
, for all

j, z such that φj,m,z > 0. By our settings of φj,m,z, the
first two conditions hold, and we only need to verify the
last condition.

Sort all resource blocks such that
Hm,1

Hi,m,1
≤

Hm,2

Hi,m,2
≤

Hm,3

Hi,m,3
≤ . . . , we consider two possible cases: there exists

some z0 such that 0 < φi,m,z0 < 1, and such z0 does not
exist, i.e., φi,m,z ∈ {0, 1} for all z. In the first case, we
have that φi,m,z = 1, for all z < z0, and φi,m,z = 0, for all
z > z0. By setting φj,m,z =

wj∑
k 6=i,m(k)=m wk

(1− φi,m,z), for

all j 6= i, m(j) = m, we have rj =
wj∑

k:m(k)=m,k 6=i wk
rm =

wj

wm
−i
rm. Let r∗i and r∗m be the values of ri and rm in

the z0-th iteration of the for loop in Algorithm 1. As
0 < φi,m,z0 < 1, lines 13–17 are executed in this iteration,
and we have ri = r∗i + φi,m,z0Hi,m,z0 and rm = r∗m −
φi,m,z0Hm,z0 . Moreover, in line 13, the value of φi,m,z0

is chosen so that
wiHi,m,z0

r∗i +φi,m,z0Hi,m,z0
=

wm
−iHm,z0

r∗m−φi,m,z0Hm,z0

.

Therefore,
wiHi,m,z0

ri
=

wm
−iHm,z0

rm
=

wjHm,z0

rj
, for all j such

that m(j) = m and j 6= i. Thus, the last condition holds
for resource block z0. For any resource block z < z0,
Hm,z

Hi,m,z
≤

Hm,z0

Hi,m,z0
. We then have (

wiHi,m,z

ri
)/(

wjHm,z

rj
) ≥

(
wiHi,m,z0

ri
)/(

wjHm,z0

rj
) = 1, and hence

wiHi,m,z

ri
≥

wjHm,z

rj
,

for all j such that m(j) = m and j 6= i. As we set
φj,m,z = 0 for all j 6= i, the last condition holds for
all z < z0. Similarly, for any resource block z > z0,
wiHi,m,z

ri
≤

wjHm,z

rj
, for all j such that m(j) = m and

j 6= i. As we set φi,m,z = 0, the last condition also holds
for all z > z0. In sum, the last condition holds for the case
that there exists some z0 such that 0 < φi,m,z0 < 1.

Next consider the case that φi,m,z ∈ {0, 1} for all z. Let
z1 be the smallest integer so that φi,m,z1 = 0. In the z1-th
iteration of the FOR loop in Algorithm 1, steps 10–11 are

executed, and we have
wiHi,m,z

ri
<

wm
−iHm,z

rm
=

wjHm,z

rj
, for

all j such that m(j) = m and j 6= i. The last condition
then holds for resource block z1. A similar argument as
in the previous paragraph shows that the last condition
holds for all z.


