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Simultaneous Consensus vs Set Agreement

a Message-Passing Sensitive Hierarchy of Agreement Problems

Michel Raynal* ** Julien Stainer**

Abstract: This paper investigates the relation linking the s-simultaneous consensus problem and the k-set agreement

problem. To this end, it first defines the (s, k)-SSA problem which captures jointly both problems: each process

proposes a value, executes s simultaneous instances of the k-set agreement problem, and has to decide a value so

that no more than sk different values are decided. The paper introduces then a new failure detector class denoted

Zs,k, which is made up of two components, one focused on the “shared memory object” that allows the processes to

cooperate, and the other focused on the liveness of (s, k)-SSA algorithms. A novelty of this failure detector lies in the

fact that the definition of its two components are intimately related. Then, the paper presents a Zs,k-based algorithm

that solves the (s, k)-SSA problem, and shows that the “shared memory”-oriented part of Zs,k is necessary to solve the

(s, k)-SSA problem (this generalizes and refines a previous result that showed that the failure detector Σk is necessary

to solve k-set agreement). Finally, the paper investigates the structure of the family of (s, k)-SSA problems and

introduces generalized (asymmetric) simultaneous set agreement problems in which the parameter k can differ in each

underlying k-set agreement instance. Among other points, it shows that, for s, k > 1, (a) the (sk, 1)-SSA problem

is strictly stronger that the (s, k)-SSA problem which is itself strictly stronger than the (1, ks)-SSA problem, and (b)

there are pairs (s1, k1) and (s2, k2) such that s1k1 = s2k2 and (s1, k1)-SSA and (s2, k2)-SSA are incomparable.

Key-words: Asynchronous system, Distributed computing, Failure detector, Fault tolerance, Message-passing

system, Quorum, Reduction, k-Set agreement, Simultaneous consensus, Wait-freedom

Consensus simultanés vs accord ensembliste : une hiérarchie de problèmes

Résumé : Ce rapport etudie les liens entre les problèmes du consensus s-simultané et de l’accord k-ensembliste.

Il commence par définir le problème (s, k)-SSA qui généralise les deux problèmes précédents. Le rapport intro-

duit ensuite un nouveau détecteur de fautes, noté Zs,k, formé de deux composantes, l’une chargé de rendre possible

l’implémentation d’une forme d’“objet mémoire partagée” permettant aux processus de coopérer, tandis que la sec-

onde fournit la vivacité nécessaire à un algorithme de (s, k)-SSA. Une particularité de ce détecteur de fautes réside

dans le fait que les définitions de ces deux composantes sont intimement liées. Le rapport présente un algorithme basé

sur Zs,k qui résoud le problème (s, k)-SSA et prouve que la partie orientée “mémoire partagée” de Zs,k est nécessaire

pour le résoudre Enfin, le rapport étudie la structure de la famille des problèmes (s, k)-SSA et montre entre autres

que pour s, k > 1, (a) le problème (sk, 1)-SSA est strictement plus difficile que le problème (s, k)-SSA, lui-même

strictement plus difficile que le problème (1, ks)-SSA et (b) il existe des paires (s1, k1) et (s2, k2) avec s1k1 = s2k2
telles que les problèmes (s1, k1)-SSA et (s2, k2)-SSA sont incomparables.

Mots clés : système asynchrone, calcul réparti, détecteur de fautes, tolérance aux pannes, système à passage de

messages, quorum, réduction, accord k-ensembliste, consensus simultanés, sans attente
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1 Introduction

The k-set agreement problems The k-set agreement problem is a paradigm of coordination problems. Defined

in the setting of systems made up of processes prone to crash failures, it is a simple generalization of the consensus

problem (that corresponds to the case k = 1). The aim of this problem, introduced by Chaudhuri [9], was to investigate

how the number of choices (k) allowed to the processes is related to the maximum number of processes t that can crash.

The problem is defined as follows. Each process proposes an input value, and any process that does not crash must

decide a value (termination), such that a decided value is a proposed value (validity), and no more than k distinct

values are decided (agreement).

While it can be solved in synchronous systems prone to any number of process crashes (see [19] for a survey), the

main result associated with k-set agreement is the impossibility to solve it in presence of both asynchrony and process

crashes when t ≥ k [4, 14, 23].

A way to circumvent this impossibility consists in enriching the underlying pure asynchronous system with a

failure detector [7, 22]. A failure detector is a device that provides processes with information on failures. According

to the type and the quality of this information, several failure detectors have been proposed (see [20] for a survey of

failure detectors suited to k-set agreement). It has been shown that the failure detector Ωk (anti-omega-k) [18, 24]

is the weakest failure detector that allow k-set agreement to be solved despite any number of process crashes in

asynchronous read/write systems [12].

The situation is different in asynchronous crash-prone message-passing system. More precisely, (a) while weakest

failure detectors are known only for the cases k = 1 and k = n−1 [8, 10, 11], (b) it has been shown that the generalized

quorum failure detector denoted Σk is necessary [3]. k-Set agreement algorithms based on failure detectors stronger

than Σk can found in [3, 5, 15, 16, 17].

The s-simultaneous consensus problem This problem has been introduced in [1]. Each of the n processes proposes

the same value to s independent instances of the consensus problem, denoted 1, ..., s. Each correct process has to

decide a pair (c, v) (termination), where c ∈ {1, ..., s} is a consensus instance and v is a proposed value (validity).

Moreover, if (c, v) and (c, v′) are decided we have v = v′ (agreement). (This is the scalar form of the problem: each

process proposes the same value to each consensus instance. In the vector form, a process proposes a vector of s
values, one value to each consensus instance. It is shown in [1] that both forms have the same computational power).

It is shown in [1] that the x-simultaneous consensus problem and the x-set agreement problem are computationally

equivalent in asynchronous read/write systems where up to t = n − 1 processes may crash. It follows that in these

systems, the failure detector Ωx is both necessary and sufficient to solve x-simultaneous consensus.

As far asynchronous message-passing systems are concerned, it is shown in [6] that, for x > 1 and t > n+x−2
2 , x-

simultaneous consensus is strictly stronger than x-set agreement. This means that, differently from what can be done

in asynchronous read/write systems, it is not possible to solve x-simultaneous consensus from a black box solving

x-set agreement.

Content of the paper The aim of this paper is to (a) better understand the relations linking s-simultaneous consensus

and k-set agreement, and (b) near the weakest failure detector that allows k-set agreement to be solved in crash-prone

asynchronous message-passing system.

To this end, the paper introduces first a problem that generalizes both s-simultaneous consensus and k-set agree-

ment. This problem, denoted (s, k)-SSA (for s-Simultaneous k-Set Agreement) consists in s independent instances of

the k-set agreement problem (hence, (s, 1)-SSA is x-simultaneous consensus, while (1, k)-SSA is k-set agreement).

Then, the paper introduces a new failure detector, denoted Zs,k, that allows (s, k)-SSA to be solved in the asyn-

chronous message-passing communication model, despite any number of process crashes. This failure detector is

captured by an array of size s whose each entry is made up of two components. The first, which is nothing else than

the quorum failure detector Σk, addresses the data sharing needed to correctly coordinate the processes. The second

component states a leader-based property that allows the correct processes to always decide a value. When consider-

ing the (1, k)-SSA problem, it appears that Z1,k is a weaker failure detector than all the failure detectors proposed so

far to solve k-set agreement. A noteworthy feature of Zs,k lies in the fact that these two components are not defined
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independently one from the other (e.g., as done in the pair (Σ,Ω) [10]), namely, the definition of the leader component

of some entry of the array is intimately related to the associated quorum component.

The paper presents then a Zs,k-based algorithm that solves the (s, k)-SSA problem, and shows that the quorum

part of Zs,k is necessary to solve the (s, k)-SSA problem (this proof generalizes the proof given in [3] that shows that

Σk captures information on process crashes that is necessary to solve k-set agreement).

Last but not least, the paper considers the family of asymmetric {k1, ..., ks}-SSA problems, defined by s simulta-

neous instances of the kx-set agreement problem where kx = k1, ..., ks. It shows that these problems define a strong

hierarchy from a computability point of view. It follows from this hierarchy that (as indicated in the abstract) for

s, k > 1, (a) the (sk, 1)-SSA problem is strictly stronger that the (s, k)-SSA problem which is itself strictly stronger

than the (1, ks)-SSA problem, and (b) there are pairs (s1, k1) and (s2, k2) such that s1k1 = s2k2 and (s1, k1)-SSA

and (s2, k2)-SSA are incomparable problems. More generally, given K , the paper shows that the structure of the set

of symmetric (s, k)-SSA problems (where sk = K) is a lattice where an arrow from A to B means that B can be

solved from a block box solving A, but not vice-versa. The paper associates also with each such pair a failure detector

that is necessary to solve A and a failure detector that is sufficient to solve B.

Roadmap The paper is made up of 6 sections. Section 2 defines the computation model, the (s, k)-SSA problem,

and the Failure Detector class Zs,k. Section 3 presents a simple Zs,k-based algorithm that solves the (s, k)-SSA

problem. Section 4 proves that the safety part of Zs,k is necessary when one wants to solve the (s, k)-SSA problem

(from information on failures). Section 5 investigates the graph structure of the family of asymmetric SSA problems

and shows that these problems define a strong hierarchy. Finally Section 6 concludes the paper.

2 Computation Model, (s, k)-SSA Problem, and the Failure Detector Zs,k

2.1 Computation model

Process model The system is made up of n asynchronous sequential processes denoted Π = {p1, . . . , pn} (to

simplify notations, we sometimes consider that Π is the set {1, . . . , n}). Each process is a Turing machine enriched

with two operations, which allows it to send and receive messages. “Asynchronous” means that there is no assumption

on the speed of processes: each process proceeds at its own speed, which may arbitrarily vary and is unknown from

the other processes.

A process behaves correctly until it possibly crashes (a crash is an unanticipated premature stop). Up to t < n
processes may crash. The case t = n − 1 defines the wait-free model. A process that crashes in a run is said to be

faulty in that run, otherwise, it correct. Given a run, C denotes the set of processes which are correct in that run.

Communication model Each pair of processes is connected by a bidirectional channel. The channels are failure-

free (no creation, duplication, alteration, or loss of messages), and asynchronous. “Asynchronous” means that, while

each message is received, there is no bound on message transfer delays.

Timing model The underlying timing model is the set of natural integers N. As the system is asynchronous, this

time notion remains unknown to the processes. It is only used, from an external observer point of view, to state or

prove properties. Time instants are denoted τ , τ ′, etc.

Notation The previous system is denoted AMPn,t[∅]. Hence, AMPn,n−1[∅] denotes the wait-free message-

passing model.

2.2 The s-Simultaneous k-Set Agreement –(s, k)-SSA– Problem

As indicated in the introduction, the s-simultaneous k-set agreement problem (in short (s, k)-SSA) consists in the

simultaneous execution of s instances of the k-set agreement problem. Moreover, each process proposes the same

value to each instance of the k-set agreement problem. The (s, k)-SSA problem is defined by the three following

properties.
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• Termination. Every correct process decides.

• Validity. A decided value is a pair (c, v) where 1 ≤ c ≤ s and v is a value proposed by a process.

• Agreement. For any c ∈ {1, ..., s}, there are at most k different values v such that (c, v) is decided.

It is easy to see that at most K = sk different values v are decided, and consequently, any algorithm solving the

(s, k)-SSA problem solves the K-set agreement problem. Moreover, (1, k)-SSA is k-set agreement, while (s, 1)-SSA

is s-simultaneous consensus.

2.3 The Failure Detector Class Zs,k

Definition A failure detector of the class Zs,k provides each process pi with two arrays denoted qri[1..s] and

ℓdi[1..s]. Intuitively, qri[z] and ℓdi[z], 1 ≤ z ≤ s, denote, with respect to the index z, the current quorum and

the current leader of pi, respectively. Zs,k is defined by the following properties, where qrτi [z] and ℓdτi [z] denote the

value of qri[z] and ℓdi[z] at time τ .

• Safety property. ∀ z ∈ [1..s] :

– Quorum intersection property (QI).

∀ i1, ..., ik+1 ∈ Π, ∀ τ1, ..., τk+1 : ∃h, ℓ ∈ [1..k + 1] : (h 6= ℓ) ∧ (qrτhih [z] ∩ qrτℓiℓ [z] 6= ∅).

– Leader validity property(LV). ∀ τ, ∀ i : ℓdτi [z] ∈ Π.

• Liveness property. ∃z ∈ [1..s] :

– Quorum liveness property (QL). ∀ i ∈ C : ∃ τ : ∀ τ ′ ≥ τ : qrτ
′

i [z] ⊆ C.

– Eventual leadership property (EL). ∃ℓ ∈ C : ∀i ∈ C :
[

∀ τ : ∃ τ ′, τ ′′ ≥ τ : (qrτ
′

i [z] ∩ qrτ
′′

ℓ [z] 6= ∅)
]

⇒
[

∃ τ : ∀ τ ′ ≥ τ : (ℓdτ
′

i [z] = ℓ)
]

.

The quorum intersection property states that, for any z ∈ {1, ..., s}, there are two quorum values that intersect in any

set of k+1 quorum values, each taken at any time. The leader validity property states that the leader domain is the set

of processes.

While the safety properties concern all the entries of the arrays qri[1..s] and ℓdi[1..s], the liveness properties are

only on a single of these entries, say z. The quorum liveness property states that there is a finite time after which

all quorum values (appearing in qri[z] for every i ∈ C) contain only correct processes. The eventual leader liveness

property involves only the quorum values taken by the entries qri[z], for every i ∈ C. Hence, it relates these quorum

values with the eventual leader values in the local variables ℓdi[z] at each correct process pi. More precisely, it states

that there is a correct process pℓ such that, for any correct process pi whose quorum qri[z] intersects infinitely often

with the quorum qrℓ[z] of pℓ (left part of the implication), pℓ becomes eventually the permanent leader of pi (saved in

ℓdi[z], right part of the implication).

Notation Let Z(Q)s,k denote the quorum part of Zs,k (defined by the properties QI and QL). Similarly, let Z(L)s,k
denote the leader part of Zs,k (defined by the properties LV and EL where the quorum part brings no information on

failures, which means that we have then ∀ i, ∀ z, ∀τ : qrτi [z] = Π).

Particular cases This part shows the generality of Zs,k by displaying failure detector classes that have appeared in

the literature. As they are not important for the paper, their initial definitions are not recalled here (the reader will find

them in the associated referenced papers).

• s = k = 1: Z1,1 = (Σ,Ω) as defined in [8, 10].

• Zs,k is weaker than the failure detector ΠΣk,s introduced in [17].

• Zs,1 is the failure detector Ws as defined in [6].

• Z(Q)1,k is the quorum failure detector Σk introduced in [3].

• Z(Q)s,1 is the failure detector V Σs introduced in [6] where it is shown that (a) V Σs (i.e., Z(Q)s,1) is necessary

to solve the s-simultaneous consensus problem, and (b) (V Σs,Ωs) � Ws(= Zs,1) � (V Σs,Ω).

• Z(Q)1,n−1 is the quorum failure detector L introduced in [11]. This follows from the fact that Z(Q)1,n−1 is

Σn−1 and the equivalence between Σn−1 and L established in [16].

• Z(L)s,1 is the failure detector Ωk introduced in [18, 24] and used in [12].
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Notation AMPn,n−1[FD ] denotes the wait-free message-passing model enriched with a failure detector of the

class FD .

3 A Zs,k-based Algorithm for the (s, k)-SSA problem

This section presents a simple algorithm that solves the (s, k)-SSA problem in AMPn,n−1[Zs,k]. This algorithm

consists in the concurrent execution of s algorithms, each solving an instance of the k-set agreement problem (i.e., an

instance of the (1, k)-SSA problem). This algorithm is based on an underlying abstraction (object) called alphak.

3.1 The Abstraction alphak

Historical perspective The abstraction alphak originates from a similar abstraction (called alpha) introduced in [13]

(see also [21]) to capture the safety property of the consensus problem in message-passing systems. It has then been

generalized to capture the safety property of k-set agreement in (a) read/write systems in [22], and (b) message-passing

systems in [6, 17].

Definition We consider here the alphak object that we have introduced in [17]. Let ⊥ be a default value that cannot

be proposed by processes. alphak is an object, initialized to ⊥, that may store up to k different values proposed by

processes. It is an abstraction (object) that provides processes with a single operation denoted alpha_proposek(r, v)
(where r is a round number and v a proposed value), which returns a value to the invoking process. The round

number plays the role of a logical time that allows identifying the alpha_proposek() invocations. It is assumed that

distinct processes use different round numbers and successive invocations by the same process use increasing sequence

numbers. alphak is an abortable object in the sense that alpha_proposek() invocations are allowed to return the default

value ⊥ (i.e., abort) in specific concurrency-related circumstances (as defined from the obligation property, see below).

More precisely, the alphak objects used in this paper are defined by the following specification in which the obligation

property takes explicitly into account the fact that these objects are used in the system model AMP [Z1,k] (which is

strictly stronger than AMP[∅]). The properties defining such an alphak object are the following.

• Termination. Any invocation of alpha_proposek() by a correct process terminates.

• Validity. If alpha_proposek(r, v) returns v′ 6= ⊥, then alpha_proposek(r
′, v′) has been invoked with r′ ≤ r.

• Quasi-agreement. At most k values different from the default value ⊥ can be returned by the invocations of

alpha_proposek().

• Obligation. (As s = 1, qri[1] is denoted qri.) pℓ being a correct process, let Q(ℓ, τ) = {i ∈ C | ∀ τi, τℓ ≥
τ : qrτii ∩ qrτℓℓ = ∅}. If, after some finite time τ , (a) only pℓ and processes in Q(ℓ, τ) invoke alpha_proposek()
and (b) pℓ invokes alpha_proposek() infinitely often, then at least one invocation issued by pℓ returns a non-⊥
value.

Differently from the obligation property stated in [5, 13, 22] the previous obligation property is Zs,k-aware (or

more preciselyZ1,k-aware, i.e., Σk-aware). This obligation property allows concurrent invocations of alpha_proposek()
to return non-⊥ values as soon as the quorums of the invoking processes do not intersect during these invocations. An

algorithm implementing the previous alphak object in AMP [Σk] is described in [17].

3.2 A Base Algorithm for the (1, k)-SSA Problem (k-Set Agreement)

Algorithm 1 is a very simple algorithm solving the k-set agreement problem in AMP[Z1,k]. A process pi invokes

ssa_propose1,k (vi) where vi is the value it proposes. It decides a value v when it executes the statement return (v)
which terminates its invocation. The local variable ri is the local round number (as it is easy to see, each process uses

increasing round numbers and no two different processes use the same round numbers).

A process loops until it decides. If during a loop iteration pi is such that ℓdi = i (where ℓdi denotes ℓdi[1],
the single leader entry locally output at pi by Z1,k), pi invokes the underlying alphak distributed object (denoted
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operation ssa_propose
1,k (vi):

(01) deci ← ⊥; ri ← i;

(02) while (deci = ⊥) do

(03) if (ℓdi = i) then deci ← ALPHAk.alpha_proposek(ri, vi); ri ← ri + n end if

(04) end while;

(05) for each j ∈ {1, ..., n} do send DECISION(deci) to pj end for; return (v).

when DECISION(v) is received:

(06) for each j ∈ {1, ..., n} do send DECISION(deci) to pj end for; return (v).

Algorithm 1: k-Set agreement in AMP[Z1,k] (code for pi)

ALPHAk) to try to deposit its value vi into it (the success depends on the concurrency and quorums pattern). If a non-

⊥ value is returned by this invocation, pi broadcasts it and decides (execution of return()). If it has not yet decided, a

process decides when it receives a DECISION() message (lines 5-6 implement a reliable broadcast).

Theorem 1 Algorithm 1 solves the k-set agreement problem in AMP[Z1,k].

Proof Validity and agreement properties of k-set agreement. Let us first observe that, due to the test of line 2, the

default value ⊥ cannot be decided. The fact that a decided value is a proposed value follows then from the validity

of the underlying alphak object. Similarly, the fact that at most k non-⊥ values are decided follows directly from the

quasi-agreement property of the underlying alphak object.

Termination property of k-set agreement. It follows from lines 5 and 6 that, at soon as a process decides (invokes

return()) each correct process eventually delivers the same DECISION(v) message and decides (if not yet done). The

proof is by contradiction: assuming that no process decides, we show that at least one correct process executes line 5

(and consequently, all correct processes decide).

Let pℓ be the correct process that appears in the definition of the eventual leadership property of Z1,k. It follows

from the definition of pℓ that we eventually have forever ℓdℓ = ℓ.
Let Rℓ be the (possibly empty) set of identities of the processes pj (with j 6= ℓ) such that we have ℓdj = j infinitely

often. It follows from the contrapositive of the eventual leadership property of Z1,k that there is a time τRℓ
such that

∀ j ∈ Rℓ, ∀ τ1, τ2 ≥ τRℓ
: qrτ1j ∩ qrτ2ℓ = ∅, from which we conclude that Rℓ ⊆ Q(ℓ, τRℓ

) (this is the set defined in

the obligation property defining an alphak object).

Let us notice that, due to test of line 3, there is a finite time τa after which the only processes that invoke

alpha_proposek() are the processes in Rℓ ∪ {ℓ}. Moreover (as by the contradiction assumption no process decides) it

follows that, after τa, pℓ invokes alpha_proposek() infinitely often. Let τb be a time greater than max(τRℓ
, τa) from

which we have Rℓ ⊆ Q(ℓ, τRℓ
) ⊆ Q(ℓ, τb).

As after τb (a) only processes in Rℓ ∪ {ℓ} invoke alpha_proposek(), (b) pℓ invokes alpha_proposek(), infinitely

often, and (c) Rℓ ⊆ Q(ℓ, τb), we conclude from the obligation property of the alphak object that at least one invocation

of pℓ returns a value v 6= ⊥ and consequently sends the message DECISION(v) to all the processes. This contradicts

the fact that no process decides and concludes the proof of the theorem. ✷Theorem 1

3.3 An Algorithm for the (s, k)-SSA Problem

A simple algorithm solving the (s, k)-SSA problem can be easily obtained by launching s concurrent instances of

algorithm 1, the zth instance (1 ≤ z ≤ s) relying, at each process pi, on the components qri[z] and ℓdi[z] of

AMP [Zs,k]. A process decides the value returned by the first of the s instances that locally terminates. Hence, it

decides the pair (c, v) where c is its first deciding instance and v the value it decides in that instance. As there are s
instances of algorithm 1 and at most k values can be decided in each of them, it follows that at most K = sk different

values can be decided. Moreover, as there is at least one instance z such that the failure detector outputs ℓdi[z] at each

correct process pi converge to the same correct process, it follows that the correct processes decide (if not done before)

in at least one of the s instances of algorithm 1.
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4 Z(Q)s,k is Necessary to Solve the (s, k)-SSA problem

This section shows that Z(Q)s,k is necessary to solve the (s, k)-SSA problem as soon as we are looking for a failure

detector-based solution. To that end, given an algorithm A that solves the (s, k)-SSA problem in AMPn,n−1[FD ],
this section presents an algorithm that emulates the output of Z(Q)s,k, namely an array qri[1..s] at each process pi,
which satisfies the properties QI and QL. This means that it is possible to build Z(Q)s,k from any failure detector FD

that can solve the (s, k)-SSA problem.

According to the usual terminology, Z(Q)s,k is extracted from the FD -based algorithm A. This extraction is a

generalization of the algorithm introduced in [3], which extracts Σk from any failure detector-based algorithm that

solves the k-set agreement problem.

The Extraction Algorithm Each process pi participates in several executions of the algorithm A. S being a set

of processes, AS denotes the execution of A in which exactly the processes of S participate. In this execution, each

process of S either decides, blocks forever, or crashes. So the execution of the extraction algorithm is composed of

2n − 1 executions of A.

Init: Qi[1, . . . , s]← [Π, . . . ,Π]; queuei ← 〈1, . . . , n〉;
for each S ⊆ Π such that(i ∈ S) do AS .ssa_proposes,k(i) end for; activate the tasks T1 to T5.

Task T1: repeat periodically send ALIVE(i) to each pj such that j ∈ Π \ {i} end repeat.

Task T2: when ALIVE(j) is received: move j at the head of queuei.

Task T3: when (c,−) is decided by pi in the cth k-set agreement instance of AS :

Qi[c]← Qi[c] ∪ {S}; send DECISION(c,S) to each pj such that j ∈ Π \ {i}.

Task T4: when DECISION(c,S) is received: Qi[c]← Qi[c] ∪ {S}.

Task T5: repeat forever

for each c ∈ {1, ..., s} do

min_ranki ← min{max{rank(queuei, j), j ∈ S}, S ∈ Qi[c]};
qri[c]← any Smin ∈ Qi[c] such that max{rank(queuei, j), j ∈ Smin} = min_ranki

end for;

end repeat.

Algorithm 2: Extracting Z(Q)s,k from a failure detector-based algorithm A solving the (s, k)-SSA problem

The behavior of each process pi is described in algorithm 2. The internal statements of the tasks T 1 and T 5, and

the tasks T 2-T 4 are locally executed in mutual exclusion. The local array Qi[1..s] is initialized to [Π, . . . ,Π]. The

aim of Qi[c] is to contain all the sets S such that a value has been decided in the cth instance of the k-set agreement of

the execution of AS .

Initially, each process pi proposes its identity i to all the instances of A in which it participates. To that end it

invokes AS .ssa_proposes,k(i) for each set S such that i ∈ S (ssa_proposes,k() is the operation associated with each

instance of the (s, k)-SSA problem). When it decides in the cth k-set agreement of AS (task T 3), pi adds the set S to

Qi[c] and informs each other process pj , which includes S in Qj [c] when it learns it (task T 4).

Each alive process pi sends periodically messages ALIVE(i) (task T 1) to inform the other processes that it is alive.

When it receives a message ALIVE(j) (task T 2), a process pi moves j at the head of its local queue (denoted queuei)
which always contains all process identities. It follows that the identities of all the correct processes eventually precede

in this queue the identities of all the faulty processes. (Initially, each queue queuei contains all process identities, in

any order.)

T 5 is a task whose aim is to repeatedly compute the current value of qri[1..s]. It uses the function rank(queuei, j)
which returns the current rank of pj in the queue queuei. The value of qri[c] is computed as follows. It is the “first set

of Qi[c] with respect to queuei” (i.e., with respect to the processes which are currently seen as being alive). This is cap-

tured with the help of the local variableminranki. As an example LetQi[c] = {{3, 4, 9}, {2, 3, 8}, {4, 7}, {1, 2, 3, 4, 5, 6, 7, 8, 9}},

and queuei = 〈4, 8, 3, 2, 7, 5, 9, 1, 6〉. We have then minrank = 4, and Smin = {2, 3, 8}. This set of identities is
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the first set of Qi[c] with respect to queuei because each of the other sets {3, 4, 9}, {4, 7}, or {1, 2, 3, 4, 5, 6, 7, 8, 9},

includes an element (9, 7, and 6, respectively) that appears in queuei after all the elements of {2, 3, 8} (in case several

sets are “first”, any of them can be selected).

Theorem 2 Given any algorithm A that solves the (s, k)-SSA problem in AMPn,n−1[FD ], the extraction algorithm

described in Figure 2 is a wait-free construction of a failure detector Z(Q)s,k.

Proof Proof of the quorum liveness property. We have to show that there is an entry z such that, after some finite time

and for each i ∈ C, qri[z] contains only correct processes. Let us consider the execution of AC . As all the processes

in C are correct (definition), AC terminates. It then follows from the tasks T 3 and T 4 that there is an entry z such the

set Qi[z] of each correct process eventually contains the set C.

Moreover, as each correct process sends forever messages ALIVE() (task T 1), it follows that the identities of the

correct processes appear in queue queuei before the identities of the faulty processes (task T 2). It then follows from

task T 5 (which computes the “first set of Qi[z] with respect to queuei”) that, after some finite time, qri[z] contains

only correct processes.

Proof of the quorum safety property. We have to show that, for each entry z ∈ {1, ..., s}, we have ∀ i1, ..., ik+1 ∈
Π, ∀ τ1, ..., τk+1 : ∃h, ℓ ∈ [1..k + 1] : (h 6= ℓ) ∧ (qrτhih [z] ∩ qrτℓiℓ [z] 6= ∅). The proof is by contradiction.

Let us assume that it exists a family (im)1≤m≤k+1 of k + 1 (not necessarily distinct) process identities, a family

(τm)1≤m≤k+1 of time instants and an integer z ∈ {1, . . . , s} such that for all m1,m2 ∈ {1, . . . , k + 1} qr
τm1

im1
[z] ∩

qr
τm2

im2
[z] = ∅. Let Sm denote the set qrτmim [z]. Let us remark that the previous non-intersection assumption and the

fact that no set Sm is empty imply that, for each m ∈ {1, . . . , k + 1}, a process pjm ∈ Sm decided a value vm
in the zth k-set agreement of ASm (no set Sm can have the initial value Π since it would intersect any other one).

As the sets Sm, 1 ≤ m ≤ k + 1 are pairwise disjoint, there is an execution of A in which the set of participants is
⋃

m∈{1,...,k+1} Sm that is indistinguishable from the considered execution of ASm from the point of view of each pjm
(just consider that the messages between processes of Sm1 and Sm2 are delayed and received only after all processes

decide). It follows that in this execution each process pjm also decides vm in the zth instance of the k-set agreement.

It then follows from the agreement property of the k-set agreement problem that |{vm, 1 ≤ m ≤ k+1}| ≤ k. Hence,

it exists m1,m2 ∈ {1, . . . , k + 1} such that vm1 = vm2 . But, since the values decided in the zth instance of the k-set

agreement problems involved in both ASm1 and ASm2 are identities of participating processes (this follows from the

validity property of the k-set agreement problem), it follows that vm1 = vm2 ∈ Sm1 ∩Sm2 . This contradicts the initial

assumption, which concludes the proof of the quorum intersection property of Z(Q)s,k. ✷Theorem 2

5 The Structure of Generalized (s, k)-SSA problems

This section studies the mathematical structure of the family of (s, k)-SSA problems for sk = K . To that end, it

first introduces a straightforward generalization of this family and then shows that this generalized family can be

represented by a directed graph where an arrow from A to B means that the problem B can be solved from a black

box solving the problem A, while the opposite is impossible. Given such a pair of problems (A,B), this section also

associates with this pair a failure detector that is necessary to solve A and a failure detector that is sufficient to solve

B.

5.1 The Generalized Asymmetric {k1, ..., ks}-SSA Problem

While the (s, k)-SSA problem is a symmetric problem which consists in s simultaneous instances of the k-set agree-

ment problem, a simple generalization consists in considering an asymmetric version made up of s simultaneous

instances of possibly different set agreement problems, namely the k1-set agreement problem, the k2-set agreement

problem, etc., and the ks-set agreement problem. Hence, among the proposed values, at most K = Σs
x=1kx different

values are decided.
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This asymmetric version is denoted {k1, ..., ks}-SSA where {k1, ..., ks} is a multiset1. The particular instance

where k1 = · · · = ks = k is the symmetric (s, k)-SSA problem. As permuting the integers kx does not change the

problem, we consider the canonical notation where k1 ≥ k2 ≥ . . . ≥ ks ≥ 1.

5.2 Associating a Graph with a Family of Generalized {k1, ..., ks}-SSA Problems

Graph definition Given an integer K and starting from the source vertex labeled with the multiset {1, ..., 1} (K
times the integer 1), let us define a graph denoted G(K) as follows. Given a vertex labeled {k1, ..., ks} (initially,

s = K and k1 = · · · = kK = 1), we add all possible vertices of s − 1 elements labeled {k′1, ..., k
′
s−1} and directed

edges from {k1, ..., ks} to each vertex {k′1, ..., k
′
s−1} defined as follows. Any pair of elements kx, ky of the multiset

{k1, ..., ks} gives rise to a vertex labeled by the multiset {k′1, ..., k
′
s−1} such that

{k′1, ..., k
′
s−1} = {k1, ..., ks} \ {kx, ky} ∪ {kx + ky}.

Then, the construction process is recursively repeated until we arrive at a sink node composed of a single element

labeled {K}.

An example of graph for K = 6 is given

on the right. The labels corresponding to

symmetric instances ((s, k)-SSA problems)

are underlined. The graph (lattice) on the

right side of the figure considers only the

symmetric problem instances.

Meaning of the graph As we will see in

Section 5.4, given an integer K , this graph

describes the computability hierarchy link-

ing all the {k1, k2, ...}-SSA

{2, 2, 1, 1}{3, 1, 1, 1}

{5, 1}

{3, 2, 1}{4, 1, 1}

{4, 2}

{1, 1, 1, 1, 1, 1}

{3, 3} {2, 2, 2}
(3, 2)-SSA problem

{6}

(2, 3)-SSA problem

(6, 1)-SSA problem

(1, 6)-SSA problem

{6}

{3, 3}

{2, 2, 2}

{2, 1, 1, 1, 1}

{1, 1, 1, 1, 1, 1}

agreement problems such that k1 + k2 + · · · = K . Let the label A of a vertex denotes both the vertex itself and the

associated agreement problem. An edge from a vertex A to a vertex B means that (a) given an algorithm that solves

the problem A it is possible to solve the problem B, while (b) the opposite is impossible.

Lemma 1 G(K) is cycle-free.

Proof The proof is an immediate consequence of the fact that the successors of any vertex labeled by a multiset of

size s are multisets of size s− 1. ✷Theorem 1

As we will see in Lemma 2, the following predicate P characterizes (with the existence of a function f ) the pairs

of vertices connected by a path in G(K).

Definition Let {k1, ..., ks} and {k′1, ..., k
′
s′} be any pair of vertices of G(K).

P
(

{k1, ..., ks}, {k
′
1, ..., k

′
s′}

) def
=

∃f : {1, . . . , s} → {1, . . . , s′} s.t. ∀y ∈ {1, . . . , s′} : ky =
∑

x∈f−1(y) kx.

Lemma 2
(

∃ a path from {k1, ..., ks} to {k′1, ..., k
′
s′}

)

⇔
(

P ({k1, ..., ks}, {k
′
1, ..., k

′
s′})

)

.

Proof Direction ⇒.

Let {a11, . . . , a
1
s} = {k1, ..., ks}, ..., {az1, . . . , a

z
s−z+1}, ..., {a

s−s′+1
1 , . . . , as−s′+1

s′ } = {k′1, ..., k
′
s′} be a path from

{k1, ..., ks} to {k′1, ..., k
′
s′} in G(K). (Hence, all the edges ({az1, . . . , a

z
s−z+1}, {a

z+1
1 , . . . , az+1

s−z}), z ∈ {1 ≤ z ≤
s− s′, belong to G(K).)

1The set notation is used to represent a multiset. A multiset is a set in which several elements can have the same value. As an example,

{1, 2, 1, 1, 3} is a multiset of 5 elements. Hence, the multisets {1, 2, 1, 1, 3} and {2, 1, 3} are different (while {1, 2, 1, 1, 3} = {2, 1, 3} from a

set point of view).
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For each z ∈ {1, . . . , s− s′}, it follows from the definition of G(K) that there is a pair (xz , yz) of distinct integers

in {1, . . . , s−z+1} such that azxz
≥ azyz

, xz < yz (w.l.o.g.), and {az+1
1 , . . . , az+1

s−z} = {az1, . . . , a
z
s−z+1}\{a

z
xz
, azyz

}∪
{azxz

+ azyz
}. Let fz be the function that associates with each x ∈ {1, . . . , s − z + 1} (i) x if azx > azxz

+ azyz
, (ii)

x + 1 if azxz
+ azyz

≥ azx and x < xz , (iii) x if azxz
+ azyz

≥ azx and xz < x < yz , (iv) x − 1 if azxz
+ azyz

≥ azx and

yz < x, and (v) the index w0 of the first occurrence of azxz
+ azyz

in {az+1
1 , . . . , az+1

s−z} if x ∈ {xz, yz}. (The aim of

these cases is to place the element azxz
+ azyz

at its right place in the multiset {az+1
1 , . . . , az+1

s−z}.)

By construction, for all y ∈ {1, . . . , s − z} \ {w0}, f−1(y) contains a single value and az
f−1(y) = az+1

y , while

f−1(w0) = {xz, yz}. Since azxz
+ azyz

= az+1
w0

, P ({az1, . . . , a
z
s−z+1}, {a

z+1
1 , . . . , az+1

s−z}) is satisfied. Let f be

fz◦fz−1◦· · ·◦f1, since the property verified by f is stable by composition, the path from ({k1, ..., ks} to {k′1, ..., k
′
s′})

ensures that P ({k1, . . . , ks}, {k′1, ..., k
′
s′} is satisfied.

Direction ⇐.

Let ({k1, ..., ks}, {k′1, ..., k
′
s′}) be a pair of vertices of G(K) that satisfies the predicate P . Two cases are possible: (i)

s = s′ and then f is the identity function (or just a reordering of the values appearing multiple times) and {k1, ..., ks} =
{k′1, . . . k

′
s′} or (ii) s > s′.

In the case (i), there is a path (of length zero) from any node to itself. In the case (ii), consider the function f defined

in the predicate P . Since s > s′, f is not injective (one-to-one), and there are two distinct integers x1, y1 such that

f(x1) = f(y1). Let then {a21, . . . , a
2
s−1} be {k1, ..., ks}\{kx1, ky1}∪{kx1+y1}. If f is injective from {1, . . . , s}\{y1}

to {1, . . . , s′}, since according to P it is surjective (onto), it follows that s′ = s − 1 and that {a21, . . . , a
2
s−1} =

{k′1, ..., k
′
s′} and there is a path in G(K) from {k1, ..., ks} to {k′1, ..., k

′
s′}. If f is not injective from {1, . . . , s} \ {y1}

to {1, . . . , s′}, then it exists two distinct integers x2, y2 in {1, . . . , s} \ {y1} such that f(x2) = f(y2) (consider that

y2 6= x1, w.l.o.g.). Let then build {a31, . . . , a
3
s−2} be (i) {k1, ..., ks} \ {kx1 , ky1 , kx2 , ky2} ∪ {kx1 + ky1 , kx2 + ky2} if

x1 6= x2, or (ii) {k1, ..., ks}\{kx1, ky1 , ky2}∪{kx1+ky1+ky2} if x2 = x1. If f is injective from {1, . . . , s}\{y1, y2}
to {1, . . . , s′} then, as it is also surjective, s′ = s− 2, {a31, . . . , a

3
s−2} = {k′1, ..., k

′
s′} and there is a path of length 2 in

G(K) from {k1, ..., ks} to {k′1, ..., k
′
s′}. If f is not injective from {1, . . . , s} \ {y1, y2} to {1, . . . , s′} then let choose

x3, y3 in {1, . . . , s} \ {y1, y2} such that f(x3) = f(y3) and y3 /∈ {x1, x2} and continue the construction. After s− s′

iteration steps, we have |{1, . . . , s} \ {y1, . . . , ys−s′}| = s′, and the vertices which have been traversed belong to a

path of G(K) starting at {k1, ..., ks} and ending at {k′1, ..., k
′
s′}. ✷Lemma 2

Theorem 3 The transitive closure of G(K) is a partial order.

Proof The theorem follows from the fact that the relation captured by the predicate P is anti-symmetric (Lemma 1)

and transitive (Lemma 2). ✷Theorem 3

5.3 Associated Generalized Failure Detector GZk1,...,ks

The failure detector Zs,k is implicitly tailored for the symmetric (s, k)-SSA problem. A simple generalization allows

to extend it to obtain an “equivalent” failure detector suited to asymmetric problems.

As Zs,k, this generalized failure detector, denoted GZk1,...,ks
, provides each process pi with an array qri[1..s]

and an array ℓdi[1..s]. It differs from Zs,k in the constraint imposed by the quorum intersection property that is now

specific to each entry z ∈ {1, ..., s}. More explicitly, QI is replaced by the property GQI defined as follows
• Quorum intersection property (GQI). ∀ z ∈ [1..s]:
∀ i1, ..., ikz+1 ∈ Π, ∀ τ1, ..., τkz+1 : ∃h, ℓ ∈ [1..kz + 1] : (h 6= ℓ) ∧ (qrτhih [z] ∩ qrτℓiℓ [z] 6= ∅).

The other properties –leader validity (LV), quorum liveness (QL), and eventual leader liveness (EL)– remain un-

changed. It is easy to see, that GZk1,...,ks
boils down to Zs,k when k1 = · · · = ks = k.

Let GZ(Q)k1,...,ks
denotes the quorum part of GZk1,...,ks

(properties GQI and QL). The proof of the following

theorem is a simple extension of the proof of Theorem 2. It is left to the reader.

Theorem 4 Given any algorithm A that solves the {k1, ..., ks}-SSA problem in AMPn,n−1[FD ], the extraction

algorithm described in Figure 2 is a wait-free construction of a failure detector GZ(Q)k1,...,ks
.
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5.4 A Hierarchy of Agreement Problems

Problem hierarchy Let AMPn,n−1[X ] denote the asynchronous message-passing model in which any number of

processes may crash (AMPn,n−1[∅]) enriched with an algorithm that solves the problem X .

Given the the message-passing model AMPn,n−1[∅], a problem A is stronger than a problem B (denotedA � B)

if B can be solved in AMPn,n−1[A] (we also say that B is weaker than A, denoted B � A). Moreover, A is strictly

stronger than B (denoted A ≻ B) if A � B and ¬(B � A) (A cannot be solved in AMPn,n−1[B]).

Lemma 3 P
(

{k1, ..., ks}, {k′1, ..., k
′
s′}

)

⇒
(

{k1, . . . , ks}-SSA � {k′1, . . . , k
′
s′}-SSA

)

.

Proof Let us consider an algorithm A that solves the {k1, . . . , ks}-SSA problem. To solve the {k′1, . . . , k
′
s′}-SSA

problem it is sufficient that each process pi executes A until it decides a pair (x, v) and then outputs the pair (f(x), v)
as the decided value for the {k′1, . . . , k

′
s′}-SSA problem (where f is the function appearing in P ).

The validity and termination properties of the obtained algorithm follow directly from those of A. Moreover,

according to the agreement property satisfied by A, at most kx different pairs (x,−) can be decided by the underlying

algorithm. It then follows from the definition of f that for any y ∈ {1, . . . , s′}, at most
∑

x∈f−1(y) kx = ky distinct

pairs (y,−) are decided in the simulated solution of the {k′1, . . . , k
′
s′}-SSA problem, and the agreement property of

the {k′1, . . . , k
′
s′}-SSA is satisfied. ✷Lemma 3

Lemma 4 Let n > K ≥ 2.
(

{k1, . . . , ks}-SSA � {k′1, . . . , k
′
s′}-SSA

)

⇒ P
(

{k1, . . . , ks}, {k′1, . . . , k
′
s′}

)

.

Proof The principle and structure of the proof are as follows.

• The proof considers first the failure detector GZk1,...,ks
, which is sufficient to solve the {k1, ..., ks}-SSA prob-

lem (the (s, k)-SSA algorithm described in Section 3 can be easily adapted to solve the {k1, ..., ks}-SSA prob-

lem in AMPn,n−1[GZk1,...,ks
]).

• As {k1, . . . , ks}-SSA� {k′1, . . . , k
′
s}-SSA, it is possible to solve the {k′1, . . . , k

′
s′}-SSA problem in AMPn,n−1[GZk1,...,ks

].
Moreover, as GZ(Q)k′

1,...,k
′

s′
is necessary to solve the {k′1, . . . , k

′
s′}-SSA problem (Theorem 4), it is possible

to simulate GZ(Q)k′

1,...,k
′

s′
in AMPn,n−1[GZk1,...,ks

].

• The proof constructs such a simulation and shows that this simulation allows to define a function f such that the

predicate P
(

{k1, . . . , ks}, {k′1, . . . , k
′
s′}

)

is satisfied, from which the lemma follows.

Assuming n > K ≥ 2, and A being an algorithm that simulates GZ(Q)k′

1,...,k
′

s′
in AMPn,n−1[GZk1,...,ks

],

let QRi [1, . . . , s
′] denote the outputs of the simulated quorum at process pi. Moreover, for each process pi, 1 ≤

i ≤ K + 1 and for each x ∈ {1, . . . , s}, let αx
i be an execution of A in which the only process to take steps is

pi and the underlying failure detector GZk1,...,ks
always outputs (locally at each pi) qri[x] = {i}, ldi[x] = i, and

∀x′ 6= x, qri[x
′] = {1, . . . ,K + 1} and ldi[x

′] = i (let us notice that these outputs comply with the definition of the

underlying failure detector GZk1,...,ks
]). According to the quorum liveness property of the constructed failure detector

GZ(Q)k′

1,...,k
′

s′
, it exists in αx

i an instant τxi and an index cxi such that ∀τ ≥ τxi : QRi [c
x
i ] = {i}.

Considering the solo executions {αx
i }1≤i≤K+1, one can build, for any subset of K distinct processes such that

{i1, . . . , iK} ⊂ {1, . . . ,K + 1}, an execution of A denoted

αi1···iK = α1
i1
· α1

i2
· · ·α1

ik1
, α2

ik1+1
· · ·α2

ik1+k2
, . . . , αs

iK−ks+1
· · ·α,

iK
s

as follows where W (x) denotes the integer interval [1 + k1 + · · ·+ kx−1..k1 + · · ·+ kx]:

• All processes pi, i > K + 1, crash before taking any step,

• All message receptions are delayed after time τ_max = max{τxi such that i ∈ {1, ...,K+1}, x ∈ {1, ..., s}},2

2This is the only place where the “asynchronous message-passing” assumption is used. If communication was through atomic read/write

registers, this message asynchrony would not exist and the lemma would not hold.
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• Let us observe that αi1···iK contains the prefix of the solo execution αx
iw

of the process piw if and only if

w ∈ W (x).

For each x ∈ {1, . . . , s} and for each w ∈ W (x), the outputs at piw of the underlying failure detectorGZk1,...,ks

are the same as in αx
iw

until τ_max. After this instant, for each i ∈ {i1, . . . , iK} and for x ∈ {1, . . . , s},

qri[x] = {i1, . . . , iK} and ldi[x] = i1.

Let us remark that the outputs of the underlying failure detector GZk1,...,ks
are valid in this execution, and that,

for each x ∈ {1, . . . , s} and each piw , w ∈ W (x), the execution αi1···iK is indistinguishable from αx
iw

until τ_max
from the point of view of piw . It follows that for each x ∈ {1, . . . , s} and each piw , w ∈ W (x), we have QRiw [c

x
iw
] =

{iw} at time τ_max in αi1···iK . It follows from this observation and the quorum intersection property of the failure

detector GZ(Q)k′

1,...,k
′

s′
built by A (this property has to be preserved on each quorum index y ∈ {1, . . . , s′}) that

{c1i1 , . . . , c
1
ik1

, . . . , csiK−ks+1
, . . . , csiK} is a multiset of K elements where for each y ∈ {1, . . . , s′}, the value y appears

k′y times (and those are the only values of the elements of this multiset).

Let us now consider the execution ασ(1)···σ(K) where σ is any permutation of {1, . . . ,K}. According to the pre-

vious discussion, any process piσ(w)
, w ∈ {1, . . . ,K} can be replaced by pK+1 in the execution without changing the

multiset {c1
iσ(1)

, . . . , c1iσ(k1)
, . . . , csiσ(K−ks+1)

, . . . , csiσ(K)
}. It then follows that ∀x ∈ {1, . . . , s}, ∀w ∈ {1, . . . ,K} :

(σ(w) ∈ W (x) ⇒ cxiσ(w)
= cxK+1). As σ can be any permutation, it follows that ∀x ∈ {1, . . . , s}, ∀w ∈ {1, . . . ,K} :

cxw = cxK+1. Moreover this implies that ∀x ∈ {1, . . . , s}, ∀i, j ∈ {1, . . . ,K + 1} : cxi = cxj .

Let us finally consider the function f which, with each x ∈ {1, . . . , s} associates cx1 (which, as just shown,

is equal to cxi for all i ∈ {1, . . . ,K}). Since, {c1i1 , . . . , c
1
ik1

, . . . , csiK−ks+1
, . . . , csiK} contains kx times f(x) for

each x ∈ {1, . . . , s} (and only these values), it follows from the multiset equality above that ∀y ∈ {1, . . . , s′} :
Σx∈f−1(y)kx = ky , which ends the proof of the lemma. ✷Lemma 4

Theorem 5 Let n > K ≥ 2.
(

{k1, . . . , ks}-SSA � {k′1, . . . , k
′
s′}-SSA

)

⇔ P
(

{k1, . . . , ks}, {k′1, . . . , k
′
s′}

)

.

Proof The proof follows directly from Lemma 3 and Lemma 4. ✷Theorem 5

Theorem 6 The relation ≻ on generalized-SSA problems is a partial order.

Proof The proof follows from Theorem 3 (G(K) is a partial order), Lemma 2 (all paths in (G(K) are characterized

by P ), and Theorem 5 (which relates P and ≻). ✷Theorem 6

The next corollary follows from the observation that, for any K > 1, the K-set agreement problem is a sink vertex in

the directed graph G(K).

Corollary 1 The weakest failure detector for the K-set agreement problem does not allow to solve any {k1, . . . , ks}-

SSA problem such that s > 1 and k1 + · · ·+ ks = K .

5.5 The Lattice of Symmetric SSA Problems

As seen before, a symmetric vertex is a vertex {k1, ..., ks} such that k1 = . . . = ks = k. Let SG(K) denote the graph

whose vertices are the symmetric vertices of G(K), and there is an edge from (sx, kx) to (sy, ky) iff there is a path in

G(K) from the vertex {kx, ..., kx} (kx appearing sx times) to the vertex {ky, ..., ky} (ky appearing sy times) and no

path connecting these vertices passes through a symmetric vertex. As an example, SG(6) is given in Section 5.2.

Theorem 7 For any K , SG(K) is a lattice.

Proof Let (sx, kx) and (sy, ky) be two pairs of integers such that kx < ky and sxkx = syky = K . It follows

from the definition of SG(K) that there is an edge from (sx, kx) to (sy, ky) iff ky = kxp where p is prime (if p is

not prime there is a symmetric vertex on a path from (sx, kx) to (sy , ky), and if ky/kx is not an integer, there is no

path from (sx, kx) to (sy, ky)). It follows that we can associate with any pair of pairs (sx, kx) and (sy, ky) such that

sxkx = syky = K ,
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• among its ancestors, the vertex (sz, kz) in SG(K) where szkz = K and kz = gcd(kx, ky), and

• among its successors, the vertex (s′z , k
′
z) in SG(K) where s′zk

′
z = K and k′z = lcm(kx, ky).

As the greatest common denominator and the least common multiple of any pair of integers are unique, it follows that

SG(K) is a lattice. ✷Theorem 7

The next corollary follows from the previous theorem.

Corollary 2 Let (s1, k1) and (s2, k2) be two different pairs of integers such that s1k1 = s2k2, and none of k1 and k2
divides the other one. The symmetric (s1, k1)-SSA and (s2, k2)-SSA problems are incomparable in AMPn,n−1[∅].

As far as agreement problems are concerned, this shows a strong difference between the message-passing model

and the read/write model. In the read/write model, (s1, k1)-SSA and (s2, k2)-SSA are the same problem (they are

both equivalent to the K-simultaneous problem which is itself equivalent to the K-set agreement problem, where

K = s1k1 = s2k2).

6 Conclusion

This paper has investigated the comparative power of simultaneous agreement and set agreement in asynchronous

message-passing systems prone to any number of process crashes. This study was initially motivated by the lasting

(and difficult) quest for the weakest failure detector for the k-set agreement problem in message-passing systems.

While k-simultaneous consensus and k-set agreement are equivalent problems in asynchronous read/write systems

prone to any number of process crashes [1], the paper has introduced a general formulation of agreement problems,

namely the family of (s, k)-SSA (s-simultaneous k-set agreement) problems, and has shown that these agreement

problems define a strong hierarchy, thereby showing that their shared memory equivalence is no longer true in message-

passing systems. Hence, this study contributes to a better understanding of the relation (equivalence/difference) be-

tween the send/receive model and the read/write model (equivalence when a majority of processes are correct [2], and

difference –from a problem ranking point of view– in the other cases).
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