Learning context models for the recognition of scenarios

Sofia Zaidenberg 1 Oliver Brdiczka 1 Patrick Reignier 1 James L. Crowley 1
1 PRIMA - Perception, recognition and integration for observation of activity
Inria Grenoble - Rhône-Alpes, UJF - Université Joseph Fourier - Grenoble 1, INPG - Institut National Polytechnique de Grenoble , CNRS - Centre National de la Recherche Scientifique : UMR5217
Abstract : This paper addresses the problem of automatic learning of scenarios. A ubiquitous computing environment must have the ability to perceive its occupants and their activities in order to recognize a context and to provide appropriate services. A context (a scenario) can be modeled as a temporal sequence of situations. Hard coding contexts by hand is a complex task. Our goal is to learn these context models based on a set of videos showing actors playing predefined scenarios. Once these models are learned, we can use them to classify new scenarios. Hidden Markov Models (HMMs) are particularly well suited for problems with a strong temporal structure; they are easily adaptable to variability of input and robust to noise. But two problems need to be addressed: how many HMMs do we need for all possible scenarios and how many states for each HMM. We propose in this paper an approach based on an incremental algorithm addressing these two problems. Under the best conditions we obtained the minimal error rate of 1.96% (2 errors in 102 validation entries).
Type de document :
Communication dans un congrès
Ilias Maglogiannis and Kostas Karpouzis and Max Bramer. 3rd IFIP Conference on Artificial Intelligence Applications & Innovations (AIAI), Jun 2006, Athènes, Greece. Springer US, 204, pp.86-97, 2006, IFIP International Federation for Information Processing. 〈10.1007/0-387-34224-9_11〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00788102
Contributeur : Sofia Zaidenberg <>
Soumis le : mercredi 13 février 2013 - 17:06:31
Dernière modification le : mercredi 11 avril 2018 - 01:56:17

Lien texte intégral

Identifiants

Collections

Citation

Sofia Zaidenberg, Oliver Brdiczka, Patrick Reignier, James L. Crowley. Learning context models for the recognition of scenarios. Ilias Maglogiannis and Kostas Karpouzis and Max Bramer. 3rd IFIP Conference on Artificial Intelligence Applications & Innovations (AIAI), Jun 2006, Athènes, Greece. Springer US, 204, pp.86-97, 2006, IFIP International Federation for Information Processing. 〈10.1007/0-387-34224-9_11〉. 〈hal-00788102〉

Partager

Métriques

Consultations de la notice

194