Learning context models for the recognition of scenarios

Sofia Zaidenberg 1 Oliver Brdiczka 1 Patrick Reignier 1 James L. Crowley 1
1 PRIMA - Perception, recognition and integration for observation of activity
Inria Grenoble - Rhône-Alpes, UJF - Université Joseph Fourier - Grenoble 1, INPG - Institut National Polytechnique de Grenoble , CNRS - Centre National de la Recherche Scientifique : UMR5217
Abstract : This paper addresses the problem of automatic learning of scenarios. A ubiquitous computing environment must have the ability to perceive its occupants and their activities in order to recognize a context and to provide appropriate services. A context (a scenario) can be modeled as a temporal sequence of situations. Hard coding contexts by hand is a complex task. Our goal is to learn these context models based on a set of videos showing actors playing predefined scenarios. Once these models are learned, we can use them to classify new scenarios. Hidden Markov Models (HMMs) are particularly well suited for problems with a strong temporal structure; they are easily adaptable to variability of input and robust to noise. But two problems need to be addressed: how many HMMs do we need for all possible scenarios and how many states for each HMM. We propose in this paper an approach based on an incremental algorithm addressing these two problems. Under the best conditions we obtained the minimal error rate of 1.96% (2 errors in 102 validation entries).
Document type :
Conference papers
Complete list of metadatas

https://hal.inria.fr/hal-00788102
Contributor : Sofia Zaidenberg <>
Submitted on : Wednesday, February 13, 2013 - 5:06:31 PM
Last modification on : Tuesday, November 27, 2018 - 8:46:01 PM

Links full text

Identifiers

Collections

Citation

Sofia Zaidenberg, Oliver Brdiczka, Patrick Reignier, James L. Crowley. Learning context models for the recognition of scenarios. 3rd IFIP Conference on Artificial Intelligence Applications & Innovations (AIAI), Ilias Maglogiannis and Kostas Karpouzis and Max Bramer, Jun 2006, Athènes, Greece. pp.86-97, ⟨10.1007/0-387-34224-9_11⟩. ⟨hal-00788102⟩

Share

Metrics

Record views

240