Minimal symmetric Darlington synthesis: the real case

Abstract : We consider the symmetric Darlington synthesis of a p × p rational symmetric Schur function S with the constraint that the extension is of size 2p × 2p and we investigate what happens when we impose that S and its extension have real coefficients. In this case, under the assumption that S is strictly contractive in at least one point of the imaginary axis, we determine an upper bound for the McMillan degree of the extension. A constructive characterization of all such extensions is provided in terms of a symmetric realization of S and of the outer spectral factor of I− SS*.
Type de document :
Communication dans un congrès
MTNS- 19th International Symposium on Mathematical Theory of Networks and Systems - 2010, Jul 2010, Budapest, Hungary. 2010
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00788397
Contributeur : Martine Olivi <>
Soumis le : jeudi 14 février 2013 - 13:18:32
Dernière modification le : jeudi 11 janvier 2018 - 16:44:57
Document(s) archivé(s) le : mercredi 15 mai 2013 - 03:58:12

Fichier

Baratchart_Enqvist_Gombani_Oli...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00788397, version 1

Collections

Citation

Laurent Baratchart, Per Enqvist, Andrea Gombani, Martine Olivi. Minimal symmetric Darlington synthesis: the real case. MTNS- 19th International Symposium on Mathematical Theory of Networks and Systems - 2010, Jul 2010, Budapest, Hungary. 2010. 〈hal-00788397〉

Partager

Métriques

Consultations de la notice

223

Téléchargements de fichiers

153