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Abstract. Open-ended exploration and learning in the real world is a

major challenge of developmental robotics. Three properties of real-world

sensorimotor spaces provide important conceptual and technical chal-
lenges: unlearnability, high-dimensionality and unbounde dness. In this
chapter, we argue that exploration in such spaces needs to be costrained

and guided by several combined developmental mechanisms. Wlile in-

trinsic motivation, i.e. curiosity-driven learning, is a key me chanism to
address this challenge, it has to be complemented and integraied with

other developmental constraints, in particular: sensorimotor primitives

and embodiment, task space representations, maturational processes (i.e.
adaptive changes of the embodied sensorimotor apparatus), ard social
guidance. We illustrate and discuss the potential of such an integration

of developmental mechanisms in several robot learning experiments.

A central aim of developmental robotics is to study the developmental nech-
anisms that allow life-long and open-ended learning of new skills andew knowl-
edge in robots and animals Asada et al, 2009 Lungarella et al., 2003 Weng
et al., 200)). Strongly rooted in theories of human and animal development,
embodied computational models are built both to explore how one could bild
more versatile and adaptive robots, as in the work presented in this chajer, and
to explore new understandings of biological development@udeyer, 2010.

Building machines capable of open-ended learning in the real world pes
many di cult challenges. One of them is exploration, which is the central topic
of this chapter. In order to be able to learn cumulatively an open-endd reper-
toire of skills, developmental robots, like animal babies and human infats, shall
be equipped with task-independent mechanisms which push thento explore
new activities and new situations. However, a major problem is that tre con-
tinuous sensorimotor space of a typical robot, including its own body aswell
as all the potential interactions with the open-ended surrounding plysical and
social environment, is extremely large and high-dimensional. The deof skills
that can potentially be learnt is actually in nite. Yet, within a lif e-time, only
a small subset of them can be practiced and learnt. Thus the central gestion:
how to explore and what to learn? And with this question comes an equally
important question: What not to explore and what not to learn? Clearly, ex-
ploring randomly and/or trying to learn all possible sensorimotor skills will fail.
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Exploration strategies, mechanisms and constraints are needed and appear
two broad interacting families in animals and humans: internally guided explo-
ration and socially guided exploration. Within the large diversity of associated
mechanisms, as we will illustrate in this article, intrinsic motivation, a peculiar
example of internal mechanism for guiding exploration, has drawn a lot of at
tention in the recent years, especially when related to the issuef open-ended
cumulative learning of skills as shown by other chapters in this bool ??).

Intrinsic motivation was identi ed in humans and animals as the set of pro-
cesses which push organisms to spontaneously explore their enviroemt even
when their basic needs such as food or water are satis edBerlyne, 196Q Deci
and Ryan, 1985 White, 1959. It is related to curiosity-driven learning and ex-
ploration, but is actually broader since it applies for example to the processes
that push us to persist in trying to solve puzzles or improve our sprt skills when
not driven by extrinsic motivations such as the search for social stats or money.
A very large body of theories of intrinsic motivation, and its interacti on with
extrinsic motivation, has ourished in psychology and educational scieres at
least since the middle of the 20th century Ryan and Deci, 2000. Many of them
have consisted in trying to understand which features of given actiities could
make them intrinsically motivating or \interesting" for a particular p erson at a
particular moment of time. In this context, \interestingness" was pr oposed to
be understood as related to concepts such as noveltHQll, 1943 Montgomery,
1954, reduction of cognitive dissonances Festinger, 1957 Kagan, 1972, opti-
mal incongruity ( Berlyne, 196Q Hunt, 1965, e ectance and personal causation
(De Charms 1968 White, 1959, or optimal challenge (Csikszentmihalyi, 1996.

Following those ideas, either a priori or a posteriori, many computatioral
systems were built to formalize, implement and evaluate intrinscally motivated
exploration and learning, also referred as curiosity-driven machindearning or ac-
tive learning (Lopes and Oudeyer 2010. These models came from various elds
such as statistics and \optimal experiment design" (e.g.Fedorov, 1972, active
learning (e.g. Angluin, 1988 Castro and Novak, 2008 Chaloner and Verdinelli,
1995 Cohn et al., 1994 Thrun, 1992 reinforcement learning (e.g.Barto et al.,
2004 Brafman and Tennenholtz, 200L Schmidhuber, 1991 Sutton, 199Q Szita
and Lorincz, 2008, computational neuroscience (e.gDayan and Belleing 2002
Doya, 2002 and developmental robotics (e.g.Baranes and Oudeyey 2009 Blank
et al., 2002 Hart and Grupen, 2008 Huang and Weng 2002 Oudeyer and Ka-
plan, 2007 Oudeyer et al, 2007 Schembri et al, 2007g Schmidhuber, 2006
2010and ?7?). Correspondingly, many formal measures of \interestingness", ei-
ther heuristics or optimal regarding some criteria - and associated algithms
to compute them - were devised, including principles such as # maximization
of prediction error (Meyer and Wilson, 1991 Thrun, 1992, the local density
of already queried/sampled points Whitehead, 1991, the maximization of the
decrease of the global model varianceQohn et al., 1996, or maximal uncer-
tainty of the model (Thrun and Moller, 1992, among others. Those principles
and algorithms were then integrated in various framings, a particularly inter-
esting one being intrinsically motivated reinforcement learning, allowing to ap-
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proach sequential decision problems in a uni ed approach (e.d3arto et al., 2004
Schmidhuber, 1991 and ??), and see Kakade and Dayan 2002 Sutton, 1990
and ?? for a related approach using exploration bonuses).

In spite of this diversity of techniques, many of these computational ap-
proaches where not designed initially for developmental learning and ke as-
sumptions that are incompatible with their use for learning in real developmental
robots. Indeed, a combination of the following assumptions, which do at hold
for a developmental robot, is often made for active exploration models:

{ Assumption 1 : Itis possible to learn a model of the complete world/space
within the life-time of the learning agent;

{ Assumption 2 : The world is learnable everywhere;

{ Assumption 3 : The noise is homogeneous;

These assumptions are very useful and relevant when the goal is to hawema-
chine learn a predictive or control model of a whole bounded relativel small
domain (e.g. sensorimotor space) and when it is yet very expensive to ake one
single measure/experiment. Examples include the control of automatidiologi-
cal or chemical experiments Faller et al., 2003 Kumar et al., 2010, or learning
to visually recognize a nite set of visual categories Tong and Chang 2002).
The associated techniques, such as for example those based on prirlegp such
as \search for maximal novelty or uncertainty”, allow the learner to e ¢ iently
minimize the number of necessary experiments to perform in ordeto acquire
a certain level of knowledge or a certain level of competence for contigilg the
given domain.

Furthermore, the models designed explicitly in a developmentallearning
framing were often elaborated and experimented in simple simulatedvorlds,
even sometimes in discrete grid worlds, which allowed researcteto perform
easily systematic experiments but introduced a bias on the propdies of sen-
sorimotor spaces. As a consequence, many of these models consisted iecha-
nisms that either also implicitly made the assumptions describedn the previous
paragraph, or could not (or were not shown in practice) to scale to real-wod
high-dimensional robot spaces.

Yet, the challenges of exploration and developmental learning become we
di erent as soon as one uses real high-dimensional redundant bodiesjtiv contin-
uous sensorimotor channels, and an open-ended unbounded environmeReal
sensorimotor spaces introduce three fundamental properties to whh exploration
and learning mechanisms should be robust:

{ Unlearnability : There are very large regions of sensorimotor spaces for
which predictive or control models cannot be learnt. Some of these reghs
of the sensorimotor space are de nitively unlearnable, such as for exani@
the relations between body movement and cloud movements (one cannot
learn to control the displacement of clouds with ones own body actions)
or the relation between the color of a cat and the color of the next car
passing in the road (a developmental robot shall not be \spoon fed" with
the adequate causal groupings of variables he may observe, but rather shall
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discover by itself which are the sensible groupings). Some other géons of the
sensorimotor space are unlearnable at a given moment of time/development,
but may become learnable later on. For example, trying to play tennisis
unlearnable for a baby who did not even learn to grasp objects yet, but it
becomes learnable once he is a bit older and has acquired a variety of basic
skills that he can re-use for learning tennis;

{ High-dimensionality  : A human child has hundreds of muscles and hun-
dreds of thousands of sensors, as well as a brain able to generate new repre
sentational spaces based on those primitive sensorimotor channels, thare
used by the organism to interact with novel objects, activities, stuations or
persons. Given this apparatus, even single specic skills such asahd-eye
coordination or locomotion involve continuous sensorimotor spaces of very
high low-level dimensions. Furthermore, action and perception corist in
manipulating dynamic sequences within those high-dimensional spa&s, gen-
erating a combinatorial explosion for exploration. As explained below, ths
raises the well known problem of the curse-of-dimensionality8ishop, 1999,
which needs to be addressed even for single speci c skill learrgninvolving
the learning of forward and inverse models given a control space and a task
space (Nguyen-Tuong and Peters 20121, Sigaud et al, 2017);

{ Unboundedness : Even if the learning organism would have a sort of \ora-
cle" saying what is learnable and what is not at a given moment of time, real
sensorimotor spaces would still have the property of unboundednesthe set
of learnable predictive models and/or skills is in nite and thus much larger
than what can be practiced and learnt within a life-time. Just imagine a one
year-old baby who is trying to explore and learn how to crawl, touch, gasp
and observe objects from various manners. First of all, with a given objddn
a given room, say for example a book, there is a very large amount of both
knowledge and skills, of approximately equal interest for any measuref in-
terestingness, to be learnt: e.g. learning to throw the book in vaibus boxes
in the room, at various lengths, with a various number of ips, with a n al
position on various sides, using various parts of the body (hands, shouéts,
head, legs, ...), learning to predict the sequence of letters andrdwings in it,
learning to see what kind of noise it makes when torn up at various places
with various strengths, hit on various objects, learning how it tastes learn-
ing how it can y out of the window, learning how individual pages y wh en
folded in various manners, .... Now, imagine what the same child may lear
with all the other toys and objects in the room, then with all the toys in the
house and in the one of neighbours. As it can walk, of course the child cadl
learn to discover the map of his garden, and of all the places he could craw
to. Even with no increase of complexity, the child could basically alvays
nd something to learn. Actually, this would even apply if there woul d be
no objects, no house, no gardens around the child: the set of skills heould
learn to do with its sole own body, conceptualized as an \object/tool" to
be discovered and learnt, is already unbounded in many respects. Anéven
if obviously there are some cognitive and physical bounds on what he can
learn (e.g. bounds on the possible speeds one can run at), those bounds are
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initially unknown to the learner (e.g. the child initially does n ot know that

it is impossible to run over a certain speed, thus he will need meghanisms to
discover this and avoid spending its life trying to reach speedshat are not

physically possible), and this is part of what is here called the chaénge of
unboundedness.

Considering some particular aspects of those challenging propertietn par-
ticular related to unlearnability, some speci c computational models of \interest-
ingness" and intrinsically motivated exploration were elaborated. In particular,
measures of interestingness based on thaerivative of the evolution of perfor-
mances of acquired knowledge or skills, such as maximal increase in gdietion
errors, also called \learning progress" Qudeyer et al,, 2007 Schmidhuber, 1991),
maximal compression progress §chmidhuber, 2006, or competence progress
(Bakker and Schmidhuber, 2004 Baranes and Oudeyey 20103 Modayil et al.,
201Q Stout and Barto, 2010 were proposed. These measures resonate with some
models in active learning, such as related to the principle of maxiral decrease of
model uncertainty (e.g. Cohn et al., 1996, but were sometimes transformed into
heuristics which make them computationally reasonable in robotic appl¢ations
(e.g. Oudeyer et al, 2007 Schmidhuber, 1997), which is not necessarily the case
for various theoretically optimal measures. These measures also resoeatvith
psychological theories of intrinsic motivation based on the concept of \optmal
level" (e.g. Berlyne, 196Q Csikszentmihalyi, 1996 White, 1959 Wundt, 1874,
which state that the most interesting activities are those that are ndther too
easy nor too dicult, i.e. are of the \right intermediate complexity".  Yet, if
modeled directly, \optimal level" approaches introduce the problem of what is
\intermediate”, i.e. what is/are the corresponding threshold(s). Introducing the
derivative of knowledge or competences, such as in prediction progress or com-
petence progress-based intrinsic motivations, allows us to transfon the problem
into a maximization problem where no thresholds have to be de ned,and yet
allowing learning agents to focus in practice on activities of internediate com-
plexity (e.g. Oudeyer et al, 2007.

A central property of the \interestingness" measures based on the inease
of knowledge or competences is that they can allow a learning agent to disver
which activities or predictive relations are unlearnable (and even ank the levels
of learnability), and thus allow it to avoid spending too much time exploring
these activities when coupled with an action-selection system siicas in tra-
ditional reinforcement learning architectures, and where the rewvard is directly
encoded as the derivative of the performances of the learnt prediote models of
the agent (Schmidhuber, 1997). This has been demonstrated in various compu-
tational experiments (Baranes and Oudeyer 2009 Oudeyer and Kaplan, 2006
Schmidhuber, 1991 2006. An interesting side-e ect of these measures, used in
an intrinsic motivation system and in dynamical interaction with other brain
modules as well as the body and the environment, is also the fact thatt iallows
the self-organization of developmental stages of increasing complexitgharing
many similarities with both the structural and statistical propert ies of develop-
mental trajectories in human infants (Oudeyer et al, 2007). Some models even
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suggest that the formation of higher-level skills such as language and imitabn
bootstrapping could self-organize through intrinsically motivated exploration of
the sensorimotor space and with no language speci ¢ biase®©Odeyer and Ka-
plan, 20086.

Yet, those approaches to intrinsically motivated exploration and learning ad-
dress only partially the challenge of unlearnability, and leave largelyunaddressed
the challenges of high-dimensionality and unboundedness in real robat§irst of
all, while e orts have been made to make these approaches work robustlyn
continuous sensorimotor spaces, computing meaningful associated meassl of
interest still requires a level of sampling density which make hose approaches
become more and more ine cient as dimensionality grows. Even in boundd
spaces, the processes for establishing measures of interestingmean be cast into
a form of non-stationary regression problem, which as most regression pradhs
in high-dimension faces the curse-of-dimensionality Bishop, 2007). Thus, with-
out additional mechanisms, like the ones we will describe in this capter, the
identi cation of unlearnable zones where no knowledge or competencerggress
happens is a process that becomes ine cient in high-dimensions. fie second
limit of those approaches if used alone relates to unboundedness. Actuglwhat-
ever the measure of \interestingness", if it is only based in a way or andter on
the evaluation of performances of predictive models or of skills, one i&ced with
the following circular problem:

{ Those measures were initially designed to e ciently guide exploraton;

{ Those measures need to be \measured/evaluated";

{ By de nition, they cannot be known in advance, and the \measure of inter-
estingness" of a given sensorimotor subspace can only be obtained if at léas
explored/sampled a little bit;

{ In order to obtain meaningful measures, those sub-spaces cannot be too
large, and are ideally quite local;

{ In unbounded spaces, by de nition all localities (even at the maximalgran-
ularity allowing to obtain meaningful measures, which is anyway initially
unknown to the learner) cannot be explored/sampled within a life-time;

{ Thus, one has to decide which sub-spaces to sample to evaluate theiter-
estingness, i.e. one has to nd an e cient meta-exploration strategy, and we
are basically back to our initial problem with an equivalent meta-problem.
This meta-problem for evaluating interestingness requires a lesdense local
sampling of subspaces than the problem of actually learning mappings and
skills within those subspaces, but as the space is unbounded and thun -
nite, this theoretical decrease in required sampling density des not make
the meta-problem more tractable from a computational complexity point of
view.

As a matter of fact, this argument can also be made directly starting from
the framing of intrinsically motivated exploration and learning withi n the rein-
forcement learning framework, i.e. intrinsically motivated reinforcement learning.
Indeed, in this framework one re-uses exactly the same machinery arafchitec-
tures than in more traditional reinforcement learning, but instead of using a



Developmental constraints and intrinsic motivation 7

reward function which is specic to a given practical problem, one ugs a mea-
sure of interestingness such as the ones discussed above (e.g. aarelis provided
to the system when high prediction errors, or high improvement of skls/options

are observed). In such a way, the system can be made to learn how to aeke
sequences of actions that will maximize the sum of future discountedewards,
e.g. the sum of future discounted prediction errors or competence pgress. But
essentially, this de nes a reinforcement learning problem whib has the same
structure as traditional reinforcement learning problems, and espeially similar

to dicult traditional reinforcement learning problems given that the reward
function will typically be highly non-stationary (indeed, predict ion errors or
competences and their evolution are both locally and globally non-stationay

because of learning and of the external coupling of action selection and éhre-
ward function itself). Most importantly, as all reinforcement learni ng problems
applied to unbounded/in nite state-spaces, exploration is a very hard problem
(Sutton and Barto, 1998: even if the world would be discrete but with an un-
bounded/in nite number of states and associated number of options, howshould
exploration proceed? This problem is especially acute since when \aiche" of

prediction or competence progress/errors has been well-explored aneédrnt, it

provides no more rewards and new sources of intrinsic rewards musepmanently
be found. And as intrinsically motivated reinforcement learning was brmulated

as a way to explore e ciently the world to acquire potentially general skills that

may be re-used later on for solving speci c problems, we can indeececast the
meta-problem we just described as a meta-exploration problem.

Existing approaches of intrinsically motivated exploration can provide ef-
cient mechanisms which allow a robot to decide whether it is interesting to
continue or stop to explore a given sensorimotor subspace (or a local predictive
model or a skill/option or simply a subset of states) which it has already be-
gan to explore a little bit. But due to unboundedness, strategies forexploration
that may allow e cient organized acquisition of knowledge and skills need also
mechanisms for answering to the question: What shouldnot be explored at
all? The main argument that is put forward in this chapter is that
complementary developmental mechanisms should be introduced in
order to constrain the growth of the size, dimensionality and complex-
ity of practically explorable spaces. Those mechanisms, that we call
developmental constraints and are inspired by human development,
should essentially allow the organism to automatically introduce self -
boundings in the unbounded world (including their own body), suc h
that intrinsically motivated exploration is allowed only within those
bounds, and then progressively releasing constraints and boundings to
increase the volume of explorable sensorimotor spaces, i.e. the diver -
sity of explorable knowledge and skills . Indeed, there is actually no mystery:
e cient unconstrained exploration, even intrinsically motivated , of unbounded
in nite complex spaces, especially high-dimensional spaces, is possible within
a life-time. Adaptive constraints and bounds have to be introduced and ideally
these constraints should be as little ad hoc, as little hand-tuned andas little
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task-speci ¢ as possible while compatible with the real world (i.e.a real body
within the real physical environment).

The study of developmental constraints complementing or interactirg with
or even integrated within intrinsically motivated exploration and lear ning has
been the central topic of the research outlined in this chapter. Ths is achieved
with the long-term goal of elaborating architectures allowing a robot to acaquire
developmentally a repertoire of skills of increasing complexity oger a signi cant
duration (at least on the order of one month) and in large high-dimensional
sensorimotor spaces in an unbounded environment (which contrasts singly
with the existing experiments with real robots lasting most often afew minutes,
at best a few hours, and allowing the acquisition of a limited repertoie of skills).
Most of these developmental constraints that we are investigating are sbngly
inspired by constraints on human infant development, from which we &ke the
fundamental insight that complex acquisition of novel skills in the real world
necessitates to leverage sophisticated innate capabilities/corraints as well as
social constraints and constraints provided by self-organizatin that may unfold
with time in interaction with the environment during the course of epigenesis. In
the following, we will describe some of them and explain how they mayacilitate,
sometimes considerably, the exploration and acquisition of complex slks in real-
world sensorimotor spaces, more precisely:

{ Parameterized dynamic sensori and motor primitives, also referred
as muscle synergies, and their use in adequate embodiments: Hu-
man infants do not learn to control their whole body movements \pixel by
pixel". Rather, they are born with muscle synergies, i.e. neurallyembedded
dynamical systems that generate parameterized coordinated movemesite.g.
CPGs. These motor primitives, can considerably decrease the size tife ex-
plorable space and transform complex low-level action planning problemiin
higher-level low-dimensional dynamical system tuning problemsAs we will
show, their combination with intrinsic motivation is essential for the acquisi-
tion of dynamic motor skills in experiments like the Playground Experiment
(Oudeyer and Kaplan, 2006 Oudeyer et al, 2007). We will also discuss the
fact that adequate body morphologies can in addition facilitate the self-
organization of movement structures and thus be potentially leveraged
intrinsically motivated exploration and learning;

{ Task-level intrinsically motivated exploration: While biological bodies
are very high-dimensional and redundant, motor tasks considered indid-
ually often consist in controlling e ects in relatively low-dimen sional task
spaces. For example, while locomotion or reaching involve the coordinain
of a high number of muscular bers, these activities aim at controlling only
the three-dimensional trajectory of the body center of mass or of the hnd.
When human infants explore such sensorimotor spaces, they directlgxplore
what they can do in the task space/space of e ects Bremner and Slater,
2003 Rochat, 1989, and rather spend their time exploring how to produce
varieties of e ects with su cient means rather than exploring all me ans to
achieve a single e ect. Doing this, they exploit the low-dimensonality of task
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spaces in combination with the high redundancy of their bodies. We wi ar-
gue that similarly, intrinsic motivation in robots should operate directly in
tasks spaces. We will illustrate the e ciency of this approach by presenting
experiments using the SAGG-RIAC competence-based intrinsianotivation
system, pushing the robot to actively explore and select goals in its dsk
space;

{ Maturational constraints: Human infants are not born with complete
access to all their potential degrees of freedom. The neural systemaply
through myelination, as well as the body, progressively grow, openingofr
control new muscle synergies and increasing the range and resolution adrs
sorimotor signals. We will illustrate how such maturational processesan be
modeled and adaptively coupled with intrinsic motivation in the McSAGG-
RIAC system (Baranes and Oudeyey 2017), allowing a robot to learn skills
like reaching or omnidirectional locomotion not only faster, but also with a
higher asymptotic performance in generalization;

{ Social guidance: Last but not least, social interaction should be a cen-
tral companion to intrinsic motivation. The interaction between those two
guiding mechanisms is at the centre of educational researctRian and Deci,
2000. We will argue that this shall probably also become the case in devel-
opmental robots, and discuss the various kinds of bi-directional inteaction
between social guidance and intrinsic motivation that shall be usefulfor
open-ended learning in the real-world.

The choice of these families of developmental constraints on intrinsimotiva-
tion was here driven by our own investigations towards addressing thehallenges
of unlearnability, high-dimensionality and unboundedness, and is notintended
to be a comprehensive list of potentially useful mechanisms (for emple, de-
velopmental biases on representations, on mechanisms for creating abattions,
on operators for combining and re-using knowledge and skills, on statigtal in-
ference should be equally important, se@?). Furthermore, as already explained
earlier, we are still very far away from being able to address the ch&nge of
open-ended cumulative learning in unbounded spaces in the real-wiol, and the
approaches we present are still preliminary in this respect. Thusour goal is
mainly to draw attention to potential routes that may be pursued to address
a fundamental problem of developmental robotics that has been so far larggl
overlooked.

1 Intrinsic motivation and embodied sensorimotor
primitives

1.1 Bootstrapping learning in the \great blooming, buzzing
confusion”

The problem of discovering structure and learning skills in the \great blooming,
buzzing confusion" of a high-dimensional body equipped with a wideliversity
of sensors like the eyes, ears, nose or skin, as stated by William Jameka(nes
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1890, might seem a daunting task. Hopefully, animal and human babies do not
learn to see the world pixel-by-pixel, and likewise they do not éarn to control
their whole body movements \pixel by pixel". Rather, they are born with neu-
rally embedded dynamical systems which on the sensori side allow ém to be
able to detect and track a number of higher-level structures right fom the start,
and on the motor side allow them to tune motor and muscle synergies which
already generate parameterized coordinated movementsd{Avella et al., 2003
Lee 1984 Ting and McKay, 2007. Examples of innate sensori primitives in-
clude visual movement detection and tracking systems Bronson, 1974, basic
human facial expression perception Johnson 2001 Meltzo and Moore, 1977,
or special auditory Iters tuned for speech processing in humans $ekuler and
Blake, 1994. Examples of motor primitives include central pattern generators
such as for leg oscillations Cazalets et al, 1995, synergies for reaching with the
hand (d'Avella et al., 2000, closing the ngers in a coordinated manner such as
used in grasping (Meiss and Flanders 2004, or of course skills such as breath-
ing or swallowing (Dick et al., 1993. Of course, the existence of these primitives
does not avoid the fundamental need for learning, even for the most basiskills:
those primitives are typically parameterized, and thus can typically be seen as
parameterized dynamical systems which semantics (a ordances in paitular),
parameter values to be set and combination for achieving given tasks havi®
be learnt. For example, central pattern generators are typically neuraly imple-
mented as complex dynamical system generating oscillatory movementshich
can be tuned by controlling a number of high-level parameters (e.g. iputs to
the neural dynamical system), and learning will consist for example n discov-
ering that such a motor primitive can be used to \move" the whole body and
in learning which tuning of the dynamical system produces which novement of
the whole body. Yet, these sensorimotor primitives can consideralyl decrease
the dimensionality, and thus the size of the explorable sensorimotoraces and
transform complex low-level action planning problems in simpler hgher-level
dynamical system tuning problems.

The use of a repertoires of innate parameterized sensorimotor primities has
been key in some of the most advanced real-world intrinsically motivatd robot
experiments so far, such as in the Playground ExperimentQudeyer and Kaplan,
2006 Oudeyer et al, 2007 or in (Hart and Grupen, 2008 where primitives were
based on sophisticated control-theoretic sensorimotor feedback loop#n paral-
lel, several projects investigating the use of options in intrinstally motivated
reinforcement learning can be related to this concept of motor primitves: for
example, experiments such as inRBarto et al., 2004 Stout and Barto, 2010 as-
sumed the existence of a number of innate temporally extended skittemplates",
called \options", and corresponding to macro-actions which can be conceptal-
ized as parameterized motor primitives. In those simulations, evenfithe world is
discrete and nite, the system is nevertheless shown to be ablt® learn to achieve
complex skills corresponding to long sequences of actions that are egmely dif-
cult to learn with standard exploration procedures and only low-level actions.
In other words, those simulations also provide examples of how innate otor
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primitives can leverage the potentialities of intrinsically motivat ed exploration.
To give a more precise illustration of such uses of sensorimotor primites with
intrinsic motivation, we will now outline the Playground Experime nt (Oudeyer
and Kaplan, 2006 Oudeyer et al, 2007). Other experiments such as those de-
scribed in the references above would be equally relevant to ilstrate this point
and the reader is referred to them for more details.

1.2 Intrinsically motivated acquisition of a ordances and skills in
the Playground Experiment

The Playground Experiment was introduced as an experimental set-p allowing
us to show how one particular kind of intrinsic reward system, callel \Intelligent
Adaptive Curiosity" (IAC), could allow a real-world robot with high-di mensional
continuous sensorimotor channels to acquire continuously new skillsf increasing
complexity. As detailed in (Oudeyer et al, 2007, the central idea of IAC (which
was later importantly re ned in R-IAC ( Baranes and Oudeyey 2009) was to
push the robot to explore certain dynamic motor activities in certain sensori-
motor contexts where its predictions of the consequences of its actignin given
contexts were improving maximally fast, similarly to what was also proposed in
(Schmidhuber, 1997). A speci city of IAC was the introduction of algorithmic
heuristics allowing us to compute prediction progress e ciently and robustly
in relatively large continuous sensorimotor spaces. Such an approach basea
the optimization of prediction progress belongs to the family of \knowledge-
based" intrinsic motivation systems (Oudeyer and Kaplan, 2008. Yet, even if
driven by the acquisition of knowledge, the whole process is fundaentally ac-
tive (active choice of actions or sequences of actions in given sensory ¢exts)
and the forward models that are learnt can easily and e ciently be re-used
for control as soon as one uses non-parametric statistical approaches such as i
memory based approaches such as those presented Mdore, 1992 and adapted
in (Oudeyer et al, 2007, or multimap learning approaches such as in Calinon
et al., 2007 Ghahramani, 1993, or a mixture of non-parametric and multimap
approaches Cederborg et al, 2010. As a consequence, such active knowledge ac-
quired through knowledge-based intrinsically motivated exploration can readily
and directly be used for e cient control, as quantitatively shown in (Baranes and
Oudeyer, 2009, and thus the IAC system allows the robot to learn a repertoire
of skills of progressively increasing complexity in the Playground Experimat.

1.2.1 Parameterized Motor primitives in the Playground Experi-

ment. As argued in the previous paragraph, previous articles presenting the
Playground Experiment largely focused on the study of IAC and its rolein the
obtained results. Yet, a second essential ingredient was the use oamameterized
dynamic motor primitives as well as sensory primitives, on top of whichexplo-
ration and learning was actually happening. Here we try to emphasize theale
of those innate (but still very plastic thanks to their parameters) structures to
show two complementary points:
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{ These parameterized motor primitives consist in complex closed-lmp dynam-
ical policies which are actually temporally extended macro-actions (andhus
could very well be described in terms of options), that include at the low-
level long sequences of micro-actions, but controlled at the high-iel only
through the setting of a few parameters; Thus, behind the apparently\single-
step look ahead" property of the system at the higher-level, the Plaground
Experiment shows the acquisition of skills consisting in complexsequences
of actions;

{ The use of those parameterized motor primitives allows the robot to en-
code those whole sequences of micro-actions into constrained compaotv-
dimensional static projections that permit an exploration with IAC th at is
made considerably easier than if all physically possible movementsaad been
made possible and explorable \pixel-by-pixel";

1.2.2 Experimental setup and description of primitives The Play-
ground Experiment setup involves a physical Sony AIBO robot which is pt on a
baby play mat with various toys, some of which a ording learnable interactions,
and an \adult robot" which is pre-programmed to imitate the vocalization of t he
learning robot when this later robot produces a vocalization while lmking in the
direction of the adult robot (see gure 1). The AIBO robot is equipped with four
legs, each equipped with three degrees of freedom controlled by semotors (the
degrees of freedom are not controlled directly, but through the many dinensions
of the control architecture of the motors), with one head with four degree of
freedom including a mouth, with a loudspeaker, as well as with a vide camera,
an infra-red distance sensor mounted on the chin and a microphone. Her¢he
back legs are blocked so that the robot is not able to locomote, similarly @
young human infants in the rst months of their life. Given such a rich senso-
rimotor apparatus in such an environment, it is clear that if action generation
and exploration started at the level of millisecond-wide force commandsn the
motors and no further constraints on the movement pro les were addedand if
perception started from the level of individual camera pixels or milisecond-wide
spectrogram auditory features, the sensorimotor space would be so large dah
learning and development would be highly ine cient if not impossibl e.

In order to avoid this problem, the following parameterized motor and £nsory
primitives are made available to the robot, and can be used either alone oin
combination (concurrently or in sequence in theory, but so far the Payground
Experiment was only made with the concurrency combination operator):

{ Bashing motor primitive: This motor primitive allows the robot to pro-
duce a bashing movement with either one of its two fore legs, and is pa-
rameterized by two real numbers indicating the strength and angle of he
bashing movement. Based on these parameters, a lower-level contrtiieo-
retic architecture rst selects the appropriate group/synergy of motors to
be used (depending on the angle, motors of the right or left leg shall be
used), and then starting from a template movement of the tip of the leg in
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Fig. 1. The Playground Experiment setup involves a physical Sony AIBO robot
which is put on a baby play mat with various toys, some of which a ording learn-
able interactions, and an \adult robot" which is pre-programmed to imitate the
vocalization of the learning robot when this later robot produces a vocaka-
tion while looking in the direction of the adult robot. The learning rob ot is
equipped with a repertoire of innate parameterized sensorimotor prhitives, and
learns driven by intrinsic motivation how to use and tune them to a e ct various
aspects of its surrounding environment. Complex self-organized delopmental
trajectories emerge as a result of intrinsically motivated exploraton, and the set
of acquired skills and a ordances increases along with time.

its operational/task space (Khatib, 1987, uses it to de ne a target trajec-
tory to be followed by the tip of the leg with a certain acceleration pro le
(corresponding to the force parameter), which is then passed to a \er-level
closed-loop action-selection mechanism which generates the approgté mo-
tor currents/torques, in response to real-time position/speed/accetration
errors measured proprioceptively within the motor, at a frequencyaround
1 kHz and based on a standard PID algorithm Chung et al., 2009. As a
consequence, once the two high-level parameters of the primitivedve been
set, an automatic dynamical system/policy is generated and is launched to
control leg movements, which thanks to the low-level PID servoiry controller
react and are robust to potential external perturbations. While the parame-
terization of these bashing movements compresses drastically the igeration
of movement, it still allows the robot to produce a constrained but very large



14

Pierre-Yves Oudeyer, Adrien Baranes, Feceric Kaplan

number of movements that are not unlike the reaching primitives of young

human infants. Also to be noted is the fact that special values (-1,-1) are
used for the parameters to inhibit the primitive (it is not launche d), and

this applies to all other motor primitives. Concurrency and combination of

primitives are managed through this encoding mechanism;

{ Crouch biting motor primitive: This motor primitive allows the robot

to crouch down while opening the mouth and then nally closing the mouth,
in which an object may potentially be bitten. It is parameterized by the
amplitude of the crouch movement, and optionally by a parameter controling
the timing of the closing of the mouth. Furthermore, this primitiv e is such
that it keeps the orientation of the head as it is before the primitive is
launched, which basically allows to have the e ect of this primitive partially
controlled by the use of other concurrent motor primitives controlling the
head, such as the \Turn head" primitive below. Once the parameters ae set,
a control-theoretic low-level system very similar to the one for he bashing
motor primitive is launched: given the set of motors associated with ths
primitive, here those of the two legs and of the mouth, and a reference
target trajectory of each of these motors (which shape is spline-likeland
directly controlled by the parameters, a low-level PID based motiontracking
system is launched to control the low-level sequences of motor toraicurrent
commands;

{ Turning the head motor primitive: This motor primitive allows the

robot to direct its head in a direction determined by two parameters con-
trolling its head pan and tilt. Again, those parameters trigger a lower-level
control loop that gets the head from the current position to the desiredori-
entation through low-level torque control. This motor primitive is essential
for the robot since the head supports the camera and the infra-red sens.
Thus, this motor primitive allows the robot to direct its sensors in given
directions of the environment;

{ Vocalization motor primitive: This motor primitive allows the robot

to produce vocalizations consisting of prototypical \baba" like sounds which

are parameterized by their fundamental frequency, more preciseltheir mean
pitch value. Of course the AIBO robot does not have a physical vocal trag

so a speech synthesizer is used instead (which may be seen hitfiss a model
of a vocal tract), and the dynamic sounds to be produced are constrainetb

be basic syllables, corresponding to \canonical babbling" (innate stegotyp-
ical coordinated actions of many muscles in the human mouth KacNeilage

2008), for which the robot is only authorized to modify the mean pitch;

{ Movement sensory primitive: This sensory primitive allows the robot to

assess whether something is moving, e.g. oscillating, right in the déction in
front of its nose where the infrared sensor is positioned. It basicallgonsists in
a lter operating on short time windows of the past infrared sensor values,
which is then saturated to provide a binary value (0 if no movementis
detected, and 1 if a movement is detected). This sensory primite is not
unlike the innate movement detectors of the visual system of humanrifants
(Bronson, 1974;
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{ Visual object detection sensory primitive: This sensory primitive al-
lows the robot to assess whether an \object" is visually present in i narrow
eld of view, an object being de ned as a group of pixels with certain salency
properties. In the Playground experiment, those measures of saliey were
short cut by the use of visual markers directly put on objects to be pe-
ceived as \salient". This sensory primitive thus provides high-level Iters
upon the pixel matrix of the camera, which are functionally not unlike the
facial presence and facial expression innate detectors in human infasit,

{ Mouth grabbing sensory primitive: This sensory primitive allows the
robot to assess whether he is holding something in the mouth or not, and
relies on the use of a Iter above the proprioceptive sensors in ta mouth,
saturated so that the end value is also binary;

{ Auditory pitch sensor: This sensory primitive allows the robot to measure
the mean pitch of the sounds perceived in the short past, typically keing a
continuous value when a vocalization has been produced by the other rat
and either a value 0 or a random value for noises produces during motor
interaction with objects. This sensor is automatically disabled while the
learning robot is producing its own vocalizations (but it could very well
not be the case, which would also produce interesting behaviours)

1.2.3 What the robot may explore and learn The sensorimotor prim-
itives described in the previous paragraph constitute a signi cant anount of
innate structures provided to the robot. Yet, those motor and sensorymotor
primitives are tools which semantics, parameterization, combinationand a or-

dances both among themselves and with the environment should be learnin-

deed, from the point of view of the robot, each of these primitives are ldck boxes
in which uninterpreted numbers can be sent, and from which uninerpreted num-
bers can be read. The relations among those black boxes, especially iveen the
motor and sensory primitives, are also totally unknown to the robot. In practice,
this means that the robot does not know initially things such as the fact that

using the \bashing primitive" can produce controllable values in the \movement
sensory primitive" (an object oscillating after being bashed) and vhen applied
in certain regions of its sensorimotor space (with particular parameter alues
in relation to the position of an object), and in coordination with the \tur ning
head primitive" which allows to direct the sensors in the direction of the physi-
cal e ect of the bashing primitive. Another example is that the robot shall not
know that predictable, and thus controllable, auditory sensations coresponding
to the adult robot's vocalization shall be triggered by vocalizing while at the
same time looking in the direction of the other robot, and the robot shall ot
know how particular parameters of the vocalization itself can a ect the imita-

tion of the adult robot (which is by the way perceived just as other standard
salient \objects"). As a result, in the Playground Experiment, the r obot has to
explore and learn how the use of the motor primitives, with their continuous
space of parameters, as well as their concurrent combination (e.g. bashgrwith

given parameters achieved concurrently with turning the head with given pa-
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rameters), allows (or does not allow) to predict and control the valuesof subsets
of the sensory primitives. Details are described in Qudeyer and Kaplan, 2006
Oudeyer et al, 2007).

In spite of the fact that those motor and sensory primitive considerablycon-
strain and reduce the sensorimotor space to be explored for acquiring &on
knowledge and thus skills, it is still a rather large space in comparisn with the
physical time necessary to achieve one single sensorimotor experintgi.e. ex-
perimenting how a vocalization with certain parameters might make a by move
- actually the robot shall discover that this is not possible - or make one othe
surrounding objects - the adult robot - produce another vocalization).Indeed, in
its most simple version, the above primitives still de ne a 6 dimensional continu-
ous space of motor parameters and a 4 dimensional space of sensory parameters
constituting a 10 dimensional sensorimotor space. Such a dimensionglishall
not be daunting for sampling and modeling an abstract space in a computesim-
ulation where individual experiments last a few milliseconds and ae thus cheap
in terms of time. Yet, for robots as for living animals, actions take time ard a
reaching, bashing or vocalization attempt lasts at least two or three secous. As
a consequence, sampling randomly the space of sensorimotor experinemwould
lead to ine cient and slow acquisition of the learnable skills. This is the reason
why the use of sensorimotor primitives in combination with intrinsically moti-
vated exploration can really allow each mechanism to leverage the poterdlities
of each other.

1.2.4 Results of experiments We outline here the various results that
came out of repeated experiments. For further details, the reader igeferred
to (Oudeyer and Kaplan, 2006 Oudeyer et al, 2007). During an experiment,
which lasts approximately half-a-day, we store all the ow of values of he sen-
sorimotor channels, as well as a number of features that help us to charagtize
the dynamics of the robot's development. Indeed, we measure the eudion of
the relative frequency of the use of the di erent actuators and motor primitives
(analogous measures were also used to study the behavioural structuie in-
trinsically motivated exploration in ( Schmidhuber, 2002. In particular, we also
constantly measure the direction in which the robot is turning its head. Figure
2 shows details of an example for a typical run of the experiment.

Table 1. Stages in the robot's developmental sequence

description stage O stage 1jstage 2/stage 3
individuation of actions - + + +
biting and bashing with the right a ordances - - + +
focused vocal interactions with the adult - - - +

Self-organization of developmental stages and a ordance learning
From the careful study of the curves on gure 2, augmented with the study of the
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Fig.2. Top curves: relative frequency of the use of di erent motor primitives in
the Playground Experiment. Bottom curves: frequency of looking tavards each
object and in particular towards the \adult" pre-programmed robot. We can

observe that the robot explores, and thus learns, progressively more cqofex
and more a ordant skills.

trace of all the situations that the robot encountered, we observe that (1)there
is an evolution in the behavior of the robot; (2) this evolution is characteized by
qualitative changes in this behavior; (3) these changes correspond to sequence
of more than two phases of increasing behavioral complexity, i.e. we obsve
the emergence of several successive levels of behavioral patterhoreover, it
is possible to summarize the evolution of these behavioral patterns sing the
concept of stages, where a stage is here dened as a period of time dougi
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which some particular behavioral patterns occur signi cantly more often than
random and did not occur signi cantly more often than random in previous
stages. This de nition of a stage is inspired from that of Piaget (Piaget, 1952.
These behavioral patterns correspond to combinations of clear deviatiasfrom
the mean in the curves in gure 2. This means that a new stage does not imply
that the organism is now only doing new things, but rather that among its
activities, some are new. Here are the di erent stages that are visuallydenoted
in gure 2 and table 1:

{ Stage 0: The robot has a short initial phase of random exploration and body
babbling. This is because during this period the sensorimotor spackas not
yet been partitioned in signi cantly di erent areas. During this s tage, the
robot's behavior is equivalent to the one we would obtain using random
action selection: we clearly observe that in the vast majority of casesthe
robot does not even look or act towards objects, and thus its action on the
environment is quasi-absent. This is due to the fact that the sensamotor
space is vast and only in some small sub-parts some non-trivial learnable
phenomena can happen given its environment.

{ Stage 1: Then, there is a phase during which the robot begins to focus
successively on playing with individual motor primitives, but without the
adequate a ordances: rst there is a period where it focuses on tryimg to bite
in all directions (and stops bashing or producing sounds), then it fauses on
just looking around, then it focuses on trying to bark/vocalize towards all
directions (and stops biting and bashing), then to bite, and nally to bash
in all directions (and stops biting and vocalizing). Sometimes the rolot not
only focuses on a given actuator, but also looks in a focused manner towds
a particular object at the same time: yet, there is no a ordance betwea the
actuator used and the object it is looking at. For example, the developig
robot tries to bite the "adult” robot or to bark/vocalize towards the elep hant
ear. Basically, in this stage, the robot is learning to decompose its motor
space into di erentiable sub-parts which correspond to the use of derent
(combination of) motor primitives. This results from the fact that usi ng one
or two primitives at time (typically either bashing/biting/vocalizi ng together
with turning the head in a particular direction) makes the SM (t) ! S(t+1)
easier to learn, and so at this stage in its development, this is what tk robot
judges as being the largest niche of learning progress.

{ Stage 2: Then, the robot comes to a phase in which it discovers the precise
a ordances between certain motor primitives and certain particular \ob-
jects": it is now focusing either on trying to bite a biteable object (an ele-
phant ear) and on trying to bash a bashable object (a suspended toy). Fu
thermore, the trace shows that it does actually manage to bite and bash
successfully quite often, which shows how such capabilities cabhe learnt
through general curiosity-driven learning since no reward speci cto these
speci c tasks are pre-programmed. This focus on trying to do actionséwards
a ordant objects is a result of the splitting mechanism of IAC (OQudeyer
et al., 2007, which is a re nement of the categorization of the sensorimotor
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space that allows the robot to see that, for example, there is more learn-
ing progress to be gained when trying to bite the biteable object thatwhen
trying to bite the suspended toy or the "adult” robot (indeed, in th at case,
nothing happens because they are too far, and so the situation is alwaygery
predictable and does not provide a decrease in the errors in predion.).

{ Stage 3: Finally, the robot comes to a phase in which it now focuses on
vocalizing towards the "adult” robot and listens to the vocal imitation s that
it triggers. Again, this is a completely self-organized result of the inrinsic
motivation system driving the behavior of the robot: this interest for vo-
cal interactions was not pre-programmed and results from exactly the same
mechanism which allowed the robot to discover the a ordances betwee cer-
tain physical actions and certain objects. The fact that the interest in vocal
interaction appears after the focus on biting and bashing comes from the
fact that this is an activity which is a little bit more dicult to le arn for
the robot, given its sensorimotor space and the playground environmentn-
deed, this is due to the continuous sensory dimensions which arevalved in
vocalizing and listening, as opposed to the binary sensory dimensionshich
are involved in biting and bashing.

We made several experiments and each time we got a similar global structa in
which a self-organized developmental sequence pushed the robot tamds prac-
ticing and learning activities of increasingly organized complexity, particularly
towards the progressive discovery of the sensorimotor a ordances as wels the
discovery for vocal interactions. In particular, in the majority of d evelopmen-
tal sequences, there was a transition from a stage where the robot acteditiv
the wrong a ordances to a stage where it explored motor primitives with the
right a ordances and in particular nishing by a stage where it explored and
focused on vocal interactions. Nevertheless, we also observed thatd develop-
mental sequences are never exactly the same, and the number of stagesne-
times changes a bit or the order of intermediary stages is sometimes dérent. We
then conducted systematic experiments to assess statisticallyhbse properties,
as described in Qudeyer et al, 2007, and we found that strong structural regu-
larities were appearing in a statistically signi cant manner and at the same time
that diversity of the details, and cases which varied importantly from the mean,
appeared. This is particularly interesting since this duality between universal
regularities and diversity in development pervades human infant dgelopment,
as described in the developmental psychology literatureBerk, 2008 Fisher and
Silvern, 1985, a property which has been so far only poorly understood and for
which such a computational experiment suggest original hypothesis.
Formation of developmental cognitive categories. In addition to driv-

ing the exploration of the space of sensory and motor primitives and theicom-
binations in given environmental contexts, the IAC architecture builds internal
categorization structures, called \regions" (Oudeyer et al, 2007, and used to
separate sensorimotor subspaces of various level of \interestingness'ei of var-
ious level of learnability/controllability. As argued in ( Kaplan and Oudeyer,
2007, those categories initially made at the service of the intrinsic motivation
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system, are formed gradually and their properties re ect important properties of
fundamental general conceptual categories to be discovered by the hian/robot
child: in particular, it allows the learning agent to separated its own body - i.e.
the self - (maximally controllable), from inanimate surrounding objects (mod-
erately controllable) and from other living entities (less controllable but still
important niches of learning progress), and nally from the unlearnable and
uncontrollable. A similar approach to the bootstrapping of these fundarental
cognitive categories was also presented irKemp and Edsinger, 2006.

Skill acquisition: From the knowledge of action consequences to di-
rect control . In the Playground Experiment, exploration is driven by the search
of maximal improvement of the predictions of the consequences of ugjnmotor
primitives upon sensory primitives in given environments. Thus it is actively
driven by the acquisition of knowledge about the consequences of actieni.e. by
the acquisition of \forward models". If forward models would be encodedusing
parametric regression methods such as standard neural networks, thehwould
be complicated and highly ine cient to transform this knowledge int o a compe-
tence, i.e. to reuse this knowledge to achieve practical goals, andtis one may say
that the learning agent would not have learnt skills. Hopefully, reseach in robot
learning and stochastic control theory based on statistical inferencénas shown
that if forward models are encoded using certain forms of non-parametd mod-
els (Bishop, 2007, such as in memory-based approachesSghaal and Atkeson
1995, then there are simple and e cient methods to directly reuse the acquired
knowledge to achieve e cient control, even in high-dimensional higHy-redundant
robot bodies (Baranes and Oudeyer 2009 Moore, 1992. It has also been shown
in the same literature that instead of either learning forward or inverse models
with experimental data collected by a robot of the type in the Playground Ex-
periment, one could learn both at the same time using multimap modelssuch
as in Gaussian Mixture Regression Calinon et al., 2007 Cederborg et al, 2010
Ghahramani, 1993. In the Playground Experiment, non-parametric models sim-
ilar to (Moore, 1992 were used and thus allow the robot to acquire permanently
new skills as it is exploring the world, even if driven by the acquisition of new
knowledgeabout the consequences of its actions. A second collateral advantage
of using non-parametric statistical approaches over parametric approactesuch
as standard neural networks is that it avoids catastrophic forgetting: nev ex-
periments by the robot allow it to acquire novel skills without forgetting any of
the previously learnt knowledge and skills. In more recent expements, such as
experiments about a new version of IAC, called R-IAC, which is algorihmically
more robust from several respects, a combination of non-parametric learng and
multimap regression based on Gaussian mixtures was used and it was quatati
tively shown how it could be reused e ciently for controlling a hi gh-dimensional
redundant body (Baranes and Oudeyey 2009.

1.2.5 Embodiment and morphological computation We have just seen
how sensorimotor primitives, viewed as dynamical systems contrdlg high-
dimensional bodies but tuned by low-dimensional parameters, couldbe con-
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siderably useful when combined with intrinsic motivation for learning complex
sensorimotor skills in a real robot. Actually, the e ciency of those pri mitives
is tightly related to the morphological properties of the body in which they are
used. First, the inputs and structure of those primitives only make sense within a
given body structure. Second, the outputs of those primitives do ot entirely de-
termine the movements/behaviour of the robot body: indeed, the plysics of real-
world robots is such that gravity, and its interaction with the inerti a of the robot,
in combination with the compliance and other dynamical properties of matei-
als and actuators, also impact importantly the resulting movements/behaviour.
Furthermore, the morphology of a robot might be more or less a ordant with
the environment (Gibson, 1986, and thus make the control of various aspects
of the environment more or less easy to learn: for example, it will be meh more
di cult to learn how to grasp an egg for a robot with a gripper made of two sti
metal ngers than for a robot with a multi- nger soft compliant hand. Equal ly,
a robot with an anthropomorphic head with a wide-angle camera will more eas-
ily trigger and perceive human social cues than a robot with no head and a
narrow-angle camera directed to its foot.

Thus, the impact of morphology on control and behaviour is paramount. An
adequately designed morphology can allow to signi cantly reduce the comigxity
of its traditional control code/system for a given set of tasks, and can everbe
conceptualized as replacing traditional digital control computations by \p hys-
ical" or \morphological computation" ( Paul, 2004 Pfeifer and Bongard 2006
Pfeifer et al., 2007, Pfeifer and Scheier 1999. A number of experiments explor-
ing this principle have been presented in the literature, conerning skills such
as grasping {Yokoi et al., 2004, quadruped locomotion (lida and Pfeifer, 2004,
robot sh swimming ( Ziegler et al,, 2006, insect navigation (Franceschini et al,
1992, as well as biped humanoid locomotion or emergent physical human-robot
interfaces (Ly et al., 2011 Ly and Oudeyer, 201Q Oudeyer et al, 2011). The
body itself, as a physical dynamical system subject to the laws of lpysics, should
actually be considered as any other complex dynamical system, which capo-
tentially generate spontaneously organized structures through self-granization
(Ball, 1999.

As a consequence, the spontaneous structures potentially generated he
body complement and interact with the structures provided by sensorimotor
primitives, and shall equally be leveraged for intrinsically motivated learning of
sophisticated sensorimotor skills in the real world. Like when one usea given
set of innate sensorimotor primitives, a given body with given morphobgical
properties is by de nition particular. These innate constraints of course intro-
duce biases: they will help the robot to acquire certain families of kills rather
than other families of skills. But this is in no way incompatible wit h the goal
of building machines capable of open-ended development and learningndeed,
\open-ended learning" does not imply that the robot shall be able to learnuni-
versally anything, but rather simply that he shall be able to learn continuously
novel skills. Again, due to unboundedness in particular, e cient universal skill
learning in the real world is probably impossible, and constraints at alllevels



22 Pierre-Yves Oudeyer, Adrien Baranes, Feceric Kaplan

need to be employed to make learning of particularfamilies of skills in par-
ticular families of environment. This actually applies to intrinsic motivation

systems themselves, for which no measure of \interestingness" gt be uni-
versally useful, as argued in the evolutionary perspective preseatl in (Singh
et al., 2010. Furthermore, using particular constraints, in particular morpho-

logical constraints, for a particular family of skills and environments does not
mean either that they are necessarily ad hoc. For example the human bgdhas
very particular properties that considerably help the acquisition of a versatile
and diverse repertoire of motor skills.

1.2.6 Limits and perspectives  The Playground Experiment has shown how
a high-dimensional robot could learn incrementally a repertoire of dierse and
relatively complex skills and a ordances through curiosity-driven exploration.
We have argued above that these results could be obtained thanks to thaese of
innate parameterized motor and sensory primitives as much as to the usef an
intrinsic motivation system. Yet, next to these promising results, many limits
and avenues for improvement may be found in both the experimental etup and
the algorithmic approach.

Firstly, while we have explained that knowledge based intrinsi@ally motivated
exploration allowed to acquire skills as a side e ect when using nomparametric
and/or multimap models, one could wonder what could be gained by using
competence based intrinsically motivated exploration Bakker and Schmidhu-
ber, 2004 Baranes and Oudeyey 2010g Oudeyer and Kaplan, 2008 Schembri
et al., 2007y Stout and Barto, 2010, i.e. an architecture directly driven by the
acquisition of skills (see alsdRolf et al., 2010for a related approach). In princi-
ple, there may be good reasons to use competence based approaches tmiui
animal and human development given the central importance of skills for he
survival of living beings, and for the usefulness of robots (se&?). In the Play-
ground Experiment, it may be noted that the motor parameter space is mut
larger and more complex than the space de ned by the sensory primitivs, i.e.
the command/action space is much larger than the task/e ect space. This is
partly the result of having redundant motor primitives. If one is eventually in-
terested in the skills that the robot may learn, and if skills are de ned in terms
of what changes in the external (or internal) environment the robot can produce
by its actions (e.g. making an object move, being grasped, or produce sods),
then this means that one should prefer that the robot learns one strategy @
achieve all possible e ects rather than many strategies to achieve onla subset
of potential e ects. Thus, in such redundant spaces it would be ineresting that
exploration be driven directly by the evolution of performances for producing
e ects in task spaces, hence directly by evolution of competencesn section 2,
we will present an example of such competence-based intrinsic mettion sys-
tem where active exploration takes place directly in the task space (e. realizing
what is sometimes called goal babblingRolf et al., 2010, and show quantita-
tively how it can improve the speed of skill acquisition in a high-dmensional
highly-redundant robot.
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Secondly, while the use of such sensorimotor primitives in combinddn with
intrinsic motivation is probably necessary for bootstrapping devebpmental learn-
ing in real sensorimotor spaces, it addresses only very partially and im limited
manner the fundamental problem of unboundedness. As shown above, these of
sensorimotor primitives can be used as a transform mapping a high-dimmsional
continuous problem into a much lower dimensional continuous problemHarness-
ing dimensionality is fundamental, but it is nevertheless not su cient to address
unboundedness. Indeed, low-dimensional spaces could very we# themselves in-
nite/unbounded, e.g. one could typically have a motor or sensory primitive with
parameters or values in an unbounded space, or alternatively one could vemell
have an in nite number of low-dimensional bounded sensorimotor prinitives. In
such contexts, intrinsic motivation systems face the meta-exploraibn problem:
evaluating \interestingness" itself becomes very di cult. As argued above, un-
boundedness is probably an obstacle that shall not be attacked frontally. Rther,
mechanisms for introducing \arti cial" bounds are necessary (in addition to the
bounds created by intrinsic motivation systems once interestingnes has been
e ciently evaluated). This is what was done in the Playground Experi ment:
all parameters of motor primitives, as well as all sensory values, were boged
in a compact hypercube within R", and there was a small number of motor
primitives.

This self-bounding approach may be a bit too drastic and problematic ér
allowing open-ended acquisition of novel skills upon a longer lifeitne duration.
A rst aspect of the limits of such an arti cial bounding is related to t he very
introduction of xed relatively ad hoc bounds on the values of sensorinotor
primitive parameters. It might be di cult to tune those bounds manu ally in
order to allow the spaces to be explorable and learnable, and once the robot
has reached these boundaries of what can be learnt and explore, an obstacle
to further development appears. Introducing bounds is essentialbut clearly
autonomous open-ended development needs more exibility. One possde way
of addressing this challenge is to consider the possibility of usinghaturational
mechanisms, inspired by the progressive growth and maturation of the bdy
and brains of living beings, which permit to control the dynamic selftuning
and self-expansion of these bounds. This includes mechanisms coolling for
example the progressive increase of the sensitivity of sensors, or dfg number
of degrees of freedoms and range of motor commands. Secti@nwill present
a system combining such maturational constraints with intrinsically motivated
learning and draw some perspectives on the future challenges that th entails.

A second aspect of introducing such arti cial boundings is related tothe
use of xed and limited set of motor and sensory primitives. This equaly limits
the extent to which open-ended development may be achieved on a Iger time
scale. A rst important direction of research in order to remove this barrier is to
generalize the introduction of operators for combining primitives andmake them
recursive. Only a simple concurrency combination operator was availde in the
Playground Experiment, but many other kinds of operators could be imagired.
The most obvious one is sequencing, allowing the robot to learn higheeisel
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skills involving plans based on the motor primitives (thus in addition to the
low-level motor sequences inside the motor primitives), that maybe coupled
with operators allowing to encapsulate such plans/high-level skillsinto macros
that can be re-used as atomic actions. Those objectives are at the centre of
research combining intrinsically motivated reinforcement learnihg and option
theory, and more generally approaches to cumulative learning, and the reaat is
referred to the following articles for an overview of those techniges Bakker and
Schmidhuber, 2004 Barto et al., 2004 Ring, 1994 Sutton et al., 1999 Wiering
and Schmidhuber, 1997). A second equally important direction of research to
go beyond a xed set of sensorimotor primitives is social learning: mdwnisms
such as learning by imitation or demonstration may be very useful to hé a
robot acquire novel primitives and novel combinations of those primiives. More
generally, while research on intrinsically motivated skill acquistion has largely
focused on pure autonomous learning for methodological reasons, human infan
learn and develop through a strong interaction of intrinsically driven learning
and social guidance. Likewise, this interaction should probably be keyin the
strategies to be employed to face the challenge of open-ended devetognt in an
unbounded world, which we will discuss in sectior.

2 Intrinsically motivated exploration and learning
directly in task spaces

As argued earlier in this article, robots are typically equipped with a very large
sensorimotor space, in which motor policies are typically embedded irhigh-
dimensional manifolds. Yet, many real world tasks consist in controllirg/e ecting
only a limited number of sensory variables based on the use of high-dimsional
motor commands. For example, a hand reaching task consists in positioning
the hand in a three dimensional visual space, which contrasts with te many
muscles that need to be activated to achieve this reaching. A bipedocomotion
task is de ned in terms of the three-dimensional trajectory of the centre of mass,
achieved with very high-dimensional control of all the degrees of freemm of the
body. Related to this high dissimilarity between the dimensionalty of many tasks
and the dimensionality of their associated control/joint space, is the fct that
human and robot motor systems are highly redundant. Goals in a task space
(e.g. the position of the hand in three dimension) can typically be reabed by
many motor programs.

This property can importantly be exploited to design intrinsic moti vation
systems that drive exploration in such high-dimensional redundant paces.
Knowledge-based intrinsic motivation systems and traditional active learning
heuristics drive exploration by the active choice of motor commands and rea-
sure of their consequences, which allows to learn forward models &h can be
re-used as a side e ect for achieving goals/tasks: this approach is sub-tmal in

% Part of the material presented in this section is adapted from ( Baranes and Oudeyer,
20103 tted)
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many cases since it explores in the high-dimensional space of motor comnds
and considers the achievement of tasks only indirectly. A more e cient approach
consists in directly actively exploring the space of goals within taskspaces, and
then learn associated local coupled forward/inverse models (possiplthrough
local goal-driven active exploration) that are useful to achieve those goalsFor
example, if we consider the learning of a hand reaching task, the kndedge based
approach would actively sample the set of joint motor commands and observe
the resulting three dimensional hand position. This exploration pracess will not
consider the distribution of explored hand position, and in addition to being
embedded in a high-dimensional space if the arm has many degrees of fiee,
may lead to learning many joint motor commands that produce the same hand
position, while not necessarily learning how to reach many other hand psitions.
On the other hand, task-level exploration will directly and actively explore the
space of goals, actively choosing three dimensional hand con gurations toeb
reached and then launch a lower-level process for exploration of theint space
directed to the selected goal. Here, rather than learning many motor progams
allowing to reach one goal, the robot will learn to reach many goals, maybe wit
few motor solutions for each goal. This allows to exploit redundancy and low
dimensionality of the task space. Such a task-level approach belongs tHamily
of competence based intrinsic motivation systemsQudeyer and Kaplan, 2008.

In the next section, we illustrate how this approach can be useful irthe con-
text of the SAGG-RIAC architecture. Actually, as it happens in SAGG -RIAC,
task level/goal exploration and control level/joint exploration can be integrat ed
in a single hierarchical active learning architecture. This architecture is orga-
nized in two levels: at a higher level, the robot chooses actively goat® explore
(for example points in the visual space that may be reached by its hand)and
at a lower level the robot actively performs local exploration to learn fow to
reach goals selected at the higher level. Hence, globally the exploratios guided
by motor exploration in the task space, where goals are de ned as particular
con gurations to reach (possibly under certain constraints, e.g. a goal mg be
to reach a given position with the tip of the arm through a straight line or while
minimizing the spent energy). Yet, in spite of having a task spacevhich dimen-
sionality can be considerably smaller than the control space (e.g. often ddow
ve), sophisticated exploration heuristics have to be used due toa speci ¢ novel
problem that appears in goal babbling/task level exploration. Indeed, a hunan
or a robot does not know initially what parts of the task space are \reachable":
the robot knows neither its learning limits nor its physical limit s. If we take again
the example of the reaching task, initially the robot will not know whi ch part of
the three dimensional visual space can or cannot be reached with its handome
goals may be impossible to reach because of physical limitation, some othgoals
may be too di cult to learn to reach given its inference capabiliti es, and some
other goals may be too dicult to reach now but become reachable later on
after learning basic motor programs that can be re-used for these more di wlt
goals. Thus, e cient exploration requires that the robot identi es qu ickly the
parts of the task space where goals are not reachable at a given point of its
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development, and focus exploration on trying to learn goals that are actualy

reachable, and thus learnable. This directly leads to the idea of trasposing the
concept of \prediction improvement' - characterizing the (non-)interestingness
of motor commands in knowledge-based architectures - into a concept of -

petence improvement" - characterizing the (non-)interestingress of goals in the
task space.

2.1 SAGG-RIAC: multi-level active learning

In order to illustrate the interest of task level exploration, we outline here the
SAGG-RIAC active learning architecture, introduced in (Baranes and Oudeyer
20109, and present it in the context of a reaching task example (but it can
be trivially adapted to other sensorimotor spaces). We also present gperiments
evaluating the gain compared to knowledge-based architectures such &&1AC.

SAGG-RIAC transposes some of the basic ideas of R-IAC, combined withdieas
from the SSA algorithm (Schaal and Atkeson 1994, into a muti-level active

learning algorithms, called Self-Adaptive Goal Generation R-IAC algo-

rithm (SAGG-RIAC) . Unlike R-IAC that was made for active learning of
forward models, we show that this new algorithm allows for e cient learning of
inverse models in redundant robots by leveraging the lower-levetlimension of
the task space. The central idea ofSAGG-RIAC  consists in pushing the robot
to perform babbling in the goal/operational space, as opposed to motor babblig
in the actuator space, by self-generating goals actively and adaptively imegions
of the goal space which provide a maximal competence improvement for aghing
those goals. Then, a lower level active motor learning algorithm, inspied by the
SSA algorithm (Schaal and Atkeson 1994), is used to allow the robot to locally
explore how to reach a given self-generated goal. Hence, it follows thedgpiration

of both the SSA algorithm, which constrains the exploration to a tube of data
targeted to a specic goal, and of \learning progress" approaches to intringc
motivation: it explores in an open-ended manner the space of goals, focurgj on
those where local improvement of the competence to reach them is maral.

2.2 Global Architecture
