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Abstract—Advances in inter-networking technology and com-
puting components have enabled Volunteer Computing (VC)
systems that allows volunteers to donate their computers’ idle
CPU cycles to a given project. BOINC is the most popular VC
infrastructure today with over 580,000 hosts that deliver over
2,300 TeraFLOP per day. BOINC projects usually have hundreds
of thousands of independent tasks and are interested in overall
throughput. Each project has its own server which is responsible
for distributing work units to clients, recovering results and
validating them. The BOINC scheduling algorithms are complex
and have been used for many years now. Their efficiency and
fairness have been assessed in the context of throughput oriented
projects.

Yet, recently, burst projects, with fewer tasks and interested
in response time, have emerged. Many works have proposed new
scheduling algorithms to optimize individual response time but
their use may be problematic in presence of other projects. In
this article we show that the commonly used BOINC scheduling
algorithms are unable to enforce fairness and project isolation.
Burst projects may dramatically impact the performance of all
other projects (burst or non-burst). To study such interactions,
we perform a detailed, multi-player and multi-objective game
theoretic study. Our analysis and experiments provide a good
understanding on the impact of the different scheduling param-
eters and show that the non-cooperative optimization may result
in inefficient and unfair share of the resources.

I. INTRODUCTION

Recent evolutions in inter-networking technology and the
decreasing cost-performance ratio of computing components
have enabled Volunteer Computing (VC) systems. Among
these platforms, BOINC (Berkley Open Infrastructure for
Network Computing) [1] is the most representative, having
hundreds of thousands clients and many projects deployed. In
such platforms, volunteers usually donate their machines’ CPU
idle time to scientific projects and indicate some preferences
on how to share their processing power among them. In
a typical situation, projects have thousands of independent
CPU-bound tasks and they are interested in optimizing their
throughput, i.e., maximize the total number of tasks completed.
To handle this complexity, BOINC implements a simple and
robust distributed protocol which ensures that local shares and
volunteer priorities are respected. This protocol has been used
for many years now and its efficiency and fairness have been
assessed in the context of throughput oriented projects [2], [3].
However, the popularization of BOINC calls for new usages
of such platforms. New projects with different characteristics

have emerged, in particular, projects whose workload is made
of batches of a small number of work units (Bag of Tasks) [4]
arriving periodically, in contrast to regular and continuous
throughput projects. These projects are usually interested in
response time. As the workload of such burst projects is
different from classical throughput-oriented projects, it calls
for alternative server project configuration.

In BOINC systems, each project deploys its own server and
configures it so as to fit to its workload characteristics. The
interaction between projects may lead to unexpected conse-
quences that require tools like game theory to be carefully
studied. In this article, we make the following contributions:
• We perform a game theoretic modeling and experimental

analysis of such system, in order to verify the potential
performance issues raised by such complex configurations.
• Then, we study the influence of the main server parameters

in a multi-player context. This study illustrates that the
current scheduling mechanism is unable to enforce fairness
and project isolation. Burst projects may dramatically impact
the performance of other projects.
• Last, we show that when such burst projects share volun-

teer machines with throughput projects, the non-cooperative
optimization of their project configuration may result in
inefficient and unfair sharing of resources.

This article is organized as follows. Section II discusses
related work and presents the main characteristics of the
BOINC architecture and scheduling algorithms. Section III
presents a game theoretic modeling and the notations used
throughout this article. Section IV describes the experimental
framework we used and presents experimental results. Sec-
tion V concludes the paper and highlights directions for future
work.

II. BACKGROUND AND RELATED WORK

A. Volunteer Computing

Volunteer Computing is a kind of distributed comput-
ing platform on which clients donate their idle resources
to projects. VC became famous thanks to SETI@home
project [5], which started in 1999, searching for extraterres-
trial intelligence. Later, SETI@home evolved and became the
open-source BOINC (Berkeley Open Infrastructure for Net-
work Computing) project. Nowadays, BOINC harnesses more



than 580,000 hosts that deliver over 2,300 TeraFLOP per day.
Several projects have been deployed, such as ClimatePredic-
tion.net, Einstein@home or the World Community Grid. Each
project has its own server which is responsible for distributing
work units to clients, recovering results and validating them.
Work units run on clients’ machines according to specific rules
defined by the clients.

Salient characteristics of such systems are: scalability, het-
erogeneity, volatility, unpredictability and unreliability. There-
fore, typical VC workloads are made of a large (i.e., orders
of magnitude larger than the number of available hosts) sets
of independent CPU-bound tasks. Thus, supporting new kinds
of applications on VC platform is very challenging. A new
promising class seems to be the case where applications have
a relatively small number of work units in infrequent time
intervals. As these projects do not have large amount of tasks,
they are interested in getting tasks back as soon as possible.
More precisely, when receiving a batch of tasks, such projects
try to minimize the completion time of the last finishing task of
the batch. New algorithms and techniques have been proposed
to address this problem. Kondo et al. [6] claim that rapid
application turnaround can be achieved through resource se-
lection, resource prioritization, and replication. More recently,
Heien et al. [7] proposed to tune the connection interval
parameter of BOINC projects to optimize the response time
of batches. Last, the GridBot project [4] recently made use
of hybrid computing platform composed of grid, clusters and
VC to execute workload resulting from mix of throughput and
response time oriented applications. Yet, all projects rely on
the same BOINC protocol and scheduling algorithms which
we expose in this article.

B. BOINC Protocol

BOINC relies on a classical client/server architecture. Each
project has a specific server from which clients request work
units to execute. Clients, during the install process for ex-
ample, decide the projects that they want to crunch for. The
behavior of clients and servers are described below.

1) Project Server: The main activity of a BOINC server is
to distribute jobs to clients. Upon client request it selects from
a job list which tasks can run on the client. The server must
take care of the system’s constraints which could preclude
the client from running these tasks. Due to the high resource
volatility and unpredictability, the server is also responsible for
keeping track of jobs and uses to this end a simple deadline
mechanism. When work units are distributed to a client, they
are associated a deadline before which the client should send
the task back. Whenever a work unit is received on time,
servers reward the client with credits. If a client takes a long
time to execute a task and misses its deadline, no credit is
granted to him.

In this article, we regard two kinds of projects:
• Continuous projects: Such projects have an extremely large

number of tasks and are thus interested in throughput, i.e., the
average number of tasks done per day. Most existing BOINC
projects actually fall in this category.

• Burst projects: Unlike the previous ones, these projects
receive batches of tasks (or Bags of Tasks) and are interested
in the average response time of batches.

In order to achieve a better performance, the server may use
some strategies, such as replication, deadline or scheduling
algorithms. The replication can be used to improve average
response time, avoiding the last-finishing task issue [6]. Repli-
cation has some variants, such as homogeneous redundancy,
which replicates tasks only to hosts with the same character-
istics (OS and CPU), and adaptive replication, which only
replicates tasks if the host is not trustful [8]. The deadline,
in the other hand, can be configured to keep a track of the
tasks running on clients. Tighter deadlines implies in more
interaction between client and server. Also, it can be used to
give urgency to some tasks (last tasks in a batch) and so, get
the results earlier. Also, servers may use some special strategy
to select which tasks they will send to clients. In short, they
are described below.
• Fixed: Server does not do any kind of test before sending
tasks to clients.
• Saturation: Server receives the saturation date of client, i.e.,

the date when client finishes running all urgent tasks (running
in EDF mode). Then, it verifies whether a task, starting at
saturation date, will finish before its deadline. This is the
most commonly used scheduling algorithm.
• Earliest Deadline First (EDF): The most restrictive test

does a detailed simulation of the scheduling of all tasks
running on the client (the name comes from the fact that the
client uses an EDF scheduling algorithms when it is getting
late). Then, it checks whether, when sending a new task, all
already existing tasks (even from other projects) would not
miss their deadline by more than they did previously.

BOINC’s default configuration utilizes the saturation test.
However, each project decides of activating or not these
features according to its workload, objectives and clients’
characteristics, such that it yields to the best possible behavior
(e.g., throughput or response time improvement).

2) Clients: According to [2], client scheduling policy has
been designed with 3 main goals in mind:
• Maximize the amount of credit given to user.
• Enforce long-term fairness: client must work the same for

each project if project shares are equal.
• Maximize variety: client should avoid long periods working

to same project.
So, clients try to fairly share (instantaneously) the resource

between projects with respect to their priorities. However,
this instantaneously fair share incurs overhead which slightly
reduces client throughput and delays task completion. There-
fore, BOINC clients implement a complex mix of short-
term/long-term fairness scheduling algorithm. The exception
is when a task is near to miss its deadline. In order to avoid
deadline misses, the scheduling algorithm switches to EDF
(Earliest Deadline First) mode and executes such tasks with
higher priority. Consequently, continuous projects generally
have loose deadlines, whereas burst projects should prefer



tighter deadlines so that their tasks are executed in priority. It is
important to notice that the long-term debt sharing mechanism
prevents projects with tight deadline to always bypass other
projects. When a client overworks for a project, it simply
momentarily stops downloading new tasks from this project.

III. GAME THEORETIC MODELING AND NOTATIONS

A Volunteer Computing system such as BOINC is made
of volunteers that offer resources to be shared among a set of
projects. The underlying scheduling mechanisms are supposed
to ensure a fair and efficient sharing of resources but several
parameters may affect this sharing. In the following, we
explain how this situation can be modeled through the use
of game theory notions. We start by defining the main actors
of such situations: volunteers and projects.

Definition 1 (Volunteer Vj). A BOINC volunteer is charac-
terized by the following parameters:
• a peak performance (in MFLOP .s−1) indicating the

amount of MFLOP it can process per second when it is
available.
• an availability trace, i.e., an ordered sequence of disjoint

time intervals indicating when the volunteer machine is avail-
able. This trace is unknown from the volunteer scheduler,
which also does not try to use past historical information
about this trace to obtain a better schedule.
• the project shares, i.e., the list of projects the volunteer

is ready to work for and which priorities he/she assigned to
each project.

A collection of volunteers is denoted by V.

In our modeling, we consider the volunteers to be passive
and to only provide resources. We will see later how their
welfare can be accounted for but in a first approximation, they
are considered to be completely passive.

We now define the main characteristics of BOINC projects.

Definition 2 (Project Pi). A BOINC project is characterized
by the following parameters:
• wi [MFLOP .task−1] denotes the size of a task, i.e., the

number of MFLOP s required to perform a task. We assume
that the size of the tasks of Pi is uniform. This is an
approximation, but it generally holds true for many projects
at the time scale of a few weeks.
• bi [task .batch−1] denotes the number of tasks within each

batch. Again, we assume that all batches of a given project
have the same size. This is a rather strong assumption for
projects like GridBOT [4] but we consider this as reasonable
in a preliminary study such as the one we propose. Further-
more, since we are not interested yet in how a given project
should prioritize its bursts, this assumption should not really
affect our conclusions.
• ri [batch.day−1] denotes the input rate, i.e., the number

of batches per day. Again, we assume this is fixed and
we neglect the potential bursts and off-peak periods that
may arise at the scale of the week or of the month. Also,
we also assume that ri, bi and wi are such that they do

not fully saturate the system, i.e., such that a batch always
ends before the submission of a new one. Indeed, as we
previously explained, we are not interested yet in how a given
project should prioritize its bursts. We only focus on how the
different projects interfere with each others so the previous
assumptions should not be harmful to this respect.
• Obj i is the objective function of the project. Depending on

the nature of the project, it could be either the throughput
%i, i.e., the average number of task processed per day , or
the average completion time of a batch αi.
• qi is the quorum, i.e., the number of successfully processed

results that have to be returned before the task can be
considered a valid. In our experiments, we assume that qi
is always equal to 1.

A project Pi is thus a tuple (wi, bi, ri,Obj i) and a project
instance is thus a collection of projects P = (P1, . . . , PK).
The set of all such possible project instances is denoted by P.

Using the game theory terminology, projects will be referred
to as players. Along the same lines, the term strategy is used
to account for the set of options that players have and that
may influence the sharing of the available resources.

Definition 3 (Strategy Si). The server of each project can
be configured with specific values that directly influence the
performance of the project. In our study, we focused on the
following parameters:
• πi is the task work send policy [3] used by the server
upon reception of a work request. When a client connects
to the server, it asks for enough work to keep him busy for
a period of time (e.g., one day). Then, it is the server that
determines how many tasks to send. The simplest strategy
πcste=c sends a fixed amount (c) of tasks, whatever the state
of the client and of the server. In this simple strategy, c could
be determined from the average task duration and from the
requested amount of work. More elaborate work send policies
like saturation (πsat) and EDF (πEDF ) have been introduced
in Section II-B1.
• σi is the slack [3]. This value is used to determine the

deadlines assigned to tasks upon submission to clients. For
example, if the average computation time of a task on a
dedicated standard reference machine is one hour, then a
fixed slack of 2 would result in a deadline of two hours.
The simplest strategy σcste=s means that a fixed slack of s
is used. In practice, more elaborate strategies, like adapting
the slack to volunteers speed/availability/reliability or to the
progress of the batch, could be used but our preliminary study
does not explore such possibilities.
• τi is the connection interval [7] and indicates clients how

often they should reconnect to the server. This parameter
influences on how fast volunteers realize that new tasks need
to be processed for a burst project. In our experiments, this
parameter ranges from 12 minutes to 30 hours.
• γi is the replication strategy [6]. This replication strategy

is completely different from the replication used to reach
a given quorum. γi is used to avoid straggler volunteers
to delay the completion of a batch. Therefore, the strategy



γcste=r allows to submit at most r replicas of the same task
and whose deadlines have not expired. Again, smart strategies
adapting to the reliability of volunteers and to the progress
of the batch could be used but our preliminary study does
not explore such possibilities.
The strategy Si of a project Pi is thus a tuple (πi, σi, τi, γi)

and the set of all possible strategies for all projects is denoted
by S.

Definition 4 (Outcome O). Once a set of project P has
decided a given strategy S, the resources of a given set
of volunteers V are shared through the BOINC scheduling
mechanisms.

The outcome O(V, P, S) is the set of all information about
completion of tasks and batches from different projects. In the
following, when needed, we will denote by Oi the restriction
of O to information related to Pi.

From this outcome, we can compute the following values:
• Throughput of continuous projects. If Pi is a continuous
project, then we can compute the total number of tasks from
Pi that have been processed over a given time period.
• Average batch completion time. If Pi is a burst project,
then we can sum the time needed to complete each batch
(from the arrival of the batch in the system to the completion
of the last finishing task of the batch) and average it over the
total number of batches that have been submitted over a given
time period.
• Waste. Sometimes, tasks fail to be completed before their

deadlines. This can happen because the volunteer’s machine
was too slow, or because it went unavailable for a long time,
or maybe even because the slack of the project was too
tight. In such cases, the task is often resubmitted and the
client may not get reward for it. The time spent working
on missed tasks is thus wasted both from the volunteer and
project perspectives.
For a given project Pi and a given volunteer Vj , we denote
the waste by Wi,j , the ratio of tasks from Pi missed by Vj
over the total number of tasks he/she received from Pi.
Similarly the waste Wi of Pi denotes the ratio between total
number of tasks from Pi missed by volunteers over the total
number of tasks.

From a given outcome, we need to define the satisfaction
(or utility using the game theory terminology) of each player.
In our context, depending on the nature of the project, the
satisfaction is based either on the effective throughput or on
the average batch completion time. Yet, these two metrics do
not express in the same units at all. One of them is to be
maximized (the throughput) whereas the other one is to be
minimized (the average batch completion time). Therefore,
we propose to translate these two metrics into a common
one: the cluster equivalence metric. The cluster equivalence
metric was proposed in [9] in the context of throughput
optimization and represents the number of dedicated standard
reference machines that would be needed to achieve the same
performance. This metric can thus be computed for both types
of projects, only with a different formula.

Nash Equilibrium

Set of outcomes
strictly superior

to the NE

Pareto borderU2

U1

Fig. 1. Utility set for two projects. Any point in the gray area correspond to
a possible outcome. Different project configurations (or strategies) may lead
to the same outcome. The Pareto border (i.e., the set of points that are not
dominated by any other strategy) is depicted with a bold line. As illustrated,
the Nash equilibrium may be dominated by many other solutions.

Definition 5 (Cluster equivalence CE ). We denote by W
the performance (in MFLOP .s−1) of the reference machine
chosen to estimate the CE . Depending on the objective of
project i, its cluster equivalence can thus be defined either as

CE continuous =
TasksDone · wi

W · TotalT ime
or as

CE burst =
bi · wi

W · αi
,

where αi is the average batch response time of project Pi.

We can now define the utility of projects easily:

Definition 6 (Utility Ui). The utility of Pi is equal to its
cluster equivalence:

Ui(V, P, S) = CEObj i

(
Obj i(Oi(V, P, S))

)
It is thus very important to understand here that the utility
of Pi depends on both its own strategy Si, but also on the
strategy choices made by the other projects.

In the following, U(V, P, S) denotes the utility vector of all
projects.

The utility of a project is thus what it should aim at
maximizing. Yet, as it has been observed in the context of
GridBOT [4], projects should also try to ensure that the
waste they cause to other projects is not too large. Otherwise
volunteers may consider this as selfish and decide to sign
off from Pi. Therefore, even though we do not model such
situations and consider the volunteers to be passive and do
not put them in the decision loop, the waste (not only Wi

but rather W as a whole) should be considered as a second
objective to be minimized.

In the fifties, John Nash introduced the notion of Nash
equilibrium [10], [11], where each player optimizes its own
utility and cannot improve it by unilaterally changing its
strategy. Let us reformulate this notion using the previous
notations.

Definition 7 (Nash Equilibrium). S is a Nash equilibrium
for (V, P) iff

for all i and for any S′i, Ui(V, P, S|Si=S′
i
) 6 Ui(V, P, Si),



where S|Si=S′
i

denote the strategy set where Pi uses strategy
S′i and every other player keeps the same strategy as in S.

Nash equilibria do not necessarily exist and it is even
undecidable to determine their existence in the general case.
Similarly, when they exist, they may not be unique and
computing them may be computationally intractable. Yet, they
are commonly considered as an interesting way of modeling
non-cooperative or non-coordinated situations. In particular,
when we consider a system where each player constantly
optimizes its utility and tries to learn its “optimal” selfish
strategy, if such a system ever reaches a stable state, then
it would be a Nash equilibrium.

Even though the BOINC project administrators do not
necessarily keep tuning the parameters of their project, they
certainly monitor the outcome and we think that such equilib-
ria can be considered as a good approximation of what would
happen in reality.

Nash equilibria are somehow the result of non-cooperative
optimization and are stable (hence the name equilibrium) in
the sense that no player has interest in unilaterally deviating
from its strategy. Yet, Nash equilibria are not resilient to coali-
tions. A subset of players could have interest in simultaneously
changing their strategy to all obtain a better utility. Such
coalition notions are more advanced game theory notions [12]
and will not be discussed in this document.

More important, Nash equilibria are not particularly fair nor
efficient. In particular, they are generally Pareto-inefficient,
i.e., there may exist another strategy S′ such that:

∀Pi : Ui(V, P, S
(NE)) < Ui(V, P, S

′).

The following issue can be understood by the use of utility
set.

Definition 8 (Utility set). The utility set U of a given scenario
(V, P) is the image of all possible strategies S by the U
function.

Figure 1 depicts the utility set for an imaginary scenario
with K = 2 projects, along with the position of the cor-
responding Nash equilibrium. The Pareto border is the set
of points that are not dominated by any other strategy (i.e.,
it is impossible to improve the utility of a player without
decreasing the one of another player). Note that the utility
set has no reason for having a shape as simple as the one
used on this illustrative example.

Yet, being able to estimate how bad is a Nash equilibrium
would be very helpful since it would enable to know whether it
is worth regulating the system or whether we can let it live as
such. Notions like the price of anarchy [13] or the selfishness
degradation factor [14] have been proposed to address this
issue. Yet, computing the utility set or estimating its shape
is extremely hard in the general case and getting inefficiency
estimation or bounds is extremely difficult. Instead, we sample
it in the experimental section so as to provide insights on how
bad such equilibria may be in practice.

Last, Pareto-inefficient Nash equilibria can lead to dramatic
situations like Braess paradoxes where increase of resources

leads to a decrease of utility for every player. Indeed, since
the Nash equilibrium is not tied to the Pareto border, the
increase of resource indeed leads to an improvement of a
Pareto border but may lead to a Nash equilibrium worse than
earlier. Such phenomena were initially observed by Braess [15]
in 1968 and still receives a lot of attention. Indeed, if Pareto-
inefficiency of the Nash equilibrium is a necessary condition,
it is not sufficient (see [16] for example) and one still does
not really understand when such phenomena occur. This is
another motivation for studying the potential inefficiency of
Nash equilibrium in the context of BOINC.

IV. EXPERIMENTAL STUDY

The outcome of such complex scheduling algorithms is
extremely hard to put into equations and the outcome of
the dynamic of thousands of volunteers running it is even
more difficult to model. Therefore, we conducted a series of
experiments to analyze the performance of many independent
players sharing BOINC resources. The performance evaluation
methodology is described in Section IV-A. Since our study
is multi-parametric (deadline, connection interval, . . . ), multi-
player (burst and continuous projects) and multi-objective
(throughput and response time), we start by performing a care-
ful study of parameter influence on global system performance
(Section IV-B). Then, we illustrate the impact of burst projects
on continuous projects (Section IV-C). Last, we explain in
Section IV-D how we restrict our parameter space and how
we sample the utility set and search for Nash equilibria.

A. Configuration Setup

We used the generic simulation toolkit SimGrid [17] to
perform the experiments described in this section. SimGrid
provides a powerful toolkit to simulate large-scale distributed
systems. We implemented a simulator of the BOINC architec-
ture, including both client and server components [18]. Based
on reading of both articles describing BOINC and its freely
available source code, we designed our simulator so as to take
the main features of BOINC into account and thus perform
simulations as realistic as possible.

The set of results we present in this article was obtained
using a set of 1,000 clients fed with real availability traces.
Clients’ traces were taken from SETI@home project, available
at Failure Trace Archive (FTA) [19]. We also performed
similar experiments with larger set of clients but as we did not
observe significant differences, we chose to report complete
results with only 1,000 clients.

We restrict our study to the following project configurations:
• Burst projects receive one batch per day, comprising only

short-live jobs which take about 1 hour running on a standard
machine.
• Continuous projects have hundreds of thousands of
CPU-bound jobs. We used a typical configuration from
SETI@home project, with tasks of 30 hours1. The deadline of

1See http://www.boinc-wiki.info/Catalog of BOINC Powered Projects
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Fig. 2. Analyzing the influence of deadline and connection interval on CE and waste using a fixed scheduling strategy.
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Fig. 3. Analyzing the influence of deadline and connection interval on CE and waste using a fixed scheduling strategy.

such tasks is set up to 300 hours as it is commonly accepted
to provide good results [3].

The duration of each test is equivalent to about 139 days. It is
important to have a very long period to ensure the effectiveness
of the long-term share of BOINC system.

B. Project Parameter Influence and Optimization
This section aims to analyze the influence of each parameter

configuration in burst performance. In this first series of
experiments, the workload is made of 4 continuous projects
(with a very large number of tasks), and 1 burst project
with 1,000 tasks per day. We assume that the configuration
of continuous projects does not change as we variate the
deadline, connection interval and scheduling strategy of the
burst project.

1) Influence of the deadline and of the connection interval:
We start our analysis with the most simple scheduling strategy
πcste=1: the server satisfies every request sent by clients,
regardless of their potential ability to process or not the task
in due date. We also assume that servers do not replicate
(γcste=0) to avoid straggler computers. Figure 2 depicts both
the CE and the waste for the two type of projects when
varying the deadline and the connection interval of the burst
projects. The most obvious observation (all subfigures) is that
connection interval has a very limited impact whereas deadline
has a dramatic influence. In particular, it appears that optimal
deadline setting for the burst project is very tight (around
1) and that suboptimal configuration leads to extremely poor
performance (Figure (2.b)) for the burst project. A too tight
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deadline (less than an hour) creates an extremely large waste
for the burst project (Figure (2.d)) and may almost double
the waste of continuous projects (Figure (2.c)) even though
it remains very low. It may even lead to a poor CE for both
burst (Figure (2.b)) and continuous projects ((Figure (2.a))).
Loose deadlines do not affect too much continuous projects
(Figure (2.a)) but lead to rather poor performance for burst
projects (Figure (2.b)).

A finer sampling of the values of these parameters around
interesting values (Figure 3) enables to see that setting a
deadline around 1.1h and a connection interval around 2h
leads to the best CE for the burst project (Figure (3.b)).
Interestingly, this configuration does not degrade significantly
the CE of continuous projects (Figure (3.a)), which augurs
well for coexistence of such projects. Last, although the waste
for continuous projects remains low when burst projects select
their optimal parameter set (2.5% compared to an absolute
minimum of 1.8% as can be read on Figure (2.c)), the waste of
burst projects is extremely high (around 56% on Figure (3.d)).

2) Replicas: The previous subsection presents the deadline
and connection interval parameters that burst projects should
choose to optimize their performance. This section briefly
presents the influence of replication on burst performance.
To this end, we get the best configuration using the fixed
scheduling strategy and we vary the number of extra replicas
that the burst project uses for each task. As we can see
in Figure 4, burst can improve its performance about 7%
using 2 replicas and further replicas lead to a CE decrease.
Surprisingly such replication also decreases waste from 56%
to 48% but this remains extremely high.

3) Influence of the scheduling strategies: The performance
surface of the saturation and EDF strategies shows very
similar shapes to those of fixed (presented in Section IV-B1
and IV-B2), except that waste is much smaller. Indeed, waste
is significantly smaller because of saturation test, which is
conservative and avoids sending tasks when clients cannot
finish them. Therefore, due to space requirements, we omit
the corresponding graphs and only provide the outcome of the
optimal configurations for each scheduling strategy (Figures 5
and 6).

We can notice that in these experiments, there is no signifi-
cant difference between the saturation πsat and the EDF πEDF

scheduling strategy. Yet, we think that πEDF may reveal

superior to πsat in more complex situations. Both scheduling
strategies give every project roughly same CE and a rather low
waste (except for burst projects, which is about 12%).

This is the result of the combination of two strategies in
client’s local scheduling policy: EDF and long-term fairness.
The burst project manages to access resources when needed,
running its tasks with high priority and getting results quickly.
In other hand, the long-term fairness ensures that continuous
projects get at least a reasonable share of the resources.

Last, it is interesting to note that the fixed strategy has a
slightly better CE, due to the high number of tasks sent, which
incurs a very important waste (around 48% in the optimal con-
figuration). In most of our experiments, we observed that this
strategy often thrashes the system even though it is the most
efficient way for burst projects to steal computing resources
from continuous projects. Servers should thus disregard this
scheduling strategy as it wastes resources and could disappoint
clients, since they may not get credits for missed tasks. The
important waste of this strategy was already identified by
Kondo et al. [3] but it had only be compared with the one
of the EDF strategy which is considered to be to costly and is
thus often not activated. Similar issue about unsatisfied users
was also reported in [4].

C. Influence of Burst Projects on Continuous Projects

1) Burst size influence: Beside the high waste of the burst
project, the previous configuration seems to indicate that both
kind of projects can seamlessly share resources. Yet, this nice
behavior is largely due to the fact that the burst project does not
exhaust available resources. This section shows the influence
of burst size on system performance, when resources become
scarce. The workload is the same as in previous section: 4
continuous projects and 1 burst project, every one using the
saturation scheduling strategy. The burst project uses a slack of
1.1 and 2 hours of connection interval since it was the optimal
parameter configuration determined from our experiments.

As it is possible to see in Figure 7, the CE of burst
project reaches a maximum when burst has near 1,000 tasks
per day. After that, the system starts being saturated and,
consequently, CE decreases. However, the burst project does
not steal resources from continuous projects when it has a lot
of tasks. The system fairness guarantees the CE of continuous
projects. Analyzing the waste, as seen in Figure 8 (note the log
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scale in y-axis), we see an important influence on the waste
of continuous projects. It almost doubles with the increase in
burst size. Another interesting fact is the stabilization in waste
after a threshold. This is due to the saturation test that avoids
burst tasks to be sent to clients and to thrash the system.

2) Number of burst projects influence: The number of burst
projects may also affect the waste of continuous projects. In
this section, we fix the total number of 8 projects and we vary
the number of burst projects. Each burst project receives a
batch of 1,000 tasks per day and uses a slack of 1.1.

Considering the CE, the Figure 9 shows that continuous
CE increases because burst projects do not exhaust resources
(unlike continuous projects). Despite the use of the saturation
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Fig. 11. Analyzing impact of burst projects on waste when using the fixed
scheduling strategy.

scheduling strategy, we can see on Figure 10 that the contin-
uous’ waste increases from about 3% with 1 burst project to
7% with 7 burst projects. Note that although it was already
known [3] that the fixed strategy lead to an unacceptable
waste, it was not known (to the best of our knowledge) that it
could also increase the waste of other projects. We illustrate
this issue on Figure 11, which represents the waste when
replacing continuous projects by burst projects, using the fixed
scheduling strategy and a workload of one batch of 1,700 tasks
per day. Although the waste of burst project remains stable,
using more burst projects also considerably increases the waste
of continuous projects (from 3% to over 50%). This shows that
the current protocol is unable to enforce fairness and project
isolation when using burst projects.

Examining the results of our tests, we conclude that burst
projects may have an important influence on waste of others
projects and thus, they can cause users dissatisfaction since
they will miss more tasks and loose credits.

D. Utility Set Sampling and Nash Equilibrium

In this section we explain how we proceed to search for
Nash equilibrium and locate these Nash equilibrium in a
sample of the corresponding utility set.

1) Best Response Strategy: In Section IV-B, we showed
that deadline is the most influential parameter and that all
others have an optimal value almost independent from the
deadline. Therefore, we consider a situation where all projects
use the saturation strategy with a fixed replication of 2 and a
connection interval of 2 hours.

The previous sections also show that the negative effect
of burst projects may become more visible when resource
become scarce. Hence, we first present a configuration with 6
projects among which 4 of them are burst projects receiving
a batch of 900 1 hour tasks per day. In this configuration,
continuous projects use 24h and 30h tasks with a deadline
of 336h and 300h (these values are representative of the
Einstein@home and SETI@home projects, respectively).

Although best-response strategy does not necessarily con-
verge, it is known that upon convergence, its limit state is a
Nash equilibrium. Furthermore, since in our particular setting,
all our burst projects are identical, they should all have the
same configuration at equilibrium. Therefore, we apply the
following methodology. Assuming burst projects agree on a
given value of slack σcons, we compute the CE cons of burst
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projects (consensus value in Figure 12). For a given value
of slack σcons, a dissident burst project may increase its
CE by unilaterally changing its slack to a different value
σdis. We compute this value so that it maximizes the CEdis

of the dissident burst project. Yet, this strategy modification
generally results in a decrease of the CEnon−dis of the other
burst projects. Both CEdis and CEnon−dis are represented
on Figure 12. For example when σcons = 1.15 (i.e., a value
close to the optimal one found in the previous section), we
see that a burst project can change its CE from 71.3 to 77.5
by changing its slack, thus causing a CE decrease of 2 for
every other burst projects. As a consequence, even though this
deadline leads to the largest CE cons, the other burst projects
should disregard σcons = 1.15 and switch to a better position
as well. Interestingly, the three curves join for σi = 2.45,
which is thus a Nash equilibrium.

Figure 13 depicts for a given σcons, the corresponding σdis
that leads to the best CEdis. Therefore, if all projects used a
simplistic best response strategy, we can follow the dynamic
of the system and see that it converges (when initial σinit ∈

[1.8, 2.45]) to the Nash equilibrium σNE = 2.45, that leads
to a CENE of 60.7 for burst projects. Yet, we can read on
Figure 12 that a common choice of σcons = 1.15 (reference
point) would have lead to a CE cons = 71.3 > CENE . Still,
it could be the case that this loss of efficiency did benefit
to the continuous projects. This is unfortunately not true as
can easily be checked by representing the outcome of all such
situations in the utility space (Figure 14).
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With such a representation, we can check that the Nash
equilibrium is indeed Pareto inefficient and that the CE
could be improved by more than 10% for all projects by
collaboratively choosing σcons = 1.15.

Such inefficiencies can be observed for many different
configurations and the utility set samples seem to always have
more or less the same structure. For example, when using a
configuration with 8 projects among which 7 of them are burst
projects receiving a batch of 600 tasks per day, we also obtain
an inefficient Nash equilibrium (see Figure 15). Note that in
this example, the continuous project uses 30 hours tasks with
a deadline of 300 hours, which is a typical configuration from
the SETI@home project.

NE

Reference point

1.05
1.1

1.3
1.35
1.4

1.45
1.5

1.55
1.6

1.65
1.7

1.75
1.8

1.85
1.9

1.95
2

2.05
2.1

2.15
2.2

2.25
2.3

2.35
2.4

2.45
2.5

2.55
2.6

2.65

2.7
2.75
2.8

2.85
2.9

2.95
3

3.05
3.1

3.15
3.2

3.25
3.3

3.35
3.4

3.45
3.5 305

 310

 315

 320

 325

 330

 335

 340

 345

 350

 355

 34  35  36  37  38  39  40  41

C
E

 −
 C

o
n
ti

n
u
o
u
s

CE − Burst

Burst − Deadline(h)
1

1.15
1.2

1.25

Fig. 15. Sampling utility set and illustrating the inefficiency of the Nash
equilibrium. 1 continuous project and 7 burst project with 600 1 hour tasks
per day each. CE could be improved by more than 10% for burst projects and
by 7% for the continuous project by collaboratively choosing σcons = 1.25
instead of the NE (σNE = 2.45).

Again, with such a representation, we can check that the



Nash equilibrium is indeed Pareto inefficient and that the CE
could be improved by 10% for burst projects and by 7% for
continuous project by collaboratively choosing σcons = 1.25.

The main conclusion to draw from this set of experiments
is that burst projects not only step on each others toes but also
impact rather negatively the efficiency of continuous projects
(not even speaking about their waste).

V. CONCLUSION

In this article, we have studied the situation where burst
projects interested in response time share resources with classi-
cal throughput-oriented projects. We perform a game theoretic
modeling and experimental analysis of such system, in order to
verify the potential performance issues raised by such complex
configurations. Such game theory concepts are rarely applied
in such “complex” systems. Indeed, our modeling considers a
very large strategy space, a rather large number of players, and
a multi-objective optimization problem since project should
not only optimize their throughput or their response time
but also their waste (i.e.,, the fraction of tasks missing their
deadline) and the waste they incur to others.

Our experimental analysis relies on thorough and realistic
simulations and enables us to study the influence of the main
server parameters (slack, replication, work sending strategy,
. . . ) in a multi-player context. This study illustrates that the
current scheduling mechanism is unable to enforce fairness
and project isolation (burst projects may dramatically impact
the performance of other projects).

In particular, we show that when such burst projects
share volunteer machines with continuous projects, the non-
cooperative optimization of their project configuration may
result in rather inefficient sharing of resources. We exhibit
situations where every project could use resources 10% more
efficiently if burst projects agreed on some of their schedul-
ing parameters. Even though this result should not surprise
people acquainted with game theory, it is, to the best of
our knowledge, the first time inefficient Nash equilibrium is
exhibited in the context of Volunteer Computing systems. It is
also interesting to note that these inefficiencies occur even
though the whole system relies on a protocol where each
volunteer produces a locally fair and efficient sharing of its
computing resources. Such results can be linked with those
presented in [16] except that we do not assume an over-
simplistic resource model but use a very realistic simulation
instead.

As future work, we intend to continue the analyze such
situations to verify whether even worse situations can be
found. Then, we would like to try to characterize the workload
on which these equilibria occur. This would allow to decide
on sound basis whether the BOINC architecture should be
modified to prevent such situations to happen. Furthermore, the
existence of inefficient Nash equilibria may lead the system to
even more undesirable behavior, like Braess’s paradox where
the addition of resources may degrade the performance of
every project. Note that game theory provides many tools
(correlated equilibria, pricing mechanisms, Shapley value . . . )

to cope with and improve such situations and that some
of them may be used to implement a form of cooperation
(possibly distributed) between servers.
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