A Mean Field Model of Work Stealing in Large-Scale Systems

Nicolas Gast 1 Bruno Gaujal 1
1 MESCAL - Middleware efficiently scalable
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : In this paper, we consider a generic model of computational grids, seen as several clusters of homogeneous processors. In such systems, a key issue when designing efficient job allocation policies is to balance the workload over the different resources. We present a Markovian model for performance evaluation of such a policy, namely work stealing (idle processors steal work from others) in large-scale heterogeneous systems. Using mean field theory, we show that when the size of the system grows, it converges to a system of deterministic ordinary differential equations that allows one to compute the expectation of performance functions (such as average response times) as well as the distributions of these functions.
Type de document :
Communication dans un congrès
ACM sigmetrics, 2010, New-York, United States. ACM, pp.13-24, 2010, 〈10.1145/1811039.1811042〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00788862
Contributeur : Arnaud Legrand <>
Soumis le : vendredi 15 février 2013 - 13:09:40
Dernière modification le : jeudi 11 janvier 2018 - 06:21:39

Identifiants

Collections

Citation

Nicolas Gast, Bruno Gaujal. A Mean Field Model of Work Stealing in Large-Scale Systems. ACM sigmetrics, 2010, New-York, United States. ACM, pp.13-24, 2010, 〈10.1145/1811039.1811042〉. 〈hal-00788862〉

Partager

Métriques

Consultations de la notice

127