Skip to Main content Skip to Navigation
Conference papers

PGP-mc: Towards a Multicore Parallel Approach for Mining Gradual Patterns

Anne Laurent 1 Benjamin Negrevergne 2 Nicolas Sicard 3 Alexandre Termier 4
1 TATOO - Fouille de données environnementales
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
2 MESCAL - Middleware efficiently scalable
LIG - Laboratoire d'Informatique de Grenoble, Inria Grenoble - Rhône-Alpes
Abstract : Gradual patterns highlight complex order correlations of the form "The more/less X, the more/less Y". Only recently algorithms have appeared to mine efficiently gradual rules. However, due to the complexity of mining gradual rules, these algorithms cannot yet scale on huge real world datasets. In this paper, we propose to exploit parallelism in order to enhance the performances of the fastest existing one (GRITE). Through a detailed experimental study, we show that our parallel algorithm scales very well with the number of cores available.
Complete list of metadata

Cited literature [8 references]  Display  Hide  Download
Contributor : Arnaud Legrand Connect in order to contact the contributor
Submitted on : Monday, October 7, 2019 - 4:11:53 PM
Last modification on : Thursday, January 20, 2022 - 4:19:08 PM


Publisher files allowed on an open archive



Anne Laurent, Benjamin Negrevergne, Nicolas Sicard, Alexandre Termier. PGP-mc: Towards a Multicore Parallel Approach for Mining Gradual Patterns. DASFAA: Database Systems for Advanced Applications, Apr 2010, Tsukuba, Japan. pp.78-84, ⟨10.1007/978-3-642-12026-8_8⟩. ⟨hal-00788890⟩



Les métriques sont temporairement indisponibles