PGP-mc: Towards a Multicore Parallel Approach for Mining Gradual Patterns

Anne Laurent 1 Benjamin Negrevergne 2 Nicolas Sicard Alexandre Termier 3
1 TATOO - Fouille de données environnementales
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
2 MESCAL - Middleware efficiently scalable
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
3 LIG Laboratoire d'Informatique de Grenoble - HADAS
LIG - Laboratoire d'Informatique de Grenoble
Abstract : Gradual patterns highlight complex order correlations of the form "The more/less X, the more/less Y". Only recently algorithms have appeared to mine efficiently gradual rules. However, due to the complexity of mining gradual rules, these algorithms cannot yet scale on huge real world datasets. In this paper, we propose to exploit parallelism in order to enhance the performances of the fastest existing one (GRITE). Through a detailed experimental study, we show that our parallel algorithm scales very well with the number of cores available.
Type de document :
Communication dans un congrès
DASFAA, 2010, Tsukuba, Japan. Springer, pp.78-84, 2010, 〈10.1007/978-3-642-12026-8_8〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00788890
Contributeur : Arnaud Legrand <>
Soumis le : vendredi 15 février 2013 - 13:11:42
Dernière modification le : mercredi 11 avril 2018 - 01:55:32

Identifiants

Citation

Anne Laurent, Benjamin Negrevergne, Nicolas Sicard, Alexandre Termier. PGP-mc: Towards a Multicore Parallel Approach for Mining Gradual Patterns. DASFAA, 2010, Tsukuba, Japan. Springer, pp.78-84, 2010, 〈10.1007/978-3-642-12026-8_8〉. 〈hal-00788890〉

Partager

Métriques

Consultations de la notice

224