Atypicity Detection in Data Streams: a Self-Adjusting Approach

Alice Marascu 1 Florent Masseglia 1
1 AxIS - Usage-centered design, analysis and improvement of information systems
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Paris-Rocquencourt
Abstract : Outlyingness is a subjective concept relying on the isolation level of a (set of) record(s). Clustering-based outlier detection is a field that aims to cluster data and to detect outliers depending on their characteristics (i.e. small, tight and/or dense clusters might be considered as outliers). Existing methods require a parameter standing for the "level of outlyingness", such as the maximum size or a percentage of small clusters, in order to build the set of outliers. Unfortunately, manually setting this parameter in a streaming environment should not be possible, given the fast time response usually needed. In this paper we propose WOD, a method that separates outliers from clusters thanks to a natural and effective principle. The main advantages of WOD are its ability to automatically adjust to any clustering result and to be parameterless.
Type de document :
Article dans une revue
Intelligent Data Analysis, IOS Press, 2011, 15 (1), pp.89-105. 〈10.3233/IDA-2010-0457〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger
Contributeur : Florent Masseglia <>
Soumis le : vendredi 15 février 2013 - 16:11:02
Dernière modification le : mercredi 21 novembre 2018 - 19:48:02
Document(s) archivé(s) le : jeudi 16 mai 2013 - 04:01:08


Fichiers produits par l'(les) auteur(s)




Alice Marascu, Florent Masseglia. Atypicity Detection in Data Streams: a Self-Adjusting Approach. Intelligent Data Analysis, IOS Press, 2011, 15 (1), pp.89-105. 〈10.3233/IDA-2010-0457〉. 〈hal-00789034〉



Consultations de la notice


Téléchargements de fichiers