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Viabilté et mesures martingales en information partielle

Résumé : On considère un marché financier constitué d’un actif risqué dont le prix est modélisé
par un processus de diffusion avec saut à coefficients bornés. On suppose que les investisseurs
n’ont accès qu’à une information partielle (Et)t≥0 ⊆ (Ft)t≥0. Pour toute fonction d’utilité on
démontre que ce marché est localement viable, dans le sens où le problème de maximisation
de l’espérance de l’utilité de la richesse terminale a une solution jusqu’à un temps d’arrêt si et
seulement si l’utilité marginale de la richesse terminale est la densité d’une mesure martingale
équivalente sous information partielle. On prouve cette équivalence de manière constructive au
moyen de principes de maximum stochastique pour le contrôle en information partielle. On
démontre ensuite que le marché financier est globalement viable si et seulement s’il existe un
déflateur martingale local sous information partielle, que l’on peut construire explicitement.
Dans le cas de coefficients bornés, ce dernier correspond au processus de densité d’une mesure
martingale équivalente sous information partielle. Nous illustrons ces résultats sur un exemple.

Mots-clés : Optimisation de portefeuilles, diffusion avec sauts, information partielle, principe
du maximum, EDSR, viabilité, mesure martingale, maximisation d’utilité.



Viability and martingale measures under partial information 3

1 Introduction

The concepts of no-arbitrage, martingale measure and portfolio optimization can be rightly
considered as the cornerstones of modern mathematical finance, starting from the seminal papers
[12] and [18]. Loosely speaking, the no-arbitrage paradigm is equivalent to the existence of a
martingale measure, which can then be used for pricing purposes (risk-neutral valuation), and,
again loosely speaking, portfolio optimization problems are solvable if and only if the financial
market does not admit arbitrage opportunities.

In the context of discrete-time models on a finite probability space (see e.g. [22] and [23]), it
can actually be shown that the above concepts are equivalent and, furthermore, one can work out
explicitly the connections between them. Indeed, it is well-known that there exists an Equivalent
Martingale Measure (EMM) if and only if there do not exist arbitrage opportunities, which in
turn is equivalent to the solvability of portfolio optimization problems. In particular, one can
obtain an EMM by taking the (normalised) marginal utility of the optimal terminal wealth of
a portfolio optimization problem. This relation also represents a classical and well-known result
from the economic literature (see e.g. [3], Section 4.4). In the case of discrete-time models on a
general probability space, the validity of this equivalence has been studied in [26], [30] and [31].

When one moves from discrete-time to continuous-time financial models, then things become
quickly more complicated and the equivalences discussed so far do not hold any more in full
generality. For instance, in order to recover the equivalence between EMMs and no-arbitrage,
one has to replace the notion of martingale with the notion of local martingale (or even σ-
martingale, see [7]) and the condition of no-arbitrage with the No Free Lunch with Vanishing
Risk (NFLVR) condition (see [5]-[7]). Furthermore, the marginal utility of the optimal terminal
wealth of a portfolio optimization problem does not necessarily yield the density of an equivalent
(local-/σ-)martingale measure but only a supermartingale deflator (see e.g. [17] and [29]).

In recent years, there has been a considerable interest in financial market models which go
beyond the traditional setting based on equivalent martingale measures, by relaxing the NFLVR
requirement. One of the first studies in this direction is the paper [19], where the authors are
concerned with the viability of a complete Itô-process model of a financial market. In particu-
lar, they show that the financial market can be viable, in the sense that portfolio optimization
problems can be meaningfully solved, even if the NFLVR condition does not necessarily hold. In
an analogous context, [11] prove that the notions of completeness and viability do not rely on
the existence of equivalent (local) martingale measures. In a general semimartingale framework,
Proposition 4.19 of [15] shows that the minimal no-arbitrage requirement in order to solve ex-
pected utility maximization problems amounts to the No Unbounded Profit with Bounded Risk
(NUPBR) condition, the latter being weaker than NFLVR. However, in all these works, there
is no general and explicit connection between the solvability of a portfolio optimization problem
and the density of a candidate martingale measure.

In the present paper, we consider a rather general jump-diffusion model, with locally bounded
coefficients, and study the issue of the viability of the financial market, defined as the ability
to solve a portfolio optimization problem. Our main goal consists in characterising the notion
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4 Fontana & Øksendal & Sulem

of viability in terms of martingale measures, in a suitable sense to be made precise in the fol-
lowing. A distinguishing feature of our approach is that we refrain from imposing a-priori any
no-arbitrage restriction on the model, tackling instead directly the solvability of portfolio op-
timization problems. Furthermore, we suppose that market participants have only access to a
partial information flow, which does not contain the whole information of the stochastic basis.
In order to solve portfolio optimization problems under partial information, we shall employ
necessary and sufficient maximum principles for stochastic control under partial information, as
discussed in [2] (see also the recent paper [21] for related results in the complete information
case). This approach allows to characterise the optimal solution via an associated BSDE, which
in turn requires a good control on the integrability properties of the processes involved. Since
we work with quite general processes, we cannot in general guarantee that these integrability
conditions are satisfied and, hence, we need to resort to a localization procedure, as explained in
Section 3.

The main contributions of the present paper can be outlined as follows:

(i) we show that the financial market where agents trade under partial information is locally
viable, in the sense that a portfolio optimisation problem admits a solution up to a stop-
ping time, if and only if there exists a Partial Information Equivalent Martingale Measure
(PIEMM) up to a stopping time. Furthermore, the density of such PIEMM is given by the
(normalised) marginal utility of the optimal terminal wealth, thus recovering the classical
result of financial economics;

(ii) we prove that the financial market where agents trade under partial information is globally
viable, in the sense that it is locally viable for a whole sequence {τn}n∈N of increasing
stopping times in a consistent way, if and only if there exists a Partial Information Local
Martingale Deflator (PILMD). Furthermore, we show that such PILMD can be explicitly
constructed by aggregating the densities of all PIEMMs obtained locally;

(iii) in the more specific case where the jump-diffusion describing the price process has bounded
coefficients, we prove that the financial market is viable on the global time horizon if and
only if the (normalised) marginal utility of the optimal terminal wealth defines a PIEMM
on the global time horizon. The density process of the latter also coincides with the PILMD
obtained in (ii);

(iv) by means of an explicit example (see Section 5) we show that, even for a regular utility
function and continuous-path processes with good integrability properties but unbounded
coefficients, one cannot do better than (ii) in the global case, in the sense that a PIEMM
may fail to exist globally.

To the best of our knowledge, the issue of linking the viability of the financial market to
the existence of (weaker counterparts of) equivalent martingale measures such as PIEMMs and
PILMDs has never been dealt with in the partial information case. Furthermore, even in the full
information case (i.e., letting E = F, according to the notation introduced in Section 2) we go
significantly beyond a pure existence result, since our approach allows to obtain a precise and
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Viability and martingale measures under partial information 5

explicit connection between the solution of an optimal portfolio problem and a density of an
equivalent martingale measure / local martingale deflator, in a local and in a global sense (see
Sections 3 and 4, respectively). We refer to Remark 3.10 for a comparison of our work with the
duality theory developed in [17] and [29].

The paper is structured as follows. Section 2 contains a general description of the modelling
framework. In Section 3, we prove the equivalence between local market viability and the ex-
istence of a PIEMM up to a stopping time. More specifically, this requires first to characterise
all optimal portfolios in terms of the solution to an associated BSDE (Section 3.1) and then to
characterise the family of density processes of all PIEMMs (Section 3.2), the main equivalence
result is then proved in Section 3.3. Section 4 deals with the issue of the global viability of the
financial market, first in the simpler case of bounded coefficients (Section 4.1) and then in the
more general locally bounded case (Section 4.2). Section 5 closes the paper and presents an
explicit example with the purpose of illustrating some of the main concepts and results.

2 The modelling framework

On a given probability space (Ω,F , P ), let us consider a Brownian motion B = {B(t); t ≥ 0} and
a homogeneous Poisson random measureN(·, ·) on R+×R, in the sense of Definition II.1.20 of [14],
independent of B. Let F = (Ft)t≥0 be the filtration generated by B and N , assumed to satisfy
the usual conditions of right-continuity and P -completeness, and denote by PF the predictable
σ-field of F. We denote by m(dt, dζ) := ν(dζ) dt the compensator of the random measure
N(dt, dζ), where ν is a σ-finite measure on

(
R,B(R)

)
, and by Ñ(dt, dζ) := N(dt, dζ)− ν(dζ) dt

the corresponding compensated random measure. Finally, we let T ∈ (0,∞) represent a fixed
time horizon.

We consider an abstract financial market with two investment possibilities (all the results
of the present paper can be generalised to multi-dimensional market models without significant
difficulties):

(i) a risk-free asset with unit price S0(t) = 1, for all t ∈ [0, T ];

(ii) a risky asset, with unit price S(t) given by the solution to the stochastic differential equation
dS(t) = b(t) dt+ σ(t) dB(t) +

∫
R
γ(t, ζ) Ñ(dt, dζ) , t ∈ [0, T ];

S(0) = S0 > 0.

(2.1)

We assume that the processes b =
{
b(t); t ∈ [0, T ]

}
and σ =

{
σ(t); t ∈ [0, T ]

}
are PF-measurable

and locally bounded and that γ : Ω× [0, T ]×R→ R is a predictable function in the sense of [14],
i.e., it is PF⊗B(R)-measurable, and, for any D ∈ B(R), the process γ(·, D) =

{
γ(t,D); t ∈ [0, T ]

}
is locally bounded. We refer the reader to Chapter II of [14] and to the monograph [20] for more
information on stochastic calculus with respect to Poisson random measures.

Remark 2.1. The local boundedness assumption implies that there exists a sequence of F-
stopping times {τn}n∈N with τn ↗ +∞ P -a.s. as n→ +∞ such that the stopped processes Sτn ,
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6 Fontana & Øksendal & Sulem

bτn , στn and γ(· ∧ τn, D), for D ∈ B(R), are P -a.s. uniformly bounded, for all n ∈ N. Note
that this assumption is always satisfied if the processes b, σ and γ(·, D), for all D ∈ B(R), are
left-continuous or right-continuous with limits from the left (see e.g. [13], Theorem 7.7).

As mentioned in the introduction, we shall be interested in a financial market model where
market participants do not have access to the full information filtration F. To this effect, we
introduce a filtration E = (Et)0≤t≤T , which represents the partial information actually available.
We assume that E satisfies the usual conditions and that Et ⊆ Ft for all t ∈ [0, T ]. For example,
we could have:

(i) Et = F(t−δ)+ , for some δ > 0, representing a delayed information flow;

(ii) Et = F̄St , where F̄St is the σ-algebra generated by {S(ti); 0 = t0 < t1 < . . . < tn ≤ t},
n ∈ N, representing the information flow generated by discrete observations of the price
process S;

(iii) Et = FSt , where FSt is the σ-algebra generated by
{
S(u);u ∈ [0, t]

}
, representing the

information flow generated by continuous observations of the price process S.

Note that, in the cases (ii)-(iii), the filtration E is in general strictly smaller than F, since the
observation of the price process S does not permit to unveil the sources of randomness B and
N .

We say that a given function U : (−∞,∞] → [−∞,∞) of class C1 on (−∞,∞) is a utility
function if it is concave and strictly increasing on (−∞,∞] and we denote by U ′ its first derivative
(marginal utility). Aiming at describing the activity of trading in the financial market on the
basis of the information represented by the filtration E and according to the preference structure
represented by U , we define the family AUE of admissible strategies as follows, for some λ, µ > 2

with 2/λ+ 2/µ = 1:

AUE :=
{
all E-predictable processes ϕ =

{
ϕ(t); t ∈ [0, T ]

}
s.t. Xϕ ∈ Sλ and E

[
U ′
(
Xϕ(T )

)µ]
<∞

}
where ϕt represents the number of units of the risky asset held in the portfolio at time t, for
all t ∈ [0, T ], with associated wealth process Xϕ =

{
Xϕ(t); t ∈ [0, T ]

}
, and where Sλ denotes

the family of all semimartingales Y =
{
Y (t); t ∈ [0, T ]

}
satisfying E

[
supt∈[0,T ] |Y (t)|λ

]
< ∞.

The requirement of E-predictability amounts to ensuring that agents trade by relying only on
the information at their disposal. As usual, we assume that trading is done in a self-financing
way, so that the wealth process associated to a given strategy ϕ ∈ AUE starting from an initial
endowment x ∈ R is given by:

dXϕ(t) = ϕ(t) dS(t) = ϕ(t)

(
b(t) dt+ σ(t) dB(t) +

∫
R
γ(t, ζ) Ñ(dt, dζ)

)
, t ∈ [0, T ];

Xϕ(0) = x.

(2.2)

We want to emphasise that we did not introduce a-priori any no-arbitrage restriction on the
financial market model. In the remaining part of the paper, the no-arbitrage properties of the
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Viability and martingale measures under partial information 7

model will be inferred as the consequence of the (local) solvability of a portfolio optimization
problem.

3 Local market viability under partial information

In the present section we prove the equivalence between the concept of local market viability,
introduced below in Definition 3.2, and the local existence of a Partial Information Equivalent
Martingale Measure (see Definition 3.6) such that its density is expressed in terms of the (nor-
malised) marginal utility of terminal wealth. The reason why we embark on a local analysis is
due to the fact that, aiming at a characterisation of the solutions to portfolio optimisation prob-
lems, we want to apply the maximum principles for stochastic control under partial information
developed in [2]. However, in order to have a good control on the integrability properties of the
processes involved, we first need to localize and rely on the local boundedness assumption on b,
σ and γ (see Remark 2.1). Under a more restrictive assumption, a direct global result will be
proved in Section 4.1.

Problem 3.1 (Partial information locally optimal portfolio problem). For a fixed n ∈ N, for a
given utility function U and an initial endowment x ∈ R, find an element ϕ∗,n ∈ AUE (n) such
that

sup
ϕ∈AUE (n)

E
[
U
(
Xϕ(T ∧ τn)

)]
= E

[
U
(
Xϕ∗,n(T ∧ τn)

)]
<∞

where AUE (n) :=
{
all E-predictable processes ϕ =

{
ϕ(t); t ∈ [0, T ]

}
s.t. ϕ1[[0,τn]] ∈ AUE

}
.

Definition 3.2 (Local market viability). Let U be a utility function and n ∈ N. The financial
market is said to be locally viable up to τn if Problem 3.1 admits an optimal solution ϕ∗,n ∈
AUE (n).

Until the end of Section 3, we fix an element n ∈ N and let τn be the corresponding F-stopping
time from the sequence {τn}n∈N introduced in Remark 2.1.

3.1 A BSDE characterisation of locally optimal portfolios

As a first step, we provide a characterisation of the locally optimal portfolio which solves Problem
3.1 in terms of the solution to a Backward Stochastic Differential Equation (BSDE), by relying on
the necessary and sufficient maximum principles for stochastic control under partial information
established in [2] (see also the recent paper [21] for related results). We denote by bn the stopped
process bn :=

{
b(t ∧ τn); t ∈ [0, T ]

}
, with an analogous notation for σn and γn.

We define the Hamiltonian Hn : Ω× [0, T ]× R3 ×R → R as follows:

Hn
(
ω, t, ϕ, p, q, r(·)

)
:= ϕ bn(ω, t) p+ ϕσn(ω, t) q + ϕ

∫
R
r(ζ) γn(ω, t, ζ)ν(dζ) (3.1)

where R is defined as the class of functions r : R \ {0} → R such that the integral in (3.1)
converges. To the HamiltonianHn we associate a BSDE for the adjoint processes pn =

{
pn(t); t ∈

RR n° 8243



8 Fontana & Øksendal & Sulem

[0, T ]
}
, qn =

{
qn(t); t ∈ [0, T ]

}
and for the function rn : Ω × [0, T ] × R → R as follows, for any

ϕ ∈ AUE (n): 
dpn(t) = qn(t) dB(t) +

∫
R
rn(t, ζ) Ñ(dt, dζ), t ∈ [0, T ];

pn(T ) = U ′
(
Xϕ(T ∧ τn)

)
.

(3.2)

In order to study the BSDE (3.2), we need to introduce the following classes of processes:

Mµ :=

{
all F-martingales M =

{
M(t); t ∈ [0, T ]

}
s.t. E

[
sup
t∈[0,T ]

|M(t)|µ
]
<∞

}
;

Lµ(B) :=

all F-predictable processes q =
{
q(t); t ∈ [0, T ]

}
s.t. E

[(∫ T

0

q2(t)dt

)µ
2 ]

<∞

 ;

Gµ(Ñ) :=

all PF ⊗ B(R)-measurable functions r s.t. E
[(∫ T

0

∫
R
r2(t, ζ)ν(dζ)dt

)µ
2 ]

<∞

 .

Lemma 3.3. For any fixed n ∈ N and ϕ ∈ AUE (n), the BSDE (3.2) admits a unique solution
(pn, qn, rn) ∈Mµ×Lµ(B)×Gµ(Ñ). Furthermore, the solution (pn, qn, rn) satisfies the following
integrability properties, for any ϕ̂ ∈ AUE (n):

E

[∫ T

0

(
pn(t)

)µ
dt

]
<∞; (3.3)

E

[∫ T

0

Xϕ̂(t ∧ τn)2
((
qn(t)

)2
+

∫
R

(
rn(t, ζ)

)2
ν(dζ)

)
dt

]
<∞. (3.4)

Proof. See the Appendix.

Proposition 3.4. For any fixed n ∈ N, an element ϕ ∈ AUE (n) solves Problem 3.1 if and only
if the solution (pn, qn, rn) ∈ Mµ × Lµ(B) × Gµ(Ñ) to the BSDE (3.2) satisfies the following
condition:

E

[
bn(t) pn(t)+σn(t) qn(t)+

∫
R
γn(t, ζ) rn(t, ζ) ν(dζ)

∣∣∣Et] = 0 P -a.s. for a.a. t ∈ [0, T ]. (3.5)

Proof. Let ϕ ∈ AUE (n) be a solution to Problem 3.1. Since Sτn is P -a.s. uniformly bounded, it
is clear that the strategy

{
β(t); t ∈ [0, T ]

}
defined by β(t) := ξ1[t0,t0+h](t) belongs to AUE (n), for

any t0 ∈ [0, T ], h > 0 and for every bounded Et0 -measurable random variable ξ. Furthermore,
since η(t)S(t ∧ τn) is P -a.s. uniformly bounded for all t ∈ [0, T ] for any bounded η ∈ AUE (n), it
follows that, for every ψ, η ∈ AUE (n) with η bounded, there exists δ̄ > 0 such that ψ+δ η ∈ AUE (n)

for any δ ∈ R with |δ| < δ̄. We have thus shown that conditions (A1) and (A2) of the necessary
maximum principle of [2] are satisfied. Furthermore, (3.3)-(3.4) together with Remark 2.1 imply
that the square-integrability conditions (3.9)-(3.10) of [2] are satisfied up to the stopping time

Inria



Viability and martingale measures under partial information 9

τn, since (pn, qn, rn) ∈Mµ × Lµ(B)×Gµ(Ñ). Theorem 3.1 of [2] then implies that:

E

[
∂Hn

∂ϕ

(
ω, t, ϕ(t), pn(t), qn(t), rn(t, ·)

)∣∣∣Et] = 0 P -a.s. for a.a. t ∈ [0, T ]. (3.6)

Due to equation (3.1), condition (3.6) is easily seen to be equivalent to condition (3.5).
Conversely, suppose that, for some ϕ ∈ AUE (n), the unique solution (pn, qn, rn) ∈Mµ×Lµ(B)×
Gµ(Ñ) to the BSDE (3.2) satisfies condition (3.5). As in the first part of the proof, it is easy to
verify that the square-integrability conditions (2.5)-(2.7) of [2] are satisfied (up to τn). Further-
more, the random function ϕ 7→ Hn

(
ω, t, ϕ, pn(t), qn(t), rn(t, ·)

)
is concave in ϕ and x 7→ U(x)

is concave in x. Since condition (3.5) amounts to the partial information maximum condition
(3.6), the partial information sufficient maximum principle given in Theorem 2.1 of [2] implies
that ϕ solves Problem 3.1.

Condition (3.5) also admits an alternative formulation, in terms of the generalised Malliavin
derivatives of the marginal utility U ′. To this effect, recall the generalised Clark-Ocone theorem
(see [1] for the Brownian motion case and Theorem 3.28 of [8] for the Lévy process case) which
states that if the random variable F ∈ L2(P ) is FT -measurable, then it can be written as

F = E[F ] +

∫ T

0

E[DtF |Ft] dB(t) +

∫ T

0

∫
R
E[Dt,ζF |Ft] Ñ(dt, dζ)

where Dt and Dt,ζ denote the generalised Malliavin derivatives at t with respect to B and at t, ζ
with respect to N , respectively. Applying this to F := U ′

(
Xϕ(T ∧ τn)

)
we see that the solution

(pn, qn, rn) to the BSDE (3.2) can be represented as follows, for all t ∈ [0, T ] and ζ ∈ R:

pn(t) = E
[
U ′
(
Xϕ(T ∧ τn)

)
|Ft
]
,

qn(t) = E
[
DtU

′(Xϕ(T ∧ τn)
)
|Ft
]
,

rn(t, ζ) = E
[
Dt,ζU

′(Xϕ(T ∧ τn)
)
|Ft
]
.

Therefore, in view of Proposition 3.4, we get the following characterisation of the optimal ter-
minal wealth Xϕ∗,n(T ∧τn) of the partial information locally optimal portfolio problem (Problem
3.1).

Corollary 3.5. For any fixed n ∈ N, an element ϕ ∈ AUE (n) solves Problem 3.1 if and only if the
corresponding terminal wealth Xϕ(T ∧ τn) satisfies the following partial information Malliavin
differential equation P -a.s. for a.a. t ∈ [0, T ]:

E

[
bn(t)U ′

(
Xϕ(T ∧τn)

)
+σn(t)DtU

′(Xϕ(T ∧τn)
)
+

∫
R
γn(t, ζ)Dt,ζU

′(Xϕ(T ∧τn)
)
ν(dζ)

∣∣∣Et] = 0.

3.2 Partial information equivalent martingale measures (PIEMMs)

We now move to the issue of characterising the density processes of all partial information
equivalent martingale measures (PIEMMs), defined below in Definition 3.6. As a preliminary, let
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10 Fontana & Øksendal & Sulem

us consider a generic probability measure Q ∼ P on (Ω,F) and denote by G =
{
G(t); t ∈ [0, T ]

}
its density process, i.e., G(t) :=

dQ|Ft
dP |Ft

for all t ∈ [0, T ]. It is well-known that G is a P -a.s. strictly
positive F-martingale with E[G(T )] = 1. Furthermore, due to the martingale representation
property in the filtration F, there exists an F-predictable process θ0 =

{
θ0(t); t ∈ [0, T ]

}
with∫ T

0
θ20(t)dt <∞ P -a.s. and a PF ⊗B(R)-measurable function θ1 : Ω× [0, T ]×R→ (−1,∞) with∫ T

0

∫
R θ

2
1(t, ζ)ν(dζ)dt <∞ P -a.s. such that the following holds:

dG(t) = G(t−)

(
θ0(t) dB(t) +

∫
R
θ1(t, ζ) Ñ(dt, dζ)

)
, t ∈ [0, T ];

G(0) = 1.

(3.7)

The SDE (3.7) admits the following explicit solution, for all t ∈ [0, T ]:

G(t) = exp

(∫ t

0

θ0(s) dB(s)− 1

2

∫ t

0

θ20(s) ds+

∫ t

0

∫
R

log
(
1 + θ1(s, ζ)

)
Ñ(ds, dζ)

+

∫ t

0

∫
R

{
log
(
1 + θ1(s, ζ)

)
− θ1(s, ζ)

}
ν(dζ) ds

)
.

(3.8)

In the following, we write Gθ(t) := G(t), for θ := (θ0, θ1), where G(t) is represented by θ as
above. We let Θ denote the family of all F-predictable processes θ = (θ0, θ1) such that the SDE
(3.7) has a unique strictly positive martingale solution Gθ =

{
Gθ(t); t ∈ [0, T ]

}
. Similarly, for

θ ∈ Θ, we denote by Qθ the measure on (Ω,F) defined by dQθ/dP := Gθ(T ) and by EQθ [·]
the corresponding expectation operator. Let us recall that, for any bounded measurable process
Y =

{
Y (t); t ∈ [0, T ]

}
the (Qθ,E)-optional projection is the unique E-optional bounded process

oY =
{o
Y (t); t ∈ [0, T ]

}
such that EQθ

[
Y (τ)1{τ<∞}|Eτ

]
= oY (τ)1{τ<∞} P -a.s. for every E-

stopping time τ (see e.g. [13], Theorem 5.1). In particular, we have oY (t) = EQθ
[
Y (t)|Et

]
P -a.s.

for every t ∈ [0, T ].

Definition 3.6. For a fixed n ∈ N, a probability measure Qθ ∼ P on (Ω,F) is said to be a
Partial Information Equivalent Martingale Measure (PIEMM) up to τn if the process o(Sτn) is a
(Qθ,E)-martingale, where o(Sτn) denotes the (Qθ,E)-optional projection of the stopped process
Sτn .

Remark 3.7. Let us denote by FS = (FSt )0≤t≤T the filtration generated by the price process
S and suppose that FS ⊆ E, as considered e.g. in [4], meaning that all agents have access
to the information generated by the observation of the price process S. In this case, if the
localizing sequence {τn}n∈N can be chosen to be composed of FS-stopping times (compare also
with Assumption 4.12), a probability measure Qθ is a PIEMM up to τn if and only if the stopped
process Sτn is a (Qθ,E)-martingale.

In the next proposition we provide a characterisation of the density processes of all PIEMMs.

Proposition 3.8. For a fixed n ∈ N, a probability measure Qθ ∼ P on (Ω,F) with (θ0, θ1) ∈

Inria



Viability and martingale measures under partial information 11

L2(B)×G2(Ñ) is a PIEMM up to τn if and only if the following condition holds:

EQθ

[
bn(t) + σn(t) θ0(t ∧ τn) +

∫
R
γn(t, ζ) θ1(t ∧ τn, ζ)ν(dζ)

∣∣∣Et] = 0 P -a.s. for a.a. t ∈ [0, T ].

(3.9)

Proof. The process o(Sτn) is a (Qθ,E)-martingale if and only if, for every s, t ∈ [0, T ] with s ≤ t,
we have EQθ [ o(Sτn)(t)|Es] = o(Sτn)(s) P -a.s. By using the conditional version of Bayes’ rule
and the properties of the (Qθ,E)-optional projection, we can write:

EQθ
[
o(Sτn)(t)|Es

]
− o(Sτn)(s) = EQθ

[
EQθ [S(t ∧ τn)|Et]

∣∣Es]− EQθ [S(s ∧ τn)|Es]

= EQθ [S(t ∧ τn)|Es]− EQθ [S(s ∧ τn)|Es]

=
E[Gθ(t)S(t ∧ τn)|Es]

E[Gθ(t)|Es]
− E[Gθ(s)S(s ∧ τn)|Es]

E[Gθ(s)|Es]

=
E
[
Gθ(t)S(t ∧ τn)−Gθ(s)S(s ∧ τn)

∣∣Es]
E[Gθ(s)|Es]

. (3.10)

Furthermore, by applying the integration by parts formula (see e.g. [20], Lemma 3.6):

d
(
Gθ(t)S(t ∧ τn)

)
= Gθ(t−) dS(t ∧ τn) + S(t ∧ τn−) dGθ(t) + d[Gθ, S](t ∧ τn)

= Gθ(t−)1{t≤τn}

(
b(t)dt+ σ(t)dB(t) +

∫
R
γ(t, ζ)Ñ(dt, dζ)

)
+ S(t ∧ τn−)

(
Gθ(t−)

(
θ0(t)dB(t) +

∫
R
θ1(t, ζ)Ñ(dt, dζ)

))
+ 1{t≤τn}Gθ(t)σ(t)θ0(t)dt+ 1{t≤τn}

∫
R
Gθ(t−)γ(t, ζ)θ1(t, ζ)N(dt, dζ).

Collecting the dt-terms we get, for all t ∈ [0, T ]:

Gθ(t)S(t∧τn) = S0+

∫ t∧τn

0

Gθ(s)

(
b(s) + σ(s)θ0(s) +

∫
R
γ(s, ζ)θ1(s, ζ)ν(dζ)

)
ds+(F-local martingale).

(3.11)
Since (θ0, θ1) ∈ L2(B) × G2(Ñ) and Sτn , bn, σn and γn are bounded, it can be easily verified
that the F-local martingale term appearing in (3.11) is actually a true F-martingale and, hence,
we can write:

E
[
Gθ(t)S(t ∧ τn)−Gθ(s)S(s ∧ τn)

∣∣Es] = E
[
E
[
Gθ(t)S(t ∧ τn)−Gθ(s)S(s ∧ τn)|Fs

]∣∣Es]
= E

[∫ t∧τn

s∧τn
Gθ(s)

(
bn(s) + σn(s)θ0(s) +

∫
R
γn(s, ζ)θ1(s, ζ)ν(dζ)

)
ds
∣∣∣Es] . (3.12)

In view of equation (3.10), this shows that o(Sτn) is a (Qθ,E)-martingale if and only if (3.12) is
P -a.s. equal to zero for all s, t ∈ [0, T ] with s ≤ t. This is equivalent to the validity of condition
(3.9).
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12 Fontana & Øksendal & Sulem

3.3 Local market viability and PIEMMs

We now combine the results of Sections 3.1 and 3.2 to obtain our first main result, namely a
characterisation of local market viability in terms of partial information equivalent martingale
measures.

Theorem 3.9. For any fixed n ∈ N, the following are equivalent:

(i) the financial market is locally viable up to τn (in the sense of Definition 3.2) and ϕ ∈ AUE (n)

solves the partial information locally optimal portfolio problem (Problem 3.1);

(ii) for ϕ ∈ AUE (n), the measure Qϕ,n ∼ P on (Ω,F) defined by

dQϕ,n

dP
:=

U ′
(
Xϕ(T ∧ τn)

)
E
[
U ′
(
Xϕ(T ∧ τn)

)] (3.13)

is a PIEMM up to τn, in the sense of Definition 3.6.

Proof. (i) ⇒ (ii): Due to Proposition 3.4, if ϕ ∈ AUE (n) solves Problem 3.1, then the unique
solution (pn, qn, rn) ∈Mµ ×Lµ(B)×Gµ(Ñ) to the BSDE (3.2) satisfies condition (3.5). Let us
define, for all t ∈ [0, T ] and ζ ∈ R:

G(t) :=
pn(t)

pn(0)
=
E
[
U ′
(
Xϕ(T ∧ τn)

)
|Ft
]

E
[
U ′
(
Xϕ(T ∧ τn)

)] , θ0(t) :=
qn(t)

pn(t)
, θ1(t, ζ) :=

rn(t, ζ)

pn(t−)
. (3.14)

Then, by combining equation (3.2) with (3.14), we get:

dG(t) =
dpn(t)

pn(0)
=
qn(t)

pn(0)
dB(t) +

∫
R

rn(t, ζ)

pn(0)
Ñ(dt, dζ) =

pn(t)

pn(0)
θ0(t) dB(t) +

pn(t−)

pn(0)

∫
R
θ1(t, ζ)Ñ(dt, dζ)

= G(t−)

[
θ0(t) dB(t) +

∫
R
θ1(t, ζ) Ñ(dt, dζ)

]
.

By letting dQϕ,n/dP := G(T ), we get a well-defined probability measure Qϕ,n ∼ P on (Ω,F)

with density given by the right-hand side of (3.13). In view of Proposition 3.8, in order to show
that Qϕ,n is a PIEMM up to τn it suffices to show that condition (3.9) holds. This follows
immediately by substituting (3.14) into condition (3.5).
(ii) ⇒ (i): Suppose that the probability measure defined by the right-hand side of (3.13) is a
PIEMM up to τn, for some ϕ ∈ AUE (n), and define the process G =

{
G(t); t ∈ [0, T ]

}
as follows:

G(t) :=
E
[
U ′
(
Xϕ(T ∧ τn)

)
|Ft
]

E
[
U ′
(
Xϕ(T ∧ τn)

)] , for all t ∈ [0, T ].

By the martingale representation property, the process G admits a representation of the form
(3.7), for some F-predictable process θ0 and for some PF ⊗ B(R)-measurable function θ1. Fur-
thermore, since Qϕ,n is a PIEMM up to τn, Proposition 3.8 implies that the following condition
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is satisfied P -a.s. for a.a. t ∈ [0, T ]:

E

[
G(t)

(
bn(t) + σn(t) θ0(t ∧ τn) +

∫
R
γn(t, ζ) θ1(t ∧ τn, ζ)ν(dζ)

)∣∣∣Et] = 0 (3.15)

Let us then define, for all t ∈ [0, T ] and ζ ∈ R:

pn(t) := E
[
U ′
(
Xϕ(T ∧τn)

)]
G(t), qn(t) := pn(t) θ0(t∧τn), rn(t, ζ) := pn(t−)θ1(t∧τn, ζ).

(3.16)
Note that, since the random variable U ′

(
Xϕ(T ∧ τn)

)
∈ Lµ(P ), we have (pn, qn, rn) ∈ Mµ ×

Lµ(B) × Gµ(Ñ) (compare the proof of Lemma 3.3). By substituting (3.16) into (3.7), we see
that (pn, qn, rn) satisfies the BSDE (3.2). Moreover, by substituting (3.16) into (3.15), we can
verify that (3.5) holds. Proposition 3.4 allows then to conclude that ϕ ∈ AUE (n) solves Problem
3.1.

Remark 3.10. As we have already mentioned at the end of Section 2, we did not introduce
a-priori any no-arbitrage restriction on the financial market. The result of Theorem 3.9 can then
be interpreted in the following sense: as soon as the financial market is locally viable, in the
sense that a portfolio optimisation problem admits locally a solution, then there exists locally
a partial information equivalent martingale measure. This means that the absence of arbitrage
opportunities comes as a direct consequence of local market viability. In the papers [17] and [29],
the authors develop a general duality theory for the solution of portfolio optimisation problems
in the context of financial market models based on general semimartingales. Unlike the present
paper, the standing assumption in [17] and [29] is that the set of equivalent (local) martingale
measures is non-empty. As we have already pointed out, we opt for a different route and show
that the existence of a (partial information) EMM is a consequence of the viability of the financial
market (at least locally).

4 Global market viability under partial information

So far, we have studied the viability of the financial market in a local sense, namely up to
one of the stopping times composing the localizing sequence {τn}n∈N. Now, we adopt a global
perspective and aim at characterising the global viability of the financial market. In Section 4.1,
we prove a global version of Theorem 3.9 under the stronger assumption that b, σ and γ in (2.1)
are bounded (and not only locally bounded). In Section 4.2, we shall deal with the more delicate
locally bounded case.

4.1 The case of bounded coefficients

This subsection aims at proving, under a suitable assumption (see Assumption 4.2), the equiva-
lence between the existence of a Partial Information Equivalent Martingale Measure (PIEMM)
and the viability of the financial market in a global sense. In the same spirit of Definition 3.2,
we can give the following definition of global market viability.
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14 Fontana & Øksendal & Sulem

Definition 4.1. Let U be a utility function. The financial market is said to be globally viable
if there exists an element ϕ∗ ∈ AUE such that

sup
ϕ∈AUE

E
[
U
(
Xϕ(T )

)]
= E

[
U
(
Xϕ∗(T )

)]
<∞. (4.1)

In general, it turns out that the equivalence between the global viability of the financial
market (in the sense of Definition 4.1) and the existence of a PIEMM with density given by
the (normalised) marginal utility of the optimal terminal wealth does not hold, as shown by an
explicit example in Section 5. However, we can still obtain a direct and global version of Theorem
3.9 if the following additional assumption is satisfied.

Assumption 4.2.

(i) The processes b, σ and γ(·, D), for every D ∈ B(R), are P -a.s. uniformly bounded;

(ii) the utility function U satisfies the following condition:

E
[
U ′
(
Xϕ(T ) + ξ

)µ]
<∞, for all ϕ ∈ AUE and for all ξ ∈

⋂
r∈(1,∞)

Lr(P ). (4.2)

A useful consequence of Assumption 4.2-(i) is that the price process S admits finite moments
of any order. The proof of the next simple lemma is postponed to the Appendix.

Lemma 4.3. If Assumption 4.2-(i) holds, then E
[

supt∈[0,T ] |S(t)|r
]
<∞ for all r ∈ (1,∞).

Following the same approach of Section 3.1, we can characterise the solution to the portfolio
optimization problem (4.1) via the solution (p, q, r) ∈ Mµ × Lµ(B) × Gµ(Ñ) to the associated
BSDE 

dp(t) = q(t) dB(t) +

∫
R
r(t, ζ) Ñ(dt, dζ), t ∈ [0, T ];

p(T ) = U ′
(
Xϕ(T )

)
.

(4.3)

Proposition 4.4. Suppose that Assumption 4.2 holds. An element ϕ ∈ AUE solves problem (4.1)
if and only if the solution (p, q, r) ∈ Mµ × Lµ(B) × Gµ(Ñ) to the BSDE (4.3) satisfies the
following condition:

E

[
b(t) p(t) + σ(t) q(t) +

∫
R
γ(t, ζ) r(t, ζ) ν(dζ)

∣∣∣Et] = 0 P -a.s. for a.a. t ∈ [0, T ].

Proof. Due to Assumption 4.2 together with Lemma 4.3, it is clear that the strategy
{
β(t); t ∈

[0, T ]
}
defined by β(t) := ξ1[t0,t0+h](t) belongs to AUE , for any t0 ∈ [0, T ], h > 0 and for every

bounded Et0-measurable random variable ξ. Similarly, for every ψ, η ∈ AUE with η bounded, we
have ψ + δ η ∈ AUE for any δ ∈ R. This shows that conditions (A1) and (A2) of the necessary
maximum principle of [2] are satisfied. By relying on the boundedness of b, σ and γ as well as
on Lemma 3.3, the same arguments used in the proof of Proposition 3.4 allow then to prove the
claim.
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Recall that, as in Section 3.2, the density process G of any probability measure Q ∼ P on
(Ω,F) admits a representation of the form (3.8), for some F-predictable process θ and for some
PF ⊗ B(R)-measurable function θ1 : Ω × [0, T ] × R → (−1,∞). Let us introduce the following
definition, which represents a natural extension of Definition 3.6 to the global case.

Definition 4.5. A probability measure Qθ ∼ P on (Ω,F) is said to be a Partial Information
Equivalent Martingale Measure (PIEMM) if the process oS is a (Qθ,E)-martingale, where oS

denotes the (Qθ,E)-optional projection of the process S.

Density processes Gθ of PIEMMs can be characterised as follows, similarly to Proposition
3.8.

Proposition 4.6. Suppose that Assumption 4.2-(i) holds. A probability measure Qθ ∼ P on
(Ω,F) with dQθ/dP ∈ Lµ(P ) is a PIEMM if and only if the following condition holds:

EQθ

[
b(t) + σ(t) θ0(t) +

∫
R
γ(t, ζ) θ1(t, ζ)ν(dζ)

∣∣∣Et] = 0 P -a.s. for a.a. t ∈ [0, T ]

where θ0 (θ1, resp.) is the process (predictable function, resp.) appearing in the representation
(3.8).

Proof. The claim can be proved by relying on the same arguments used in the proof of Proposition
3.8 (of course, without stopping by τn). Note that, in the present context, the true F-martingale
property of the F-local martingale part in (3.11) follows from Lemma 4.3 together with a simple
application of the Burkholder-Davis-Gundy and Doob’s inequalities, using that dQθ/dP ∈ Lµ(P ).

As in Section 3.3, we can now combine Propositions 4.4 and 4.6 in order to obtain the
equivalence between the global viability of the financial market (in the sense of Definition 4.1)
and the existence of a PIEMM. We omit the proof, which is entirely similar to the proof of
Theorem 3.9.

Theorem 4.7. Suppose that Assumption 4.2 holds. Then the following are equivalent:

(i) the financial market is globally viable, in the sense of Definition 4.1, and ϕ ∈ AUE solves
the partial information optimal portfolio problem (4.1);

(ii) for ϕ ∈ AUE , the measure Qϕ ∼ P on (Ω,F) defined by

dQϕ

dP
:=

U ′
(
Xϕ(T )

)
E
[
U ′
(
Xϕ(T )

)]
is a PIEMM, in the sense of Definition 3.8.

Remark 4.8. Of course, Assumption 4.2 is satisfied for any discrete-time financial market model
on a finite probability space. In that case, Theorem 4.7 allows to recover a classical and well-
known result from financial economics, as discussed in Section 4.4 of [3] (see also [22] and [23]).
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4.2 The general case

In the present section, we study the issue of global market viability in the more general case of
locally bounded coefficients b, σ and γ, as in Section 2, without assuming that the simplifying
Assumption 4.2 is satisfied. In this case, as will be shown by the explicit example contained
in Section 5, we cannot characterise global market viability in terms of PIEMMs and we need
to rely on the localization approach described in Section 3, adopting the following definition of
global market viability.

Definition 4.9 (Global market viability). Let U be a utility function. The financial market is
said to be globally viable if Problem 3.1 admits an optimal solution ϕ∗ ∈ AUE (n) for all n ∈ N
and if the family of processes {pn}n∈N ⊆ Mµ solving the associated BSDEs (3.2) satisfies the
following consistency condition:

E
[
pn(t)/pn(0) | Ft∧τn−1

]
= pn−1(t)/pn−1(0), for all t ∈ [0, T ] and n ∈ N. (4.4)

In general (i.e., for unbounded coefficients), one cannot hope to obtain a full characterisation
of global market viability in terms of (partial information) equivalent martingale measures (not
even in terms of partial information equivalent local martingale measures), as will be shown in
Section 5. Hence, we need to introduce the following concept, which corresponds to a weaker
counterpart of the density process of a PIEMM and extends to the partial information setting
the notion of local martingale deflator introduced in [16].

Definition 4.10. A strictly positive F-local martingale Z =
{
Z(t); t ∈ [0, T ]

}
with Z0 = 1 is

said to be a Partial Information Local Martingale Deflator (PILMD) if the product oZ oS is an
E-local martingale, with o denoting the (P,E)-optional projection.

Remark 4.11. In the complete information case (i.e., E = F), it has been recently shown in [16]
that the existence of a local martingale deflator is equivalent to the No Arbitrage of the First Kind
(NA1) condition, which is in turn equivalent to the absence of Unbounded Profits with Bounded
Risk (NUPBR), as considered in [15]. In particular, these two no-arbitrage conditions can be
shown to be strictly weaker than the classical No Free Lunch with Vanishing Risk (NFLVR)
condition introduced in [5], the latter being equivalent to the existence of an Equivalent Local
Martingale Measure. In Section 5 we will propose an example of a globally viable financial market
which does not satisfy NFLVR.

Until the end of this section, we shall work under the following technical assumption.

Assumption 4.12. The localizing sequence {τn}n∈N can be chosen to be composed of E-stopping
times.

Remarks 4.13. 1) The reason why we require Assumption 4.12 consists in the fact that we
shall need to take E-optional projections of F-local martingales. It is well-known (and easy to
check) that the E-optional projection of an F-martingale is an E-martingale. However, when one
considers an F-local martingale, its E-optional projection can fail to be an E-local martingale.
As can be easily verified, a sufficient condition for the E-optional projection oY of an F-local
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martingale Y to be an E-local martingale is that Y can be localized with a sequence of E-stopping
times (see also [10], Theorem 3.7).

2) Note that, as long as Assumption 4.12 holds, we have o(Sτn) = oSτn for every n ∈ N,
since the process 1[[0,τn]] is E-optional whenever τn is an E-stopping time (compare also with [13],
Theorem 5.7).

By relying on Theorem 3.9, we are now in a position to formulate the next theorem, which
gives a characterisation of global market viability (in the sense of Definition 4.9) under partial
information.

Theorem 4.14. Suppose that Assumption 4.12 holds. The following are equivalent:

(i) the financial market is globally viable, in the sense of Definition 4.9, and ϕ ∈ AUE (n) solves
the partial information locally optimal portfolio problem (Problem 3.1) for all n ∈ N;

(ii) for some ϕ ∈
⋂
n∈NAUE (n), the process Zϕ =

{
Zϕ(t) : t ∈ [0, T ]

}
defined by

Zϕ(t) := 1{t=0} +

∞∑
k=1

1{τk−1<t≤τk}
E
[
U ′
(
Xϕ(T ∧ τk)

)
|Ft
]

E
[
U ′
(
Xϕ(T ∧ τk)

)] , for all t ∈ [0, T ], (4.5)

is a PILMD satisfying Zϕ(T ∧ τn) = U ′
(
Xϕ(T ∧ τn)

)
/E
[
U ′
(
Xϕ(T ∧ τn)

)]
, for all n ∈ N,

with τ0 := 0.

Proof. (i) ⇒ (ii): Suppose that, for all n ∈ N, the strategy ϕ ∈ AUE (n) solves Problem 3.1 and
define the process Zkϕ =

{
Zkϕ(t); t ∈ [0, T ]

}
as follows, for every k ∈ N:

Zkϕ(t) :=
E
[
U ′
(
Xϕ(T ∧ τk)

)
|Ft
]

E
[
U ′
(
Xϕ(T ∧ τk)

)] , for all t ∈ [0, T ], (4.6)

Then, let us define the process Zϕ =
{
Zϕ(t); t ∈ [0, T ]

}
by Zϕ(t) := 1 +

∑∞
k=1

∫ t∧τk
t∧τk−1

dZkϕ(s),
for all t ∈ [0, T ]. Since Zkϕ ∈ Mµ, for all k ∈ N, the process Zϕ is an F-local martingale with
Zϕ(0) = 1 and, furthermore, it is localized by the sequence {τn}n∈N. As can be easily checked,
the consistency condition (4.4) implies that Zkϕ(t ∧ τk−1) = Zk−1ϕ (t ∧ τk−1) for all t ∈ [0, T ] and
k ∈ N, so that the process Zϕ can be equivalently rewritten as follows, for all t ∈ [0, T ]:

Zϕ(t) = 1{t=0} +

∞∑
k=1

1{τk−1<t≤τk}Z
k
ϕ(t) = 1{t=0} +

∞∑
k=1

1{τk−1<t≤τk}
E
[
U ′
(
Xϕ(T ∧ τk)

)
|Ft
]

E
[
U ′
(
Xϕ(T ∧ τk)

)] .

In view of Definition 4.10, it remains to show that oZ oS is an E-local martingale. Recall that,
due to Assumption 4.12, we can interchange the operations of taking the E-optional projection
and stopping by τn, for all n ∈ N. Hence, we can write, for all t ∈ [0, T ] and n ∈ N:

RR n° 8243



18 Fontana & Øksendal & Sulem

oZϕ(t ∧ τn) oS(t ∧ τn) = S01{t=0} + oS(t ∧ τn)

(
n∑
k=1

1{τk−1<t≤τk}
oZkϕ(t) + 1{τn<t}

oZnϕ(τn)

)

= S01{t=0} +

n∑
k=1

1{τk−1<t≤τk}
oZkϕ(t) oS(t) + 1{τn<t}

oZnϕ(τn) oS(τn)

= S01{t=0} +

n∑
k=1

1{τk−1<t≤τk}
oZkϕ(t) o(Sτk)(t) + 1{τn<t}

oZnϕ(τn) o(Sτn)(τn)

= S0 +

n∑
k=1

∫ t∧τk

t∧τk−1

d
(
oZkϕ

o(Sτk)
)
(s).

(4.7)

Due to Theorem 3.9, the process Zkϕ is the density process of a PIEMM up to τk, for every
k ∈ N, thus implying that oZkϕ o(Sτk) is an E-martingale, for every k ∈ N. Together with equation
(4.7), this shows that (oZϕ

oS)τn is an E-martingale for all n ∈ N, or, equivalently, that oZϕ oS is
an E-local martingale, thus proving that Zϕ is a PILMD. To complete the proof of the implication
(i) ⇒ (ii), note that the consistency condition (4.4) implies that, for all n ∈ N:

Zϕ(T ∧ τn) =

n∑
k=1

1{τk−1<T≤τk}
U ′
(
Xϕ(T ∧ τk)

)
E
[
U ′
(
Xϕ(T ∧ τk)

)] + 1{T>τn}
U ′
(
Xϕ(T ∧ τn)

)
E
[
U ′
(
Xϕ(T ∧ τn)

)]
=

n∑
k=1

1{τk−1<T≤τk}
pk(T )

pk(0)
+ 1{T>τn}

pn(T )

pn(0)

=

n∑
k=1

1{τk−1<T≤τk}E

[
pn(T )

pn(0)

∣∣∣FT∧τk]+ 1{T>τn}
pn(T )

pn(0)
=
pn(T )

pn(0)
=

U ′
(
Xϕ(T ∧ τn)

)
E
[
U ′
(
Xϕ(T ∧ τn)

)]

(ii) ⇒ (i): Suppose that, for some ϕ ∈
⋂
n∈NAUE (n), the process Zϕ defined in (4.5) is a

PILMD. Due to the local boundedness assumption (see Remark 2.1), the sequence {τn}n∈N is a
localizing sequence for Zϕ, meaning that the stopped process Zτnϕ is an F-martingale, for every
n ∈ N. Moreover, since Zϕ is a PILMD, the stopped process

(o
Zϕ

oS
)τn

= o
(
Zτnϕ

)
o
(
Sτn
)
is an

E-martingale, for every n ∈ N, where we have also used Assumption 4.12. In view of Definition
3.6, this means that the measure Qϕ defined by dQϕ := Zϕ(T ∧ τn)dP defines a PIEMM up to
τn. Theorem 3.9 then implies that ϕ solves Problem 3.1, for all n ∈ N. To complete the proof,
it remains to prove the consistency condition (4.4). This can be shown as follows, using the
F-martingale property of pn and Zτnϕ , for all n ∈ N and t ∈ [0, T ]:
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E

[
pn(t)

pn(0)

∣∣∣Ft∧τn−1

]
− pn−1(t)

pn−1(0)
= E

[
pn(T )

pn(0)
− pn−1(T )

pn−1(0)

∣∣∣Ft∧τn−1

]
= E

[
U ′
(
Xϕ(T ∧ τn)

)
E
[
U ′
(
Xϕ(T ∧ τn)

)] − U ′
(
Xϕ(T ∧ τn−1)

)
E
[
U ′
(
Xϕ(T ∧ τn−1)

)] ∣∣∣∣Ft∧τn−1

]
= E

[
Zϕ(T ∧ τn)− Zϕ(T ∧ τn−1)

∣∣Ft∧τn−1

]
= E

[
E
[
Zϕ(T ∧ τn)− Zϕ(T ∧ τn−1)

∣∣FT∧τn−1

]∣∣∣Ft∧τn−1

]
= 0

In view of Definition 4.9, we have thus shown that the financial market is globally viable.

In particular, we want to remark that Theorem 4.14 not only shows that if the financial market
is globally viable (in the sense of Definition 4.9) then there exists a partial information local
martingale deflator, but also gives an explicit description of the PILMD Zϕ, which aggregates
the expected (normalised) marginal utilities of terminal wealth at the stopping times of the
localizing sequence {τn}n∈N.

Remark 4.15 (On the case of bounded coefficients). If we suppose, as in Section 4.1, that
Assumption 4.2 is satisfied, then the PILMD Zϕ appearing in (4.5) is in fact the density process
of the PIEMM Qϕ defined in part (ii) of Theorem 4.7. Indeed, Assumption 4.2 implies that there
exists an element n∗ ∈ N such that τn∗ =∞ P -a.s. This means that Zϕ in (4.5) reduces to the
finite sum of the first n∗ terms, thus implying that Zϕ is a true F-martingale. Furthermore, it is
easy to check that the consistency condition (4.4) implies that, for all k = 0, 1, . . . , n∗ − 1:

U ′
(
Xϕ(T ∧ τk)

)
E
[
U ′
(
Xϕ(T ∧ τk)

)] =
pk(T )

pk(0)
= E

[
pn
∗
(T )

pn∗(0)

∣∣∣∣FT∧τk] = E

[
U ′
(
Xϕ(T ∧ τn∗)

)
E
[
U ′
(
Xϕ(T ∧ τn∗)

)] ∣∣∣∣FT∧τk
]

= E

[
U ′
(
Xϕ(T )

)
E
[
U ′
(
Xϕ(T )

)] ∣∣∣∣FT∧τk
]
.

By substitution into equation (4.5) we get:

Zϕ(T ) =

n∗∑
k=1

1{τk−1<T≤τk}E

[
U ′
(
Xϕ(T )

)
E
[
U ′
(
Xϕ(T )

)] ∣∣∣∣FT∧τk
]

=
U ′
(
Xϕ(T )

)
E
[
U ′
(
Xϕ(T )

)]
thus confirming the result of Theorem 4.7.

5 An example

This section is meant to be an illustration of the concepts discussed so far in context of a simple
continuous financial market model, based on a three-dimensional Bessel process. Bessel processes
have been extensively studied in relation with the existence of arbitrage opportunities, see e.g.
[6], Section 2 of [11] and Example 4.6 in [15]. Nevertheless, in the context of the present example,
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we will show that the financial market is viable in the local as well as in the global sense for a
logarithmic utility function, even though the model allows for classical arbitrage opportunities.

Let (Ω,F ,F, P ) be a given filtered probability space, with a standard Brownian motion B

and where E := FB ⊆ F is the P -augmented filtration generated by B. We define the discounted
price process S of a single risky asset as the solution to the following SDE:

dS(t) =
1

S(t)
dt+ dB(t), t ∈ [0, T ];

S(0) = 1.

(5.1)

The solution to the SDE (5.1) is a P -a.s. strictly positive process known as the three-dimensional
Bessel process (we refer the reader to Chapter XI of [27] for a detailed study of Bessel processes).
It is easy to see that there exists a sequence {τn}n∈N of E-stopping times with τn ↗ +∞ P -a.s.
as n → +∞ such that Sτn and 1/Sτn are P -a.s. uniformly bounded, for every n ∈ N. Indeed,
it suffices to define τn := inf

{
t ∈ [0, T ] : S(t) /∈ (1/n, n)

}
, for n ∈ N (with the usual convention

inf ∅ = +∞). A simple application of Itô’s formula gives that dS−1(t) = −S−2(t) dB(t), thus
showing that 1/S is an E-local martingale or, equivalently, that the stopped process 1/Sτn is an
E-martingale, for all n ∈ N. Furthermore, for any ϕ ∈ AUE (n) and for any n ∈ N:

d

(
Xϕ(t ∧ τn)

S(t ∧ τn)

)
= Xϕ(t ∧ τn) d

1

S(t ∧ τn)
+

ϕ(t)

S(t ∧ τn)
dS(t ∧ τn)− ϕ(t)

S2(t ∧ τn)
dt

= Xϕ(t ∧ τn) d
1

S(t ∧ τn)
+

ϕ(t)

S(t ∧ τn)
dB(t)

(5.2)

thus showing that the stopped process Xτn
ϕ /Sτn is an E-martingale, for every n ∈ N.

Let us consider the logarithmic utility function U(x) = log(x), with an initial endowment of
x = 1. Jensen’s inequality together with the martingale property of Xτn

ϕ /Sτn gives

E
[
log
(
Xϕ(T ∧ τn)/S(T ∧ τn)

)]
≤ log

(
E
[
Xϕ(T ∧ τn)/S(T ∧ τn)

])
= 0

meaning that E
[
log
(
Xϕ(T ∧ τn)

)]
≤ E

[
log
(
S(T ∧ τn)

)]
, for any ϕ ∈ AUE (n). This shows that

the optimal strategy for the logarithmic utility consists in a simple buy-and-hold position in the
risky asset itself, i.e., ϕ∗,n = 1 ∈ AUE (n) for all n ∈ N. According to Definition 3.2, the financial
market is locally viable up to τn.

We can also verify the local viability of the financial market by applying Theorem 3.9. Indeed,
since the stopped process 1/Sτn is a strictly positive E-martingale, we can define a probability
measure Qn on (Ω,F) by letting dQn/dP := 1/S(T ∧ τn). Due to Bayes’ rule, it is easy to check
that Qn is a PIEMM up to τn, in the sense of Definition 3.6 (noting that we are in the situation
described in Remark 3.7). Since U ′(x) = 1/x, the implication (ii) ⇒ (i) of Theorem 3.9 implies
that the financial market is viable up to τn and that ϕ∗,n = 1 ∈ AUE (n) solves Problem 3.1.

Since the process 1/S is unbounded, Assumption 4.2 fails to hold and, hence, we cannot rely
on the approach presented in Section 4.1 to study the global viability of the financial market.
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Moreover, we can prove that the process 1/S cannot be used as the density process of a PIEMM
on [0, T ], since 1/S is a strict local martingale, according to the terminology of [9], being a local
martingale which fails to be a true martingale, so that E[1/S(T )] < 1. Let us explain with some
more details this phenomenon. We define the measure Qϕ

∗
as follows:

dQϕ
∗

dP
:=

U ′
(
Xϕ∗(T )

)
E
[
U ′
(
Xϕ∗(T )

)] =
1/S(T )

E
[
1/S(T )

] .
If Qϕ

∗
were a PIEMM then its density process G =

{
G(t); t ∈ [0, T ]

}
, with dQϕ

∗ |Et := G(t) dP |Et
for all t ∈ [0, T ], would be an E-martingale admitting the following representation, as in (3.8):

G(t) = exp

(∫ t

0

θ0(s)dB(s)− 1

2

∫ t

0

θ20(s)ds

)
, for all t ∈ [0, T ],

for some E-predictable process θ0 =
{
θ0(t); t ∈ [0, T ]

}
with

∫ T
0
θ20(t)dt <∞ P -a.s., so that:

d
(
G(t)S(t)

)
= S(t)dG(t)+G(t)dS(t)+d

〈
G,S

〉
(t) = S(t)dG(t)+G(t)dB(t)+G(t)

(
1

S(t)
+ θ0(t)

)
dt.

(5.3)
If Qϕ

∗
were a PIEMM, then the product GS would be an E-(local) martingale and equation

(5.3) would then imply that θ0(t) = −1/S(t) for a.a. t ∈ [0, T ], thus implying that dG(t) =

−G(t)/S(t) dB(t). But, since G(0) = 1/S(0) = 1, this would in turn imply that G and 1/S

solve the same SDE and, hence, one would conclude G = 1/S, thus contradicting the martingale
property of G. This shows that, in the context of the present example, the marginal utility of
the optimal terminal wealth cannot be taken as the density of a PIEMM. The failure of the
martingale property of 1/S is also linked to the existence of multiple solutions to the BSDE (3.2)
on the time horizon [0, T ] beyond the classM2 × L2(B), as discussed in the recent paper [32].

We conclude the discussion of this example by showing that the financial market is globally
viable, in the sense of Definition 4.9. Indeed, we already know that ϕ∗ := 1 = ϕ∗,n ∈ AUE (n)

solves Problem 3.1 for the logarithmic utility for all n ∈ N. Moreover, the consistency condition
(4.4) also holds, due to the martingale property of the stopped process 1/Sτn , for all n ∈ N and
t ∈ [0, T ]:

E

[
pn(t)

pn(0)
− pn−1(t)

pn−1(0)

∣∣∣Ft∧τn−1

]
= E

[
E
[
U ′
(
Xϕ∗(T ∧ τn)

)
|Ft
]

E
[
U ′
(
Xϕ∗(T ∧ τn)

)] − E
[
U ′
(
Xϕ∗(T ∧ τn−1)

)
|Ft
]

E
[
U ′
(
Xϕ∗(T ∧ τn−1)

)] ∣∣∣∣Ft∧τn−1

]

= E

[
E
[
1/S(T ∧ τn)|Ft

]
E
[
1/S(T ∧ τn)

] − E
[
1/S(T ∧ τn−1)|Ft

]
E
[
1/S(T ∧ τn−1)

] ∣∣∣∣Ft∧τn−1

]

= E

[
1

S(t ∧ τn)
− 1

S(t ∧ τn−1)

∣∣∣Ft∧τn−1

]
= 0.

Alternatively, we can prove the global viability of the financial market by applying Theorem
4.14. Indeed, let us take ϕ = 1 ∈

⋂
n∈NAUE (n) and consider the process Zϕ defined in (4.5).
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Since U ′(x) = 1/x, for every n ∈ N, it is immediate to check that Zϕ = 1/S:

Zϕ(t) = 1{t=0}+

∞∑
k=1

1{τk−1<t≤τk}
E
[
1/S(T ∧ τk)|Ft

]
E
[
1/S(T ∧ τk)

] = 1{t=0}+

∞∑
k=1

1{τk−1<t≤τk}
1

S(t ∧ τk)
=

1

S(t)
.

Equation (5.2) together with the martingale property of 1/Sτn , for all n ∈ N, shows that 1/S is
a PILMD and Theorem 4.14 implies then that the financial market is globally viable.

A Appendix

Proof of Lemma 3.3.

The existence of a unique solution (pn, qn, rn) ∈Mµ×Lµ(B)×Gµ(Ñ) can be shown by applying
Proposition A.5 of [25], but we prefer to give full details for the convenience of the reader.
For any fixed ϕ ∈ AUE (n), we have U ′

(
Xϕ(T ∧ τn)

)
∈ Lµ(P ) and, hence, the F-martingale

pn =
{
pn(t); t ∈ [0, T ]

}
defined by pn(t) := E

[
U ′
(
Xϕ(T ∧ τn)

)
|Ft
]
, for all t ∈ [0, T ], satisfies

pn(T ) = U ′
(
Xϕ(T ∧ τn)

)
and belongs to Mµ, as a consequence of Doob’s inequality. Since

the pair (B, Ñ) enjoys the martingale representation property in the filtration F (see e.g. [28],
Theorem 2.3) and since the martingale representation property is stable under stopping (see e.g.
[13], Lemma 13.8), there exists a unique couple (qn, rn) ∈ L2(B) × G2(Ñ) such that (3.2) is
satisfied. The fact that (qn, rn) ∈ Lµ(B) × Gµ(Ñ) follows from the Burkholder-Davis-Gundy
and Doob’s inequalities, since pn(T ) ∈ Lµ(P ).

It remains to prove the integrability properties (3.3)-(3.4). For (3.3), it suffices to note that,
using Doob’s inequality:

E

[∫ T

0

(
pn(t)

)µ
dt

]
≤ TE

[
sup
t∈[0,T ]

∣∣pn(t)
∣∣µ] ≤ CµTE [(pn(T )

)µ]
= CµTE

[
U ′
(
Xϕ(T∧τn)

)µ]
<∞.

To prove (3.4), we can argue as follows, using in sequence Hölder’s inequality, the inequality
between the predictable and the optional quadratic variation given in Corollary 1.3 of [24],
Burkholder-Davis-Gundy’s inequality and Doob’s inequality and where C represents a positive
constant which can change from line to line:
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E

[∫ T

0

Xϕ̂(t ∧ τn)2
((
qn(t)

)2
+

∫
R

(
rn(t, ζ)

)2
ν(dζ)

)
dt

]

≤ E
[

sup
t∈[0,T∧τn]

∣∣Xϕ̂(t)
∣∣λ] 2

λ

E

(∫ T

0

(
qn(t)

)2
+

∫ T

0

∫
R

(
rn(t, ζ)

)2
ν(dζ) dt

)µ
2

 2
µ

= E

[
sup

t∈[0,T∧τn]

∣∣Xϕ̂(t)
∣∣λ] 2

λ

E

[〈∫
qndB +

∫ ∫
R
rndÑ

〉µ
2

T

] 2
µ

≤ CE
[

sup
t∈[0,T∧τn]

∣∣Xϕ̂(t)
∣∣λ] 2

λ

E

[[∫
qndB +

∫ ∫
R
rndÑ

]µ
2

T

] 2
µ

≤ CE
[

sup
t∈[0,T∧τn]

∣∣Xϕ̂(t)
∣∣λ] 2

λ

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

qn(u)dB(u)

∫ t

0

∫
R
rn(u, ζ)Ñ(du, dζ)

∣∣∣∣µ
] 2
µ

≤ CE
[

sup
t∈[0,T∧τn]

∣∣Xϕ̂(t)
∣∣λ] 2

λ

E

[(∫ T

0

qn(u)dB(u) +

∫ T

0

∫
R
rn(u, ζ)Ñ(du, dζ)

)µ] 2
µ

= CE

[
sup

t∈[0,T∧τn]

∣∣Xϕ̂(t)
∣∣λ] 2

λ

E

[(
U ′
(
Xϕ(T ∧ τn)

)
− E

[
U ′
(
Xϕ(T ∧ τn)

)])µ] 2
µ

<∞

where the finiteness of the last expectations follows from the admissibility ϕ, ϕ̂ ∈ AUE (n).

Proof of Lemma 4.3.

We use Minkowski’s inequality and the Burkholder-Davis-Gundy inequality to get, for any r ∈
(1,∞):

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

σ(u)dB(u) +

∫ t

0

∫
R
γ(u, ζ)Ñ(du, dζ)

∣∣∣∣r
]1/r

≤ E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

σ(u)dB(u)

∣∣∣∣r
]1/r

+ E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
R
γ(u, ζ)Ñ(du, dζ)

∣∣∣∣r
]1/r

≤ CE

(∫ T

0

σ2(u)du

)r/21/r

+ CE

(∫ T

0

∫
R
γ2(u, ζ)N(du, dζ)

)r/21/r

<∞

where C is a positive constant and the finiteness of the last expectations follows from the uniform
boundedness of σ and γ. Due to (2.1) and to the boundedness of b, this suffices to prove the
claim.
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