K. Aki and P. G. Richards, Quantitative Seismology, Second Edition, 2002.

R. Benites and K. B. Olsen, Modeling Strong Ground Motion in the Wellington Metropolitan Area, Bull. Seism. Soc. Am, vol.97, p.21802196, 2005.

E. Bertrand, A. Duval, M. Castan, and S. Vidal, 3D geotechnical soil model of Nice, France, inferred from seismic noise measurements for seismic hazard assessment. AGU Fall Meeting, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00428669

E. Bertrand, J. Régnier, F. Vinatier, P. Langlaude, and M. Pernoud, Seismological measurements for site eect investigation in Nice, France. 15 WCEE, 15th World Conference on Earthquake Engineering, 2012.

T. Bohlen and H. K. Saenger, Accuracy of heterogeneous staggered-grid nite-dierence modelling of Rayleigh waves, Geophysics, vol.71, issue.4, p.109115, 2006.

K. W. Campbell, Estimates of Shear-Wave Q and ??0 for Unconsolidated and Semiconsolidated Sediments in Eastern North America, Bulletin of the Seismological Society of America, vol.99, issue.4, p.23652392, 2009.
DOI : 10.1785/0120080116

J. M. Carcione, D. Koslo, and R. Koslo, Wave propagation simulation in a linear viscoacoustic medium, Geophysical Journal International, vol.93, issue.2, p.393407, 1988.
DOI : 10.1111/j.1365-246X.1988.tb02010.x

J. M. Carcione, D. Koslo, and R. Koslo, Wave propagation simulation in a linear viscoelastic medium, Geophysical Journal International, vol.95, issue.3, p.597611, 1988.
DOI : 10.1111/j.1365-246X.1988.tb06706.x

E. Chaljub, Y. Capdeville, and J. P. Vilotte, Solving elastodynamics in a uid-solid heterogeneous sphere : a parallel spectral element approximation on non-conforming grids, J. Comp. Phy, vol.187, issue.2, p.457491, 2003.

E. Chaljub, P. Moczo, S. Tsuno, P. Bard, J. Kristek et al., Quantitative Comparison of Four Numerical Predictions of 3D Ground Motion in the Grenoble Valley, France, Bulletin of the Seismological Society of America, vol.100, issue.4, p.14271455, 2010.
DOI : 10.1785/0120090052

URL : https://hal.archives-ouvertes.fr/insu-00564745

S. M. Day, Ecient simulation of constant Q using coarse-grained memory variables, Bull. Seism. Soc. Am, vol.88, p.10511062, 1998.

S. M. Day and C. R. Bradley, Memory ecient simulation of anelastic wave propagation, Bull. Seism. Soc. Am, vol.91, p.520531, 2001.

S. M. Day and J. B. Minster, Numerical simulation of attenuated waveelds using a Padé approximant method, Geophys. J. R. astr. Soc, vol.78, p.105118, 1984.

S. Delcourte, L. Fezoui, and N. Glinsky-olivier, A high-order Discontinuous Galerkin method for the seismic wave propagation, ESAIM : Proceedings, p.7089, 2009.
DOI : 10.1051/proc/2009020

URL : https://hal.archives-ouvertes.fr/hal-00868418

. Distene, Simail software

H. Emmerich and M. Korn, Incorporation of attenuation into time-domain computations of seismic wave elds, Geophysics, vol.52, p.12521264, 1987.

V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky, An hp-adaptive discontinuous Galerkin nite-element method for 3D elastic wave modelling, Geophys. J. Int, vol.183, issue.2, p.941962, 2010.
DOI : 10.1111/j.1365-246x.2010.04764.x

URL : http://gji.oxfordjournals.org/cgi/content/short/183/2/941

A. Gandomzadeh, Interaction dynamique sol-structure : inuence des non-linéarités de comportement du sous-sol, 2011.

W. W. Garvin, Exact transient solution of the buried line source problem Bonilla. 2-D P-SV numerical study of soil-source interaction in a nonlinear basin, Proc. Roy. Soc. London, Series A, p.52854113741390, 1956.

C. Gélis, L. F. Bonilla, J. Regnier, E. Bertrand, and A. Duval, On the use of Saenger's nite dierence stencil to model 2D P-SV non linear basin response : application to Nice, France, Seismik Risk 2008 -Earthquake in Western Europe, 2008.

R. W. Graves and S. M. Day, Stability and Accuracy Analysis of Coarse-Grain Viscoelastic Simulations, Bulletin of the Seismological Society of America, vol.93, issue.1, p.283300, 2003.
DOI : 10.1785/0120020094

R. Guidotti, M. Stupazzini, C. Smerzini, R. Paolucci, and P. Ramieri, Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the Mw 6.3 Christchurch earthquake on, Seismol. Res. Lett, vol.82, issue.6, p.767782, 2011.

N. A. Haskell, The dispersion of surface waves on multilayered media, Bull. Seism. Soc. Am, vol.43, issue.1, p.1734, 1951.
DOI : 10.1029/SP030p0086

M. Käser and M. Dumbser, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms, Geophysical Journal International, vol.166, issue.2, p.855877, 2006.
DOI : 10.1111/j.1365-246X.2006.03051.x

M. Käser, M. Dumbser, J. De-la-puente, and H. Igel, An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - III. Viscoelastic attenuation, Geophysical Journal International, vol.168, issue.1, p.224242, 2007.
DOI : 10.1111/j.1365-246X.2006.03193.x

M. Käser, V. Hermann, and J. De-la-puente, Quantitative accuracy analysis of the discontinuous Galerkin method for seismic wave propagation, Geophysical Journal International, vol.173, issue.3, p.990999, 2008.
DOI : 10.1111/j.1365-246X.2008.03781.x

K. Kelly, R. Ward, S. Treiten, and R. Alford, Synthetic seismograms : a nite-dierence approach, Geophysics, vol.41, issue.1, p.227, 1976.
DOI : 10.1190/1.1440605

E. Kjartansson, Constant Q-Wave Propagation and Attenuation, J. Geophys. Res, vol.84, issue.B9, p.47374748, 1979.

D. Komatitsch, Q. Liu, J. Tromp, P. Suess, C. Stidham et al., Simulations of Ground Motion in the Los Angeles Basin Based upon the Spectral-Element Method, Bulletin of the Seismological Society of America, vol.94, issue.1, p.187206, 2004.
DOI : 10.1785/0120030077

URL : https://hal.archives-ouvertes.fr/hal-00669055

D. Komatitsch and J. P. Vilotte, The spectral-element method : an ecient tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seism. Soc. Am, vol.88, issue.2, pp.368-392, 1998.

A. O. Kwok, J. P. Stewart, Y. M. Hashash, N. Matasovic, R. Pyke et al., Use of Exact Solutions of Wave Propagation Problems to Guide Implementation of Nonlinear Seismic Ground Response Analysis Procedures, Journal of Geotechnical and Geoenvironmental Engineering, vol.133, issue.11, pp.1331385-1398, 2007.
DOI : 10.1061/(ASCE)1090-0241(2007)133:11(1385)

S. J. Lee, D. Komatitsch, B. S. Huang, and J. Tromp, Eects of Topography on Seismic Wave Propagation : An Example from Northern Taiwan, Bull. Seism. Soc. Am, vol.99, issue.1, p.314325, 2009.

A. Levander, Fourth-order nite dierence P-SV seismograms, Geophysics, vol.53, p.14251436, 1988.

P. C. Liu and R. J. Archuleta, Ecient modeling of Q for 3D numerical simulation of wave propagation, Bull. Seism. Soc. Am, vol.96, issue.4A, p.13521358, 2006.

J. Lysmer and L. A. Drake, A nite element method for seismology, Methods of Computational Physics, vol.11, pp.181-216, 1972.

R. Madariaga, Dynamics of an expanding circular fault, Bull. Seism. Soc. Am, vol.66, p.639666, 1976.

K. J. Marfurt, Accuracy of nite-dierence and nite-element modelling of the scalar and elastic wave equations, Geophysics, vol.49, p.533549, 1984.

D. E. Mercerat, J. P. Vilotte, and F. J. Sanchez-sesma, Triangular Spectral Element simulations of 2D elastic wave propagation using unstructured grids, Geophys. J. Int, vol.166, p.679698, 2006.

P. Moczo, E. Bystrický, J. Kristek, J. M. Carcione, and M. Bouchon, Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures, Bull. Seism. Soc. Am, vol.87, p.13051323, 1997.

P. Moczo and J. Kristek, On the rheological models used for time-domain methods of seismic wave propagation, Geophysical Research Letters, vol.121, issue.1, p.1306, 2005.
DOI : 10.1029/2004GL021598

P. Moczo, J. Kristek, and L. Halada, The nite-dierence method for seismologists. An introduction, 2004.

T. Ohminato and B. A. Chouet, A free-surface boundary condition for including 3D topography in the nite-dierence method, Bull. Seism. Soc. Am, vol.87, issue.2, p.494515, 1997.

M. O. Olinga, Estimation des eets de site à Nice, 2007.

K. B. Olsen and R. J. Archuleta, 3D Simulation of Earthquakes on the Los Angeles Fault System, Bull. Seism. Soc. Am, vol.86, p.575596, 1996.

W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, 1973.

J. O. Robertsson, A numerical-free surface condition for elastic/viscoelastic nitedierence modeling in the presence of topography, Geophysics, issue.6, p.6119211934, 1996.

E. H. Saenger, N. Gold, and S. A. Shapiro, Modeling the propagation of elastic waves using a modied nite-dierence grid, Wave Motion, vol.31, p.7792, 2000.

T. Satoh, H. Kawase, T. Sato, and A. Pitarka, Three-Dimensional Finite-Dierence Waveform Modeling of Strong Motions Observed in the Sendai Basin, Japan. Bull. Seism. Soc. Am, vol.91, p.812825, 2001.

J. Semblat, RHEOLOGICAL INTERPRETATION OF RAYLEIGH DAMPING, Journal of Sound and Vibration, vol.206, issue.5, p.741744, 1997.
DOI : 10.1006/jsvi.1997.1067

URL : https://hal.archives-ouvertes.fr/hal-00355576

J. Semblat, A. Duval, and P. Dangla, Numerical analysis of seismic wave amplication in Nice (France) and comparisons with experiments, Soil Dynamics and Earthquake Engineering, vol.19, issue.5, p.347362, 2000.

J. Semblat and A. Pecker, Waves and vibrations in soils, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00851291

S. K. Singh, E. Mena, and R. Castro, Some aspects of source characteristics of the Michoacan earthquake and ground motion amplication in and near Mexico city from strong motion data, Bull. Seism. Soc. Am, vol.78, p.451477, 1985.

C. Smerzini, R. Paolucci, and M. Stupazzini, Comparison of 3D, 2D and 1D numerical approaches to predict long period earthquake ground motion in the Gubbio plain, Central Italy, Bulletin of Earthquake Engineering, vol.88, issue.2, 2011.
DOI : 10.1007/s10518-011-9289-8

M. Stupazzini, R. Paolucci, and H. Igel, Near-Fault Earthquake Ground-Motion Simulation in the Grenoble Valley by a High-Performance Spectral Element Code, Bulletin of the Seismological Society of America, vol.99, issue.1, p.286301, 2009.
DOI : 10.1785/0120080274

W. T. Thomson, Transmission of elastic waves through a stratied solid medium, J. Appl. Phys, vol.21, p.8993, 1950.

J. Virieux, P-SV wave propagation in heterogeneous media : velocity-stress nite-dierence method, Geophysics, vol.51, p.889901, 1986.

K. Yee, Numerical solution of initial boundary value problem involving Maxwell's equation in isotropic media, IEEE Trans. Antennas and Propagation, vol.83, p.302307, 1966.

J. Zahradnik, P. Moczo, and F. Hron, Testing for elastic nite-dierence schemes for behaviour at discontinuities, Bull. Seism. Soc. Am, vol.83, issue.1, p.107129, 1993.