Using extreme value theory for image detection

Teddy Furon 1 Hervé Jégou 1
1 TEXMEX - Multimedia content-based indexing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : The primary target of content based image retrieval is to return a list of images that are most similar to a query image. This is usually done by ordering the images based on a similarity score. In most state-of-the-art systems, the magnitude of this score is very different from a query to another. This prevents us from making a proper decision about the correctness of the returned images. This paper considers the applications where a confidence measurement is required, such as in copy detection or when a re-ranking stage is applied on a short-list such as geometrical verification. For this purpose, we formulate image search as an outlier detection problem, and propose a framework derived from extreme values theory. We translate the raw similarity score returned by the system into a relevance score related to the probability that a raw score deviates from the estimated model of scores of random images. The method produces a relevance score which is normalized in the sense that it is more consistent across queries. Experiments performed on several popular image retrieval benchmarks and state-of-the-art image representations show the interest of our approach.
Type de document :
[Research Report] RR-8244, INRIA. 2013
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger
Contributeur : Hervé Jégou <>
Soumis le : dimanche 29 juin 2014 - 22:25:30
Dernière modification le : vendredi 16 novembre 2018 - 01:24:42
Document(s) archivé(s) le : mardi 11 avril 2017 - 09:18:48


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00789804, version 2


Teddy Furon, Hervé Jégou. Using extreme value theory for image detection. [Research Report] RR-8244, INRIA. 2013. 〈hal-00789804v2〉



Consultations de la notice


Téléchargements de fichiers