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Abstract
In this paper, we present an approach to estimate GPU ap-
plications’ performance upper bound based on algorithm
analysis and assembly code level benchmarking. As an
example, we analyze the potential peak performance of
SGEMM (Single-precision General Matrix Multiply) on
Fermi (GF110) and Kepler (GK104) GPUs. We try to an-
swer the question of how much optimization space is left
for SGEMM and why. According to our analysis, the na-
ture of Fermi (Kepler) instruction set and the limited issue
throughput of the schedulers are the main limitation factors
for SGEMM to approach the theoretical peak performance.
The estimated upper-bound peak performance of SGEMM
is around 82.5% of the theoretical peak performance on
GTX580 Fermi GPU and 57.6% on GTX680 Kepler GPU.
Guided by this analysis and using the native assembly lan-
guage, on average, our SGEMM implementations achieve
about 5% better performance than CUBLAS in CUDA 4.1
SDK for large matrices on GTX580. The achieved perfor-
mance is around 90% of the estimated upper-bound per-
formance of SGEMM on GTX580. On GTX680, the best
performance we achieve is around 77.3% of the estimated
performance upper bound. We also describe how to use na-
tive assembly language directly in the CUDA runtime source
code.

Categories and Subject Descriptors C.1.4 [Processor Ar-
chitectures]: Parallel Architectures; C.4 [Performance of
Systems]: Modeling techniques; F.2.1 [Numerical Algo-
rithms and Problems]: Computations on matrices

General Terms Measurement, Performance

Keywords Kepler GPU, Fermi GPU, SGEMM, CUDA,
Performance Upper Bound Analysis
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1. Introduction
Nowadays, vendors are putting more and more comput-
ing cores per die and the GPU architecture is evolving
rapidly. Fermi and Kepler GPUs are the present genera-
tions of NVIDIA GPUs [13, 14]. There are many studies
about optimizing specific kernels on Fermi GPU. However,
since the architecture is changing with each generation, we
may need to repeat the optimization work again very soon.
Unfortunately, no practical performance upper bound eval-
uation is available to the developers. In practice, developers
apply several optimization techniques based on the analysis
to the algorithm or serial code, and their expert experience.
Then developers may modify the optimizations with feed-
back provided by tools like NVIDIA Visual Profiler [3].
However, they can not be sure how far the obtained per-
formance is from the best achievable performance. In this
paper, we present an approach to project performance up-
per bound using algorithm analysis and assembly code level
benchmarking.

To understand GPU performance result, there exist many
works about how to project/predict CUDA applications’ per-
formance using analytical or simulation methods. Meng et
al. [10] proposed a GPU performance projection framework
based on annotated code skeletons. Hong and Kim [6] intro-
duced the MWP-CWP model to predict CUDA application
performance using PTX code. Bakhoda et al. [5] developed a
detailed GPU simulator and the simulator also uses the PTX
code as input. Recently, Sim et al. [17] extended the MWP-
CWP model and utilize the assembly code of CUDA kernel
to predict performance. The quantitative GPU performance
model proposed by Zhang and Owens [20] is also based
on the native assembly code. Since very little information
about the underlying GPU architecture is disclosed, it be-
comes very unlikely to build accurate simulators for each
new GPU generation. Luckily, the results [6, 10, 17, 20]
show that we can have very good approximation of GPU
performance using analytical approaches. However existing
GPU performance models all rely on certain level of an ap-
plication’s implementation (C++ code, PTX code, assembly
code. . . ) and do not answer the question of how good the
current optimized version is and whether further optimiza-



tion effort is worthwhile or not. Different from existing GPU
performance models, our approach does not project the pos-
sible performance from certain implementations, but the per-
formance upper bound that an application cannot exceed.

Researchers are also interested in the outcome of differ-
ent optimization combinations on GPUs. The roofline model
[19] is well known for estimating the optimization effects.
The recent work by Sim et al.[17] studied the effects of dif-
ferent optimization techniques on GPUs using the similar
approach as the roofline model. However, the chosen opti-
mizations normally rely on the initial code version and dif-
ferent optimizations are likely to have complex impacts on
each other. Our approach tackles the problem from the op-
posite angle as the roofline method. We first assume an op-
timistic situation on GPUs (no shared memory bank con-
flict, global memory accesses are all coalesced, all the auxil-
iary operations like address calculations are neglected, etc.).
Then we try to predict a performance upper bound when
mapping an application on the GPU based on the constraints
introduced by the architecture, the instruction set and the
application itself, or the constraints that we are not able to
eliminate using optimization techniques. With a tight perfor-
mance upper bound of an application, we have an evaluation
on how much optimization space is left and can decide the
optimization effort. Also, with the analysis, we can under-
stand which parameters are critical to the performance and
have more insights into the performance result. Hence, with
these knowledge, it would be easier for the community to
move to the new architecture.

As an example, we analyze the potential peak perfor-
mance of SGEMM (Single-precision General Matrix Multi-
ply) on Fermi (GF110) and Kepler (GK104) GPUs. GEMM
1 operation is essential for Level 3 BLAS (Basic Linear Al-
gebra Subprograms) [2] routines and generally represents
the practical best performance of a computer system. If
we compare the performance of SGEMM from CUBLAS
with the theoretical peak performance, on Fermi, it achieves
around 70% and on Kepler, only around 42% of the theoreti-
cal peak performance. There are already some articles about
optimizing GEMM kernels on Fermi GPU [11] [18], and an
auto-tuning framework has also been presented [7]. In this
research, the focus is to answer the question of how much
optimization space is left for SGEMM and why. We also
show that the analysis can help optimization efforts since it
uncovers critical parameters. Only single precision SGEMM
is evaluated, since we could only access the GTX580 Fermi
and the GTX680 Kepler Geforce cards, which have much
poorer double precision performance than Tesla products.
It is not really worth the effort to study the DGEMM per-
formance on Geforce GPU. In November 2012, NVIDIA
has announced the new Tesla K20X Kepler GPU (GK110)

1 GEMM performs the matrix-matrix operation C := alpha ∗ op(A) ∗
op(B)+ beta ∗C. alpha and beta are scalars, and A, B and C are matrices.
op(X) is op(X) = X or op(X) = XT .

and the documented SGEMM efficiency is around 73% of
the theoretical peak performance [15]. The K20X Kepler
GPU (GK110) architecture is different from the GTX680
(GK104) and uses a different instruction set (each thread can
utilize maximum 255 registers on the new architecture while
the limit is 63 on GTX680 GPU). With a Tesla GPU card,
it should not be difficult to extend the analysis to SGEMM
and DGEMM on the Tesla GPU using our approach.

This paper is organized as follows: Section 2 introduces
our target GPU architectures. Section 3 introduces our as-
sembly level benchmarking approach. Section 4 presents our
analysis for performance upper bound of SGEMM on Fermi
and Kepler GPUs. In Section 5 assembly code level opti-
mization methods and performance result of SGEMM are
presented. Section 6 concludes this study.

2. GPU Architecture Characteristics
NVIDIA GPUs are composed of a cluster of independent
SMs (Streaming Multiprocessor). Each SM includes sev-
eral SPs (Streaming Processor), which is the basic comput-
ing component, scheduler, SFUs (Special Functional Unit),
LD/ST (Load/Store) Units, register file and a unified shared
memory/L1 cache. The SPs inside one SM are similar to a
lane of SIMD engines and they share the memory resource
of the SM like the registers and shared memory.

A comparison of the three generations of NVIDIA GPUs
is illustrated in Table 1. From GT200 to Kepler GPU, the
number of SPs increases dramatically, from 240 (GTX280,
65nm) to 1536 (GTX680, 28nm) [13, 14]. However, if we
consider the memory resource (registers and shared mem-
ory) per SP, the on-die storage per SP actually decreases.
Previous generations have two clock domains in the SM,
the core clock for the scheduler and the shader clock for the
SPs. The shader clock is roughly twice the speed of the core
clock. On Kepler (GK104) GPU, shader clock no longer ex-
ists, the functional units with SMs run at the same core clock.
However, to compare the different generations more easily,
we still use the term shader clock on Kepler GPU. In the
rest of this paper, all throughput data is calculated with the
shader clock.

A typical CUDA [12] program normally creates thou-
sands of threads to hide memory access latency or math
pipeline latency. The threads are grouped into 1D to 3D
blocks, and further into 1D or 2D grids. Each block is as-
signed to one SM at execution time. The warp is the basic ex-
ecution and scheduling unit of a SM, and is composed of 32
threads. We define a warp instruction as the same instruc-
tion shared by all threads in the same warp, and a thread
instruction as the instruction executed by one thread. So a
warp instruction launches 32 operations or consists of 32
thread instructions. On the SM, only a limited set of threads
can run concurrently (active threads). On one hand, the in-
creased SPs require more active threads to hide latency. On
the other hand, the register and the shared memory resource



GT200 (GTX280) Fermi (GTX580) Kepler (GTX680)
Core Clock (MHz) 602 772 1006
Shader Clock (MHz) 1296 1544 1006
Global Memory Bandwidth(GB/s) 141.7 192.4 192.26
Warp Scheduler per SM 1 2 4
Dispatch Unit per SM 1 2 8
Thread Instruction issue throughput 16 32 128?
per shader cycle per SM
SP per SM 8 32 192
SP Thread Instruction processing throughput 8 32 192?
per shader cycle per SM (FMAD/FFMA)
LD/ST (Load/Store) Unit per SM unknown 16 32
Shared Memory per SM 16KB 48KB 48KB
32bit Registers per SM 16K 32K 64K
Theoretical Peak Performance (GFLOPS) 933 1581 3090

Table 1. Architecture Evolution

limits the number of active threads. For the same applica-
tion, the active threads that one SP supports actually de-
creases because of the reduced memory resource per SP
from Fermi GPU to Kepler GPU. More instruction level
parallelism within one thread needs to be explored (Section
4.3).

For Fermi (and Kepler GK104) instruction set, there is a
hard limit of maximum 63 registers per thread (for GT200
generation the limit is 127 registers per thread) since in the
instruction encoding, only 6 bits are left for one register.

3. CUDA Programming with Native
Assembly Code

For performing this study, we have to develop some software
components and reverse engineer many characteristics of the
hardware. We use the GPU assembly code directly with an
assembly tool Asfermi[1]. Asfermi was first developed to
work on Fermi GPU. We patch Asfermi to support Kepler
GPU (GK104) and manage to use native assembly language
directly in the CUDA runtime source code.

3.1 Using Native Assembly Code in CUDA Runtime
API Source Code

Programming in assembly code on NVIDIA GPUs is not
publicly supported by the company. However, our analysis
is requiring such programming. With an assembly tool for
Fermi GPU called Asfermi [1] and a little hacking into the
CUDA programming compiling stages, we manage to use
hand-tuned GPU assembly code in CUDA projects using
CUDA runtime APIs .

There are several advantages of using assembly code or
native machine code directly instead of using high level lan-
guages like C++. First, we can carefully control the register
allocation since the register resource per thread is very lim-
ited and sometimes the compiler may spill many registers
for programs utilizing much register resource per thread like
SGEMM. Second, the instruction order can be carefully de-
signed to better prefetch data from global memory and mix
different instruction types to get better throughput. Third,

SIMD-like instructions (LDS.64 or LDS.128) could be used
intentionally to reduce the instruction number. Also, we can
control the exact behavior of the machine code. For exam-
ple, the compiler might choose to use wider load instructions
(LDS.64 or LDS.128) based on the data alignment in shared
memory. However, using wide load instructions does not al-
ways benefit the performance (Section 4.1).

3.2 Kepler GPU Binary File Format
Asfermi was first developed to work on Fermi GPU. We
patched Asfermi to support CUDA sm 30 (GK104 Kepler
GPU). However, although the CUDA program using assem-
bly code kernel can still run correctly on Kepler GPU, the
performance is very poor. The reason is that new control in-
formation is embedded into the CUDA binary file to help
processor scheduling. According to the GTX680 white paper
[14], the compiler places the scheduling information along
with the actual instructions in the CUDA binary file.

The scheduling information (we call it control notation) is
placed before each group of 7 instructions and has the format
of 0xXXXXXXX7 0x2XXXXXXX. 0x7 and 0x2 are iden-
tifiers and the rest of the notation is separated into 7 fields
and associated with each following instruction. It is similar
to the explicit-dependence lookahead used in Tera computer
system [4]. Unfortunately, NVIDIA does not disclose the en-
coding of the control notation. We do not know how to gen-
erate the control notation exactly as the nvcc compiler. In
our implementation of SGEMM on Kepler GPU, as a com-
promise, we use the same control notation for same kind of
instructions and try to find the best combination of those no-
tations for major instruction types. However, our decryption
of the notations is still not enough.

3.3 Math Instruction Throughput on Kepler GPU
Understanding and modeling the behavior of math instruc-
tions on Kepler GPU is a major difficulty. We use two ap-
proaches to test the throughput of math instructions. First,
a kernel is written in C++ code and compiled into binary
with control notations embedded by nvcc. Second, a ker-
nel is written in assembly code directly and the controlling



FADD R0, R1, R0 128.7 FADD R0, R1, R2 132.0
FADD R0, R1, R3 66.2

FMUL R0, R1, R0 129.0 FMUL R0, R1, R2 132.0
FMUL R0, R1, R3 66.2

FFMA R0, R1, R4, R0 129.0 FFMA R0, R1, R4, R5 132.0
FFMA R0, R1, R3, R5 66.2
FFMA R0, R1, R3, R9 44.2

IADD R0, R1, R0 128.7 IADD R0, R1, R2 132.4
IADD R0, R1, R3 66.2

IMUL R0, R1, R0 33.2 IMUL R0, R1, R2 33.2
IMUL R0, R1, R3 33.2

IMAD R0, R1, R4, R0 33.2 IMAD R0, R1, R4, R5 33.1
IMAD R0, R1, R3, R5 33.2
IMAD R0, R1, R3, R9 26.5

Table 2. Examples of Math Instruction Throughput on Ke-
pler GPU with Various Operand Register Indices

notations are embedded with our parsing tool. Each thread
executes the same 8192 math instructions. Each block has
1024 threads without synchronization and 40960 blocks are
spawned to keep the GPU busy.

Instruction FFMA performs single precision fused multiply-
add operation (FFMA RA, RB, RC, RD performs the opera-
tion RA := RB ∗ RC + RD). With the first approach, the
instruction throughput of FFMA R9, R8, R9, R5 is measured
as 129.2 operations per shader cycle 2. With the second ap-
proach and the control notation of 0x25, the throughput is
132.0 operations per shader cycle (The actual shader clock
cannot be obtained during execution. All throughput data is
calculated by boost clock of 1058MHz[14]).

Some math instructions’ throughput is illustrated in Ta-
ble 2 measured with the second approach. In these cases,
the scheduling function units on one SM can only issue
about maximum 132 thread instructions per shader cycle,
which is much lower than the SP’s processing throughput
(192 thread instructions per shader cycle). If some of the
three source registers are the same (like FFMA RA, RB,
RB, RA), with some carefully designed code structures,
the FFMA throughput can approach around 178 thread in-
structions per shader cycle. However, considering ’useful’
FFMA’s throughput, that is (FFMA RA, RB, RC, RA), the
maximum single precision performance for many applica-
tions like SGEMM on GTX680 GPU (GK104) cannot ex-
ceed around 68.75% (132/192) of the claimed performance
(3090GFlops) by NVIDIA.

Our benchmark result also shows that the instruction
throughput is related to register indices. According to some
other experiments, we speculate that the registers reside on
four banks. Take the instruction FFMA RA, RB, RC, RD
for instance, if there are two different source registers on
the same bank, the throughput drops by 50%, and if all
three source registers RB, RC, RD are different registers on
the same bank, the throughput is around 33.3% of the best

2 The actual implementation is not 8192 FFMA R9, R8, R9, R5 instructions
per thread but 4 independent FFMA instructions like FFMA R9, R8, R9, R5
unrolled by 2048 times.
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Figure 1. SGEMM Implementation

case. We name the four banks as even 0 (Rindex%8 < 4
&& Rindex%2 == 0), even 1 (Rindex%8 ≥ 4 &&
Rindex%2 == 0), odd 0 (Rindex%8 < 4 && Rindex%2 ==
1), and odd 1(Rindex%8 ≥ 4 && Rindex%2 == 1). Since
we implement SGEMM with assembly code directly, the
register indices have to be carefully chosen to make sure
there is no bank conflict. The detailed optimization is illus-
trated in section 5.4.

4. Analysis of Potential Peak Performance of
SGEMM

The general analysis approach can be similar for all appli-
cations while the detailed analysis process may differ from
application to application. Our method is applicable for ap-
plications which use a few major instruction types and a sim-
ple execution path. Many high-performance computing ker-
nels have this characteristic, especially linear algebra rou-
tines. Our analysis requires characteristics of the architec-
ture such as register file size, maximum number of registers
per thread, shared memory size, instruction throughput for
different instruction mix, etc. Those characteristics need to
be collected on the real hardware and are independent of the
effective application.

First, we should analyze the instruction types and per-
centage of a routine. Second, we should find the critical
parameters which affect the different instructions’ mixing
percentage. Third, we analyze how the instruction through-
put changes when we vary these critical parameters. Fourth,
we can use the instruction throughput with critical parame-
ters’ optimal combination to estimate the performance up-
per bound. With this approach, not only we can have the
performance upper bound estimation, know how much per-
formance gap is left and decide the optimization effort, but
we can also understand what parameters are essential to the
performance and how to distribute our optimization effort.

For SGEMM, all well-implemented SGEMM kernels
actually utilize shared memory on the GPU to reduce the
global memory pressure as illustrated in Figure 1. First,
data is loaded from global memory to shared memory
and then threads within one block can share the loaded



data in the shared memory. For Fermi (GF110) and Kepler
(GK104) GPUs, arithmetic instructions like FFMA cannot
take operands from the shared memory. Since LDS instruc-
tions are needed to load data first from shared memory into
registers, most of the instructions executed in SGEMM are
FFMA and LDS instructions. For instance, in our SGEMM
implementation with 1024x1024 matrix size, 80.5% of in-
structions executed are FFMA instructions and 13.4% are
LDS.64 instructions. So essentially, in our analysis, we de-
fine a few key parameters and study the instruction through-
put mixing FFMA and LDS.X instructions while varying
these parameters.

The rest of this section is our analysis of SGEMM’s
performance upper bound. We show that the analysis can
give good insights about how to optimize a specific kernel
(SGEMM) and help us to understand the performance result.

4.1 Using Wider Load Instructions
To achieve better performance, it is essential to minimize
auxiliary instructions’ percentage. By auxiliary instructions,
we mean non-math instructions, especially LDS instruc-
tion. The assembly code for CUDA sm 20 (GF110 Fermi
GPU) and sm 30 (GK104 Kepler GPU) provides SIMD-like
LDS.64 and LDS.128 instructions to load 64bit and 128bit
data from the shared memory. Using wider load instructions
can reduce the total number of LDS instructions.

According to our benchmarks, on Fermi GPU, the peak
throughput for LDS instruction is 16 32bit-operations per
shader clock per SM. Using LDS.64 instructions does not
increase the data throughput and the LDS.128 instruction
normally leads to 2-way shared memory bank conflict on
Fermi GPU. LDS.128 has the throughput of only 2 thread
instructions per shader cycle on one SM. On Kepler GPU,
the throughput for LDS operation is measured as 33.1 64bit
operations per shader clock per SM. Using the 32bit LDS
operation actually decreases the data throughput in half com-
paring with using LDS.64 instructions and properly used
LDS.128 instruction does not introduce penalty.
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Figure 2. Thread Instruction Throughput Mixing FFMA
and LDS.X

Figure 2 illustrates the instruction throughput of mixing
FFMA and LDS.X instructions. While gradually increasing
the ratio of FFMA instructions to LDS instructions, the over-
all instruction throughput approaches the FFMA’s peak pro-
cessing throughput. The instruction ratio of FFMA to LDS.X
depends on the algorithm parameters such as register block-
ing size. Apparently, the overall performance does not al-
ways benefit from using wider load instructions. However,
the compiler might choose to use the wider load instructions
based on the data alignment in the shared memory. With the
native assembly language, it is possible for us to carefully
design the data layout and use the best instruction type.

4.2 Register Blocking
As in Table 1, the scheduler of GT200 GPU can issue one
warp instruction like FFMA per core cycle and since there
are 8 SPs per SM, SPs need 4 shader cycles to process
one warp instruction. Apparently, as the issue throughput is
higher than the SP’s processing throughput, math instruc-
tions executed in SPs cannot saturate the scheduler’s issue
throughput. So the scheduler has some ’free cycles’ to issue
instructions to other functional units.

On Fermi GPUs, SM are redesigned with 2 warp sched-
ulers and 32 SPs. Each warp scheduler, equipped with one
dispatch unit, issues instructions to 16 SPs. With an issue
rate of one warp instruction per shader cycle, the schedulers’
ability could be fully utilized by 32 SPs. The theoretical peak
performance for math instructions comes from the SPs’ per-
formance. The percentage of other instructions becomes an
issue when there are many auxiliary instructions: there are
fewer cycles left for schedulers to issue useful instructions
like FFMA.
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Figure 3. FFMA Instruction Percentage in SGEMM Main-
loop with Different Register Blocking Factors

In the worst case, without any register reuse, 2 LDS in-
structions are needed to fetch data for 1 FFMA instruction in
the SGEMM main loop. In that case, only 1/3 of the instruc-
tions are floating point operations. Blocking is a well-known
technique to better utilize memory hierarchy for scientific
programs [8, 9]. To increase the percentage of math instruc-
tions, register blocking is needed. We illustrate the percent-



age of FFMA instructions varying register blocking factors
in Figure 3.

If 6-register blocking is used (which is the case of
our SGEMM implementation on Fermi GPU), the FF-
MA/LDS.X ratios are 3:1, 6:1, and 12:1 if shared memory
accesses are implemented with LDS, LDS.64 and LDS.128
respectively. The percentage of FFMA instructions is 75%,
85.7% and 92.3%. On Fermi GPU, the overall instruction
throughputs for one SM in these cases are 31.3, 30.4 and
24.5 thread instructions per shader clock. Because using
LDS.128 instruction may lead to extra penalties, even if
all the accesses to shared memory are implemented with
LDS.128, in the best case we can only achieve around 71%
( 24.532 ∗ 92.3%) of SMs’ single precision floating point per-
formance. Also, in many cases, a lot of padding in shared
memory has to be used to get proper data alignment. Appar-
ently, it is not worth the programming effort to mix FFMA
with LDS.128 for SGEMM on the Fermi GPU.

4.3 Active Threads on SM
Normally, the more active threads one SM executes, the
higher performance the GPU can achieve. Since register and
shared memory resource is limited per SM, only a limited
set of warps can be executed concurrently (TSM ).

TSM ∗RT ≤ RSM (1)

The registers that each thread can utilize (RT ) is less
than or equal to 63 on Fermi and Kepler GPUs (RMax).
Furthermore, the register budget of the active warps cannot
exceed the SM’s register amount (RSM ) (Equation 1).
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Figure 4. Instruction Throughput Mixing FFMA and
LDS.64 with Ratio of 6:1

Figure 4 illustrates the instruction throughput mixing
FFMA and LDS.64 instructions with ratio 6:1 under dif-
ferent number of active threads on one SM. We tested two
cases. In the first case ( ’independent’ in Figure 4), 6 FFMA
and 1 LDS.64 instructions are all independent. In the second
case ( ’dependent’ in Figure 4), 6 FFMA instructions are
dependent on one LDS.64 instruction. The second case is
closer to the actual implementation of SGEMM. On Fermi

GPU, with 512 active threads, the instruction throughput of
the second case is already close to the best situation. On Ke-
pler GPU, however, with fewer than 1024 active threads, the
Kepler GPU is very sensitive to the dependences between
instructions.

4.4 Register and Shared Memory Blocking Factors
Larger register blocking size can introduce more register
reuse within one thread and higher percentage of FFMA
instructions. However, the register blocking size is limited
by the register resource on the SM and the instruction set
constraint. With a register blocking factor BR, if we only
consider the registers needed for blocking, we can describe
the resource constraint as Equation 2.

B2
R +BR + 1 < RT ≤ RMax (2)

This loose condition for register blocking factor BR can
be used to roughly estimate BR. B2

R is the register set needed
to hold C sub-matrix per thread, BR is one column/row of
A or B sub-matrix. For instance, with maximum 63 registers
per thread, BR ≤ 7.

As depicted in Figure 1, TB ∗ B2
R is the size of the

C sub-matrix per block (each block has TB threads) and√
TB ∗B2

R ∗ L is the size of a sub-matrix for A or B (L is
the stride). To overlap the data transfer and the computation,
extra registers are needed to fetch data from global memory
to shared memory since no direct data transfer is provided
between the two memory space. The stride L needs to be
chosen such that each thread loads the same amount of data
(Equation 3).

(
√
TB ∗BR ∗ L)%TB = 0 (3)

Considering data prefetching from global memory and
a few registers to store the addresses of matrices in global
memory and shared memory (Raddr), the overall strict con-
straint for register blocking factor can be described as Equa-
tion 4.

B2
R+

2 ∗
√
TB ∗BR ∗ L
TB

+BR+1+Raddr ≤ RT ≤ RMax (4)

Since shared memory is allocated in block granularity,
for Blk active blocks, Blk ∗ 2 ∗ √TB ∗ BR ∗ L is needed
to store prefetched global memory data (Equation 5). The
shared memory blocking factor can be defined as BSh =√
TB ∗B2

R. With the shared memory blocking factor BSh,
the performance bounded by global memory bandwidth can
be roughly estimated using Equation 6.

Blk ∗ 2 ∗
√
TB ∗BR ∗ L ≤ ShSM (5)

PMemBound

#GlobalMem bandwidth
=

2 ∗BSh
2

2 ∗BSh ∗ 4
(6)

4.5 Potential Peak Performance of SGEMM
The instruction factor FI is the ratio of FFMA instructions
in the SGEMM main loop (We only consider FFMA and



LDS.X instructions here). It depends on the choice of LDS.X
instruction and register blocking factor BR (Figure 3). For
instance, if LDS.64 is used with register blocking factor 6,
FI = 0.5.

The throughput factor FT is a function of register block-
ing factor (BR), number of active threads (TSM ), throughput
of SPs (#SP TP ), LD/ST units (#LDS TP ) and dispatch
units (#Issue TP )) (Equation 7). The function f for Fermi
and Kepler GPUs is illustrated in Figure 2 and in Figure
4 (only shows LDS.64) and obtained through benchmarks
varying these parameters.

FT = f(BR,#Issue TP,#SP TP,#LDS TP, TSM ) (7)

With the register blocking factor BR, the instruction
factor FI and the throughput factor FT , the performance
bounded by SMs’ processing throughput is estimated as
Equation 8 and the overall performance is as Equation 9.

PSMBound =
B2

R

B2
R +BR ∗ 2 ∗ FI

∗ FT ∗ Ptheoretical (8)

Ppotential = min(PMemBound, PSMBound) (9)

With the previous analysis, we can estimate the perfor-
mance upper bound of SGEMM on Fermi and Kepler GPUs.
On the Fermi GPU for instance, because of the hard limit of
63 registers (RMax) per thread, considering prefetching and
using the strict condition of Equation 4, the maximum block-
ing factor is only 6. The detailed register allocation is illus-
trated in Section 5.2. With the register blocking factor of 6,
the register resource per SM can support up to 512 threads.
Using Equation 3, we choose 256 threads per block.

To easily program the data prefetching, according to
Equation 3, L could be 8, 16, 24, . . . . Considering the con-
dition in Equation 4, we choose L as 16. With a 6-register
blocking factor, mixing LDS or LDS.64 with FFMA in-
structions, the throughput can achieve close to 32 thread
instructions per shader clock per SM. Using a LDS.64 in-
struction can increase the FFMA instruction percentage to
85.7% from 75% (using LDS). Though LDS.128 instruction
can provide higher percentage of FFMA instructions, the
instruction processing throughput is too low.

According to Equations 6, 8 and 9, the performance is
bounded by SMs’ processing throughput, and the potential
peak is about 82.5% ( 62

62+6∗2∗0.5 ∗ 30.8
32 ) of the theoretical

peak performance for SGEMM. The main limitation comes
from the nature of the Fermi instruction set and the limited
issue throughput of schedulers.

It is similar to estimate the performance upper bound
of SGEMM on Kepler GPU as Fermi GPU. The Kepler
GPU (GK104) instruction set is very close to that of Fermi
GPU. It means that the limit of 63 registers per thread still
exists. Thus, 6-register blocking is also applicable. And the
register resource can support 1024 active threads per SM
(64K 32bit registers per SM). We can choose either 256
or 1024 threads per block. Similarly, if we use LDS.64
instructions, the FFMA instruction percentage is 85.7%. If

we use LDS.128 instructions (need padding or data layout
transform), the FFMA instruction percentage is 92.3%.

Similarly, according to Equations 6, 8 and 9, the perfor-
mance is bounded by SM’s processing throughput, and the
potential peak is about 54.6% ( 62

62+6∗2∗0.5 ∗ 122.4
192 ) of the

theoretical peak performance for SGEMM using LDS.64 in-
structions. Using LDS.128 instructions, the potential peak is
about 57.6% ( 62

62+6∗2∗0.25 ∗ 119.9
192 ) of the theoretical peak.

The main limitation factors are still the nature of instruction
set and the limited issue throughput of schedulers.

5. Assembly Code Level Optimization
The estimated performance upper bound is a limit that an
actual implementation cannot exceed. It can be a little opti-
mistic since we only consider the major performance degra-
dation factors. Besides the considered parameters, there
might be other aspects which can limit the performance.
The ’real’ upper bound or the best possible performance is
between the estimated upper bound and the achieved perfor-
mance.

Depending on whether to apply transpose operation on in-
put matrix A or B, there are 4 variations for GEMM kernel.
Figure 5 illustrates the performance of four SGEMM vari-
ations from CUBLAS and our implementation (ASM) with
2400x2400 and 4800x4800 matrices. On GTX580 GPU, we
achieve around 74.2% of the theoretical peak performance,
i.e., about 90% of the estimated performance upper bound,
which we think is good enough. In our analysis, we only
study the two main instruction types. There are other auxil-
iary instructions which do not devote to the GFLOPS. And
also, we do not consider the effect of barriers which will
harm the performance too. We show that the ’real’ upper
bound is within this 10% and future optimization is unlikely
to achieve a lot of speedup. On Kepler GPU, although we
cannot provide the optimal controlling information as dis-
cussed in section 3.2, we achieve around 77.3% of the esti-
mated upper bound. Similar to Fermi GPU, there are some
factors we do not consider in our analysis. The larger gap
between our achieved performance might be due to our very
limited knowledge of the undisclosed scheduling informa-
tion of Kepler GPU, which is critical to performance or
to some hidden characteristics that we are not able to dis-
cover due to limited documentation. Figure 6 illustrates the
performance comparison on Fermi GPU between our im-
plementation (assembly), CUBLAS from CUDA 4.1 and
MAGMA library [11]. Figure 7 is the performance compari-
son on Kepler GPU between our implementation (assembly),
CUBLAS from CUDA 4.2 and MAGMA library.

The rest of the section briefly describes our optimizations
on assembly code level of SGEMM.

5.1 Optimization of Memory Accesses
Assembly code level optimization of memory accesses is
similar to high level language optimization. Global memory
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requests from the threads within a warp could be grouped
(coalesced) into one or more memory transactions depend-
ing on the compute capability of the device and the memory
accessing pattern. To access global memory efficiently, gen-
erally it is better to let threads in a warp access continuous
data elements in global memory to get coalescing. Consid-
ering the majority of instructions in the SGEMM main loop
are FFMA and LDS, and it is critical to reduce the number of
LDS instructions (using LDS.64 or LDS.128), sub-matrices
in shared memory should be grouped such that each thread
accesses continuous BR data elements. Also, proper padding
needs to be applied to reduce shared memory access conflicts
and satisfy the alignment restriction of the LDS instruction.

5.2 Register Spilling Elimination
The register resource is 32K 32-bit registers per SM for
the Fermi GPU and each thread can use a maximum of
63 registers. The register R1 is normally occupied as stack
pointer. According to our analysis, the number of per-thread
registers with prefetching is at least B2

R + 2∗
√
TB∗BR∗L
TB

+
BR + 1 +Rindex. With the register blocking factor of 6 for
Fermi GPU, the register allocation of our implementation is

as the following. Note that we use 32bit addressing to save
address registers.

1. B2
R, 36 registers to save intermediate result for C matrix.

2. 2∗
√
TB∗BR∗L
TB

, 12 registers to prefecth A and B from
global memory.

3. BR + 2, 6 registers to load A from shared memory and
2 registers to load B from shared memory during the
main loop. Using 2 registers for B is because LDS.64
instruction is used.

4. 2 registers. Track of A, B in global memory during the
prefetching.

5. 1 register to store the loop end condition.
6. 2 registers. Track of A, B in shared memory during the

prefetching.
7. 2 registers. Track of A, B in shared memory in the main

loop.

In all, 63 registers are used. Since we do not need thread
stack, R1 is used to store the loop end condition in our code.
Therefore, we are able to fully eliminate the register spilling.

5.3 Instruction Reordering
Generally, we try to interleave different instruction types to
get better balance between functional units within one SM
and better instruction throughput. We apply the following
simple reordering optimizations:

1. In the main loop, between the 2 barriers are all shared
memory accesses. By moving address calculation from
start of the loop to mix with the shared memory accesses,
we can achieve better performance.

2. Interleaving prefetching from global memory with FFMA
and LDS instructions can benefit performance.

5.4 Register Allocation for Kepler GPU
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As we describe in Section 3.3, to get the best throughput,
the 3 source registers of FFMA instructions should reside
on 3 different banks if they are different. In our current
implementation, 6-register blocking is used. 6 registers are
used to load A from the shared memory and 2 registers
to load B from the shared memory in the main loop. 36
different registers (R26∼R61) hold the C sub-matrix. In this
implementation, register spilling is eliminated.
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As in Figure 8, around 30% of the FFMA instructions
in the MAGMA [11] SGEMM binary for the Kepler GPU
(nvcc generated) have the 2-way register bank conflict and
1% of the FFMA instructions have the 3-way register bank
conflict. In our first version of SGEMM NN on GTX680,
which achieves around 1100GFLOPS, 68.8% of the FFMA
instructions have the 2-way register bank conflict, and 10.6%
of the 3-way conflict. After applying the optimization, the
modified version, which achieve around 1300GFLOPS, has
only 1.2% of the 2-way FFMA register bank conflict and the
3-way conflict is fully removed.

Our optimization is depicted in Figure 9. In the SGEMM
main loop, at each stage, one column from matrix A and one
row from matrix B are processed. To use the register block-
ing and the LDS.64 instructions, at least 6 and 2 different
registers are needed for column A and row B. Of course,
there are many possible implementations, here we describe
one possibility. We select registers from E0 and O0 for col-
umn A. Row B uses registers from E1 and O1. Then we use
the first table in Figure 9 as the constraints of register allo-
cation. In the final mapping stage, we make sure that 36 reg-
isters of C sub-matrix have 9 registers on each bank and had
our register allocation as the second table, which does not
have any register bank conflict to compute the 36 elements
from the C sub-matrix.

5.5 Opportunity for Automatic Tools
Our study emphasizes that for Fermi and Kepler GPUs, it
is essential to study the impact of algorithm parameters on
instruction throughput to get insight into the performance
result. The main optimization opportunity comes from the
allocation of registers. For example, the four SGEMM vari-
ations of MAGMA library compiled with nvcc spill at least
10 registers (40 Bytes) on the Kepler GPU. When the active
thread number is 512, at least 20KB L1 cache is needed to
make sure that the spilled data stays in the L1 cache. How-
ever, since normally the unified 64KB shared memory/L1
cache is configured as 48KB shared memory and 16KB L1
cache, some data will be spilled out of L1 cache. As the ac-
tive threads increase, more data is spilled out of L1 cache and
the performance will be harmed. We already show that with

careful design, register spilling could be eliminated. We also
show that around 30% of FFMA instructions in the nvcc-
generated SGEMM binary from MAGMA library have reg-
ister bank conflict. We propos a simple solution in Section
5.4. It is possible for optimizers to detect the loop structure
and remove the conflicts with proper register allocation.

An automatic tuning tool normally needs to explore a
large design space and evaluate the performance of many
configurations [7, 10, 16]. It may take a significant amount
of time. Normally, the automatic tuning tool is application-
dependent and each includes several efficient optimizations
for the specific application. To build the tool relies on the de-
velopers’ understanding of the application and optimization
experience. With the proposed analysis approach, we can
better understand which parameters are critical to the per-
formance. The estimated upper bound actually corresponds
to a set of parameters and optimization options. This knowl-
edge can help an automatic tool to explore the design space
in a relatively small region. And of course by comparing the
performance of an automatic tool’s output code and the esti-
mated performance upper bound, we can judge whether the
optimized version is good enough.

In our analysis, to study the instruction throughput mix-
ing FFMA and LDS.X instructions, we manually write some
benchmarks varying several key parameters such as instruc-
tion type choice (LDS.X), the mixing ratio, the blocking fac-
tor, the instructions’ dependence, active threads and study
these parameters’ impact on the instruction throughput. For
many applications with few major instruction types, a sim-
ilar approach can be used to estimate the performance up-
per bound. The difference would be the chosen instruction
types and their mixing pattern (mixing ratio, dependence,
etc.). Systematic and automatic development of a set of mi-
crobenchmarks to help to estimate the performance upper
bound of other applications is possible. A family of assem-
bly level microbenchmarks could be defined and evaluated
in order to provide a small database of performance refer-
ences that could be used by the auto-tuning tool, and also the
developer to transform the code for performance. Generally,
the assembly level microbenchmarks can also help to un-



derstand the difference between different GPU architectures.
For example, the benchmarks illustrated in Figure 4 show
the increasing need for active threads on Kepler GPU. As-
sembly level benchmarking requires an assembly tool chain
which is missing from the official support. We manage to
make it work on Fermi GPU. But on Kepler, there are some
issues like the hidden scheduling information, which we can-
not fully decrypt.

6. Conclusion
In this work, we have proposed an approach to analyze GPU
applications’ performance upper bound. Different from ex-
isting works on GPU performance models, our approach re-
lies on application analysis and assembly level benchmark-
ing. As an example, we analyze the potential peak perfor-
mance of SGEMM on Fermi and Kepler GPUs. We show
that the nature of the Fermi (Kepler) instruction set and the
limited issue throughput of schedulers are the main limita-
tion factors for SGEMM to approach the theoretical peak
performance. The general guideline is to reduce the auxil-
iary instructions and increase the FFMA instruction’s per-
centage. Proper register allocation, shared memory data lay-
out and memory access pattern need to be carefully designed
to minimize the impact of memory accesses on performance.
We also show that our analysis can help to decide some crit-
ical algorithm parameters and show how much optimization
space exists. Guided by the analysis, we further optimize the
four SGEMM kernel variations and achieve better perfor-
mance on Fermi GPU (around 5% on average for large ma-
trices) than highly optimized routine provided by NVIDIA.

7. Acknowledgments
Many thanks to CJ Newburn, our shepherd and the anony-
mous reviewers for their insightful comments on improving
this paper. This work is supported by French National Re-
search Agency (ANR) through COSINUS program (project
PETAQCD No ANR-08-COSI-010).

References
[1] Asfermi. http://code.google.com/p/asfermi/.

[2] Netlib. http://www.netlib.org/blas/.

[3] Nvidia. Visual Profiler, https://developer.nvidia.
com/nvidia-visual-profiler.

[4] R. Alverson, D. Callahan, D. Cummings, B. Koblenz,
A. Porterfield, and B. Smith. The tera computer system. In
Proceedings of the 4th international conference on Supercom-
puting, ICS ’90, New York, NY, USA, 1990. ACM.

[5] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.
Analyzing cuda workloads using a detailed gpu simulator. In
Performance Analysis of Systems and Software, 2009. ISPASS
2009. IEEE International Symposium on, april 2009.

[6] S. Hong and H. Kim. An analytical model for a gpu architec-
ture with memory-level and thread-level parallelism aware-
ness. In Proceedings of the 36th annual international sym-

posium on Computer architecture, ISCA ’09, New York, NY,
USA, 2009. ACM.

[7] J. Kurzak, S. Tomov, and J. Dongarra. Autotuning gemm
kernels for the fermi gpu. Parallel and Distributed Systems,
IEEE Transactions on, PP(99):1, 2012.

[8] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache per-
formance and optimizations of blocked algorithms. SIGPLAN
Not., 26(4):63–74, Apr. 1991.

[9] A. C. McKellar and E. G. Coffman, Jr. Organizing matrices
and matrix operations for paged memory systems. Commun.
ACM, 12(3):153–165, Mar. 1969.

[10] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, and
T. D. Uram. Grophecy: Gpu performance projection from
cpu code skeletons. In Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, New York, NY, USA, 2011.
ACM.

[11] R. Nath, S. Tomov, and J. Dongarra. An improved magma
gemm for fermi gpus, 2010.

[12] NVIDIA. Nvidia cuda c programming guide 4.2.

[13] NVIDIA. Fermi Whitepaper. http://www.nvidia.
com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_
Whitepaper.pdf, 2009.

[14] NVIDIA. GTX680 Whitepaper. http://www.geforce.
com/Active/en_US/en_US/pdf/GeForce-GTX-
680-Whitepaper-FINAL.pdf, 2012.

[15] NVIDIA. NVIDIA Tesla K20/K20X GPU Accel-
erators Application Performance Technical Brief.
http://www.nvidia.com/docs/IO/122874/
K20-and-K20X-application-performance-
technical-brief.pdf, Nov. 2012.

[16] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-
Z. Ueng, J. A. Stratton, and W. mei W. Hwu. Program op-
timization space pruning for a multithreaded gpu. In CGO
’08: Proceedings of the sixth annual IEEE/ACM international
symposium on Code generation and optimization, New York,
NY, USA, 2008. ACM.

[17] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A performance
analysis framework for identifying potential benefits in gpgpu
applications. In Proceedings of the 17th ACM SIGPLAN sym-
posium on Principles and Practice of Parallel Programming,
PPoPP ’12, New York, NY, USA, 2012. ACM.

[18] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and N. Sun.
Fast implementation of dgemm on fermi gpu. In Proceed-
ings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages
35:1–35:11, New York, NY, USA, 2011. ACM.

[19] S. Williams, A. Waterman, and D. Patterson. Roofline: an in-
sightful visual performance model for multicore architectures.
Commun. ACM, 52(4), Apr. 2009.

[20] Y. Zhang and J. D. Owens. A quantitative performance anal-
ysis model for gpu architectures. In Proceedings of the 17th
IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA 17), Feb. 2011.

http://code.google.com/p/asfermi/
http://www.netlib.org/blas/
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.nvidia.com/docs/IO/122874/K20-and-K20X-application-performance-technical-brief.pdf
http://www.nvidia.com/docs/IO/122874/K20-and-K20X-application-performance-technical-brief.pdf
http://www.nvidia.com/docs/IO/122874/K20-and-K20X-application-performance-technical-brief.pdf

