How to Compute the Area of a Triangle: a Formal Revisit

Sylvie Boldo 1, 2
2 TOCCATA - Certified Programs, Certified Tools, Certified Floating-Point Computations
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Mathematical values are usually computed using well-known mathematical formulas without thinking about their accuracy, which may turn awful with particular instances. This is the case for the computation of the area of a triangle. When the triangle is needle-like, the common formula has a very poor accuracy. Kahan proposed in 1986 an algorithm he claimed correct within a few ulps. Goldberg took over this algorithm in 1991 and gave a precise error bound. This article presents a formal proof of this algorithm, an improvement of its error bound and new investigations in case of underflow.
Type de document :
Communication dans un congrès
Alberto Nannarelli and Peter-Michael Seidel and Ping Tak Peter Tang. 21st IEEE International Symposium on Computer Arithmetic, Apr 2013, Austin, TX, United States. IEEE, pp.91-98, 2013, 〈10.1109/ARITH.2013.29〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00790071
Contributeur : Sylvie Boldo <>
Soumis le : mardi 19 février 2013 - 13:32:49
Dernière modification le : jeudi 9 février 2017 - 15:03:46
Document(s) archivé(s) le : lundi 20 mai 2013 - 04:01:34

Fichier

article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Sylvie Boldo. How to Compute the Area of a Triangle: a Formal Revisit. Alberto Nannarelli and Peter-Michael Seidel and Ping Tak Peter Tang. 21st IEEE International Symposium on Computer Arithmetic, Apr 2013, Austin, TX, United States. IEEE, pp.91-98, 2013, 〈10.1109/ARITH.2013.29〉. 〈hal-00790071〉

Partager

Métriques

Consultations de la notice

309

Téléchargements de fichiers

331