
�>���G �A�/�, �?���H�@�y�y�d�N�y�j�d�3

�?�i�i�T�b�,�f�f�?���H�X�B�M�`�B���X�7�`�f�?���H�@�y�y�d�N�y�j�d�3

�a�m�#�K�B�i�i�2�/ �Q�M �k�k �6�2�# �k�y�R�j

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�h�Q�r���`�/ �� �b�+���H���#�H�2 �`�2�}�M�2�K�2�M�i �b�i�`���i�2�;�v �7�Q�` �K�m�H�i�B�H�2�p�2�H
�;�`���T�? �`�2�T���`�i�B�i�B�Q�M�B�M�;

�a�û�#���b�i�B�2�M �6�Q�m�`�2�b�i�B�2�`�- �6�`���M�Ï�Q�B�b �S�2�H�H�2�;�`�B�M�B

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�a�û�#���b�i�B�2�M �6�Q�m�`�2�b�i�B�2�`�- �6�`���M�Ï�Q�B�b �S�2�H�H�2�;�`�B�M�B�X �h�Q�r���`�/ �� �b�+���H���#�H�2 �`�2�}�M�2�K�2�M�i �b�i�`���i�2�;�v �7�Q�` �K�m�H�i�B�H�2�p�2�H �;�`���T�?
�`�2�T���`�i�B�i�B�Q�M�B�M�;�X �(�_�2�b�2���`�+�? �_�2�T�Q�`�i�) �_�_�@�3�k�9�e�- �A�L�_�A���X �k�y�R�j�- �T�T�X�k�k�X ���?���H�@�y�y�d�N�y�j�d�3��

https://hal.inria.fr/hal-00790378
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
82

46
--

F
R

+
E

N
G

RESEARCH
REPORT

N° 8246
February 2013

Project-Team Bacchus

Toward a scalable
re�nement strategy for
multilevel graph
repartitioning
Sébastien Fourestier, François Pellegrini

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

351, Cours de la Libération

Bâtiment A 29

33405 Talence Cedex

Toward a scalable re�nement strategy for
multilevel graph repartitioning

Sébastien Fourestier, François Pellegrini�

Project-Team Bacchus

Research Report n° 8246 � February 2013 � 22 pages

Abstract: Dynamic load balancing is a mandatory feature for parallel software whose work-
load evolves with time, such as solvers implementing adaptive mesh re�nement. In such solvers,
problem space is most often represented as an unstructured mesh, and graph partitioning is used
to distribute data and their associated computations across processes.
The purpose of this paper is to study the sequential version of a set of graph repartitioning methods
and to propose a scalable strategy for parallel graph repartitioning. As the repartitioning methods
have been adapted from existing algorithms that are used for parallel partitioning, we will also be
able to discuss their parallel behaviors. These methods can be combined in several ways, leading to
either multilevel di�usion-based or biased scratch-remap frameworks. The proposed repartitioning
framework uses a global di�usion-based algorithm for partition re�nement, which may prove a good
replacement for Fiduccia-Mattheyses type algorithms as it is inherently parallel. This algorithm
yields best results when used in a multilevel framework.
To validate our approach, we compare our sequential graph repartitioning implementation within
the Scotch software to the ParMeTiS graph repartitioning tool.

Key-words: Dynamic load balancing, graph repartitioning, di�usion, multilevel framework.

� {fouresti|pelegrin}@labri.fr

Vers une stratégie scalable pour un repartitionement avec
schéma multi-niveaux

Résumé : L'équilibrage dynamique de la charge est une fonctionnalité indispensable aux
applications parallèles dont la quantité de calcul évolue en fonction du temps, tels les solveurs
utilisant du ra�nement de maillage. Dans le cas de ces solveurs, l'espace du problème est le plus
souvent représenté par un maillage non structuré et l'on utilise le partitionnement de graphes
a�n de distribuer sur les processeurs les données et les calculs associés.

L'objectif de cet article est d'étudier la version séquentielle d'un ensemble de méthodes de
repartitionnement de graphes et de proposer une stratégie scalable pour le repartitionnement par-
allèle de graphes. Étant donné que ces méthodes de repartitionnement ont été adaptées à partir
d'algorithmes existants utilisés pour le partitionnement parallèle, nous aborderons aussi leur
comportement parallèle. Ces méthodes peuvent être combinées de plusieurs manières, aboutis-
sant à des plateformes de repartitionnement basées soit sur une di�usion multi-niveaux, soit sur
une méthode de typescratch-remap biaisée. La plateforme de repartitionnement que nous pro-
posons utilise un algorithme de di�usion global pour le ra�nement de partitions. Celui-ci, du
fait qu'il est intrinséquement parallèle, pourrait constituer un bon remplaçant des algorithmes
de type Fiduccia-Mattheyses. Cet algorithme donne de meilleurs résultats lorsqu'il est utilisé au
sein d'un schéma multi-niveaux.

A�n de valider notre approche, nous comparons notre implémentation d'algorithmes de repar-
titionnement séquentiel de graphes, réalisée au sein du logicielScotch , au logiciel de reparti-
tionnement de graphesParMeTiS .

Mots-clés : Équilibrage dynamique de la charge, repartitionnement de graphes, di�usion,
schéma multi-niveaux.

Toward a scalable re�nement strategy for multilevel graph repartitioning 3

1 Introduction

Because of the huge amount of computation and data that they involve, large scale scienti�c
simulations can only be performed by means of parallel processing. Machines that perform large
scale simulations now comprise several tens of thousands of processing elements (which we will
generically call �processors�). They are built using the distributed memory paradigm, because
shared memory access would result in too much congestion. In order to use e�ciently these
machines, one has both to spread evenly computation load across processors, and to minimize
communication induced by the exchange of information between neighboring processors.

When processes coexist for the entire duration of the parallel program, the load balancing
problem can be modeled as a constrained graph partitioning problem. Distributing computations
acrossp processors amounts to partitioning into p parts an undirected weighted graph, called
process graph, whose vertices represent the computations to be performed, and whose edges rep-
resent computation inter-dependencies. The objective function to be optimized by the partition
consists in minimizing cut size (that is, the sum of the weights of edges whose ends belong to two
di�erent parts) while evenly balancing the weights of the parts (that is, the sum of the weights
of all the vertices that are assigned to each of them). Once the partition is computed, a process
is associated with every part. Each process will perform all computations assigned to its part,
and will hold all of the associated data.

However, in many application domains (for instance, in the case of mesh adaptation), the
amount of computation associated with vertices may evolve with time, or vertices may be added
to, or removed from the graph. In this case, the initially balanced distribution may become
imbalanced, so that a new distribution must be computed so as to preserve processor e�ciency.
The purpose of this new partition is to obtain a balanced distribution anew, that will still
minimize cut size, but that will also minimize the amount of data that has to be redistributed
across processors. In order to be applicable to graphs of large sizes, the graph repartitioning
process must be parallel, because it has to be performed on the �y, at �xed times or when the
observed imbalance becomes too high.

The purpose of this paper is to study ways to combine and extend existing partitioning
algorithms so as to devise a scalable strategy for parallel graph repartitioning. The next section
is devoted to a state of the art of the methods most commonly used for graph repartitioning.
Section 3 describes how we extended several graph partitioning algorithms to the repartitioning
problem, with scalability in mind. We present in Section 4 the experimental results that we
obtain with the sequential versions of these algorithms, with respect to those produced by the
ParMeTiS software [12] (the latter being used because the sequentialMeTiS software does
not possess repartitioning capabilities). According to our �ndings, we conclude by proposing a
promising scalable strategy for parallel graph repartitioning.

2 Related work

The graph repartitioning problem has already been well studied. Like the plain graph partitioning
problem, it is NP-hard [9]. Consequently, for problem sizes that interest us (that is, graphs above
a billion vertices), it can only be addressed by means of parallel processing. Most of the numerous
algorithms proposed in the literature (see [3] and its included references) can be categorized in
two main classes.

Scratch-remap methods [15, 20] decouple the load balancing problem from the problem of
determining the vertices to migrate. They partition from scratch the new (modi�ed) graph, after
which they associate the new parts to the processors so that the number of migrated vertices is
minimal. Di�usion methods [7, 11, 19, 22, 23, 24] iteratively update an existing partition, by

RR n ° 8246

4 Sébastien Fourestier, François Pellegrini

migrating vertices that belong to the borders of the most heavily loaded parts to their neighboring
parts, little by little, until load imbalance decreases below a prescribed threshold.

Scratch-remap methods favor the optimization of metrics that are taken into account during
plain partitioning, that is, mostly load imbalance and cut size, to the detriment of the minimiza-
tion of the number of vertices to migrate. Di�usion methods, because of their intrinsically local
behavior, yield good results when the new graph is structurally close to the old one, but can
bring a globally non-optimal solution when topological and/or vertex weight modi�cations are
important. Moreover, these methods are expensive and parallelize poorly, whether migration is
performed iteratively [20], or else computed by means of a linear optimization solver [14].

A trade-o� between these two classes of methods consists in applying regular graph partition-
ing algorithms to augmented graphs which integrate, as additional vertices and edges, information
regarding vertex migration [2, 4, 21]. To do so, as manyanchor vertices are added to the new
graph as there were parts in the initial partition of the old graph. The weight of these anchor
vertices is assumed to be zero, so that they do not interfere with the load balancing process.
Every vertex that belonged to one of the old parts is connected to the relevant anchor vertex by
a �ctitious edge. Hence, migrating a vertex to another part increases edge cut by the weight of
this �ctitious edge. It allows one to merge the vertex migration minimization objective function
into the edge cut minimization function. The weights of �ctitious edges de�ne the migration cost
of the vertices that they link, with respect to the communication cost represented by the weights
of regular edges.

Theseskewedgraph partitioning techniques, already used in the context of the static mapping
of process graphs onto architecture graphs [10, 16], are both �exible and elegant. With only slight
modi�cations to existing graph partitioning algorithms, they allow one to optimize concurrently
load balance, cut size, and the amount of data to be redistributed across processors. Our work
is based on this approach.

3 Adaptation of existing algorithms to repartitioning

3.1 A multilevel framework for computing k-way repartitions

Like the majority of today's graph partitioning tools, the Scotch [18] software that we used as
a development testbed is based on a multilevel framework [1].

In this framework, graphs are repeatedly coarsened, by matching neighboring vertices, until
the resulting coarsest graph is considered small enough. An initial mapping is computed on this
coarsest graph, using methods that might have been too expensive to be used on the original
graph. Then, this coarsest mapping is prolonged back, from coarser to �ner graphs, to yield a
mapping of the original graph. In order to ensure that the granularity of the produced solution is
that of the original graph and not that of the coarsest graph, the prolonged mappings are re�ned
at every level by means of local optimization algorithms. The combination of high quality initial
mapping methods and of fast local optimization algorithms allows one to obtain good partitions
in reasonable time. The computation of a partition through the multilevel method is commonly
called a V-cycle.

Until now, Scotch used to compute k-partitions by means of a recursive bipartitioning
algorithm, in which the obtainment of each bipartition required a complete multilevel v-cycle.
Algorithms for locally optimizing bipartitions are easy to implement and fast, because every
vertex of a bipartition can only move to the other part, resulting in simple data structures.
However, the cost of repeating the v-cycle process quickly dominates run time when the number
of parts increases.

Inria

Toward a scalable re�nement strategy for multilevel graph repartitioning 5

Figure 1: Adaptation of the multilevel framework to the repartitioning problem.

Since our repartitioning algorithms are expected to operate on very large graphs, we are
bound to use a directk-way partitioning framework, in which the v-cycle is only run once on the
original graph. Consequently, one of the preliminaries of our work on repartitioning has been to
add direct k-way partitioning capabilities to Scotch , like other tools already have.

We will now discuss four issues related to the adaptation of our directk-way multilevel
framework to the repartitioning problem: the handling of migration costs, the coarsening phase,
the initial partitioning phase, and the uncoarsening phase.

3.1.1 Handling of migration costs

As introduced in the previous section, and as depicted in Figure 1, repartitioning capabilities
have been implemented inScotch by adding �ctitious edges to the graphs to repartition. These
edges induce an increase in edge cut size every time a vertex is migrated out of its original part.

In the repartitioning API (Application Programmer Interface) that we implemented, the user
has to provide both the old partition and the individual migration cost associated with every
�ctitious edge. Hence, migration costs may not necessarily be equivalent to vertex weights.

In Scotch , as in many other graph partitioning tools, vertex and edge weights are stored
as integers. This historical design choice was made because integer arithmetic is generally faster
than �oating point arithmetic, and most of all because it is not subject to rounding problems.
This is critical for iterative algorithms, for which a sequence of vertex moves should always yield
the same partition state, irrespective of the order in which individual vertex moves are performed.
Else, in�nite loops might occur.

However, migration costs may not always be multiples of edge weights. They may even be
smaller than the unit edge weight. In order to accommodate for such cases, in our API, migration
costs are provided by means of two parameters: an array of integer costs, of a size equal to the
number of vertices, and a single �oating-point value. This value represents the factor by which
integer migration costs should be multiplied before being accounted for in the cut cost metric.
This �oating point value is internally approximated as a fraction, and integer edge weights
and integer migration costs are scaled according to the denominator and the numerator of this
fraction, respectively. Thanks to this scaling, Scotch can still rely on integer arithmetic for its
computations.

RR n ° 8246

6 Sébastien Fourestier, François Pellegrini

While �ctitious edges are an interesting model, adding them to large graphs may pose a
serious e�ciency problem in terms of memory occupation and run time. This is why, in as many
of our algorithms as possible, we have tried to simulate their presence rather than e�ectively
create them, as we will see below.

3.1.2 Coarsening

In order to compute the initial repartition of the coarsest graph, the state of the old partition
must be propagated to it. This can be done in two di�erent ways.

A �rst approach is to add �ctitious edges to the original graph at the beginning of the
coarsening phase. Graph size must be increased by as many anchor vertices as there were parts
in the old partition, and by as many �ctitious edges as there are vertices in the new graph that
belonged to the old graph. This would make the coarsening phase slower, and would oblige the
coarsening algorithm to process anchor vertices in a special way, so that they are not mated to
regular vertices.

A second approach is to create �ctitious edges only after the coarsening phase, when comput-
ing the initial repartition on the coarsest graph. Since �ctitious edges connect a regular vertex
to its old part, every coarsest vertex must belong to only one part. Consequently, vertex mating
can only take place between vertices belonging to the same part.

We chose to implement this second solution, as it only required the addition, to the mate
selection routine, of a test that checks that a vertex and its prospective mate do not belong to
di�erent old parts.

3.1.3 Initial partitioning

An initial k-way partition of the coarsest graph can be computed easily by using the existing
recursive bipartitioning method. Yet, this method has to be adapted to compute an initial k-way
repartition. Like for coarsening, two approaches can be followed.

A �rst approach is to add �ctitious edges to the coarsest graph. The memory footprint is very
limited, but it also requires to manage anchor vertices in all the graph bipartitioning algorithms,
so that these vertices can never be moved out of the part that they represent. Adding more tests
to every algorithm unduly makes them more complex.

A second approach is to take advantage of an existing feature of the recursive bipartitioning
method of Scotch , which already implements biased graph bipartitioning algorithms. Indeed,
Scotch not only does graph partitioning, but also computes static mappings onto graphs that
represent machine processor topologies [16]. When deciding whether a vertex must be kept into
its current part or moved to the other part, bipartitioning algorithms account for the local cut,
but also for the fact that changing the vertex part may move it closer (resp. farther) to vertices
that have already been mapped onto distant processors. To handle this, anexternal gain value
is associated with each vertex, which represents the bias imposed by the outside environment.
By adding migration costs to the external gains of every vertex, repartitioning can be managed
at almost no cost.

3.1.4 Uncoarsening

During the uncoarsening phase, thek-partition computed at a coarser level is prolonged to the
�ner graph. Every pair of mated vertices is assigned to the part to which the coarse vertex that
represented it in the coarser graph is assigned. Once this is done, local optimization algorithms
are used to smooth the borders of the prolonged partition.

Two methods are used for this purpose, that will be presented in detail below.

Inria

Toward a scalable re�nement strategy for multilevel graph repartitioning 7

3.2 Re�nement heuristics

We will present in this section two re�nement algorithms that are used during the uncoarsening
phase of our multilevel framework: ak-way version of the Fiduccia-Mattheyses heuristic [8], and
a di�usion method.

Bipartitioning versions of these algorithms already existed in the previous version ofScotch .
Our work has consisted in extending them to the k-way domain and adapting them to the
repartitioning problem.

3.2.1 K -way Fiduccia-Mattheyses heuristic

This method is classically used in many partitioning software, such asParMeTiS . This method
iteratively moves vertices belonging to the borders of the parts, trying to minimize the edge cut
while maintaining load balance within a user-speci�ed tolerance.

This method can be applied almost straightforwardly to a graph to which �ctitious edges
have been added. The only modi�cation amounts to adding speci�c tests so that anchor vertices
will never be moved. These tests amount to not letting anchor vertices be placed into the data
structures that contain boundary vertices suitable for moving. This code also serves for �xed
vertices; indeed, anchor vertices are a special kind of �xed vertices.

Although the use of �ctitious edges is straightforward in this case, we have decided not to rely
on them in our implementation. Rather, we model their impact as an extra migration cost when
computing the gain associated with the move of a vertex to a part to which it does not belong.
Doing so spares the time and memory required to build the augmented graph with �ctitious
edges. It will also allow us to overcome a problem that arises when the old partition becomes
too imbalanced, as we will see below.

All Fiducia-Mattheyses-like algorithms make a heavy use of some �avor of bucket data struc-
ture. The purpose of this structure is to sort all possible vertex moves per descending edge cut
gain. To �nd the next potential vertex to move, the algorithm extracts vertices from this struc-
ture one by one, and checks whether the move would violate the load imbalance constraint. If it
would, the vertex is put aside and the next best vertex is extracted from the structure. Once a
possible vertex has been found, or even if none are found, all rejected vertices are put back into
the structure.

While such an implementation works well for graph partitioning, it may lead to dramatic
slow-downs when applied to graph repartitioning, especially when migration costs are high and
when vertex weights evolved much between the old and the new graphs. Because migration costs
are high, the algorithms will try to move as few vertices as possible. Because vertex weights
changes, it has to move enough vertices so as to produce a balanced new partition from an old
partition that has become unbalanced. The best partitions will be the ones that are as close as
possible to the imbalance threshold.

Consequently, all the vertices with highest gains, from the edge cut minimization perspective,
are the ones that cannot be accepted because they would violate the load imbalance constraint.
The bucket structure is heavily solicited but mostly yields invalid vertices, resulting in poor
performance.

We tackled this problem in the following way: when a vertex with a migration gain is put
aside, it will be put back in the bucket structure according to its edge cut gain only, without
considering again its migration gain. Hence, it will not be likely to be considered again in the
next searches to come, while never being placed below vertices without migration gains of worse
quality in terms of cut cost minimization. It will regain its migration gain when one of its
neighbors is moved, or at the next iteration of the outer, global loop of the Fiducia-Mattheyses

RR n ° 8246

8 Sébastien Fourestier, François Pellegrini

Figure 2: Banded multilevel re�nement method, for a case with two parts. A band graph of
small width is created around the prolonged frontier. All the remaining vertices in each part are
coarsened into a single anchor vertex. After a local optimization algorithm is applied, the re�ned
band frontier is prolonged to the full graph. This enables the multilevel uncoarsening process to
go on at the upper levels.

algorithm. As we will see in the next section, this optimisation does not signi�cantly degrade
partition quality, while preserving run time for high migration costs.

The Fiduccia-Mattheyses method computes good partitions while preserving load balance.
Yet, it has two drawbacks. Because it performs only local optimization, it can yield frontiers
made of segments of locally optimal cut, but whose juxtaposition is not globally optimal. Also,
it does not parallelize well, because it is inherently iterative: vertices are moved one by one,
because every move of a vertex requires to recompute the gains of its neighboring vertices.

It is to alleviate these two problems that we also considered a global di�usive method.

3.2.2 Global di�usion-based heuristic on band graphs

This algorithm has been pictorially called �the Jug of the Danaides� [17], because of its
analogy with its mythological counterpart. It models the graph as a set of leaking barrels,
representing its vertices, linked by pipes, representing the edges. Each of the parts receives a
given amount of liquid of a di�erent color per unit of time. Liquids can �ow freely through the
pipes according to their section, and two di�erent liquids vanish in equal quantities when they
mix. Only the dominant liquid will remain in each barrel, leading to the de�nition of areas that
minimize their interface with respect to their inside, as soap bubbles do.

Since this algorithm is targeted towards locally optimizing prolonged partitions, only the
immediate vicinity of current frontiers is relevant to us. Consequently, we restrict its use to a
band graph [5], de�ned by the restriction of the prolonged graph to the set of vertices that are
at distance at most d from the current frontiers (by default, this distance is set to 3). All the
removed vertices of each part are coarsened into a single anchor vertex representing this part.
These anchor vertices are linked to the vertices of same part that belong to the last layer of the
band graph, as illustrated in Figure 2. It is from these anchor vertices that the liquids will be
injected in the network of barrels.

Sub�gure 4(a) illustrates how this algorithm enforces the balance constraint. As vertex 8 has
a higher load, it leaks more liquid per time step than others (the amount of leaked liquid can be
seen as the rental cost for occupying the barrel). Thus, even if it gets a lot of liquid from vertex
10, it will forward only a small fraction of it to vertex 5.

Just like the Fiduccia-Mattheyses algorithm, the adaptation of the Jug of the Danaidesto
graph repartitioning requires some special treatment, especially for high migration costs.

In this case, if the plain algorithm were directly applied to the graph to which �ctitious edges
have been added,migration edgeswould be of a higher diameter thanregular edges. Because the

Inria

Toward a scalable re�nement strategy for multilevel graph repartitioning 9

Table 1: Description of the test graphs. The vertex and edge cardinalities,jV j and jE j, are given
in thousands.

Graph Description Size (� 103) Average
jV j jE j degree

10millions 3D electromagnetics, CEA 10423 78649 15:09
af_shell10 structural problem 1508 25582 33:93
audikw_1 structural problem 943 38354 81:28
cage15 DNA electrophoresis 5154 47022 18:24
conesphere1m 3D electromagnetics, CEA 1055 8023 15:21
coupole8000 3D structural mechanics, CEA 1768 41656 47:12
dielFilterV3real electromagnetics problem 1102 44101 79:98
ecology1 2D/3D problem 1000 1998 4:00
ldoor structural problem 952 22785 47:86
thermal2 thermal problem 1228 3676 5:99

dominant connections would link vertices belonging to the same old parts, the partition would
not change, and remain unbalanced in the context of the new graph.

To successfully extend this algorithm to the repartitioning case, we inspired ourselves from
the in�uence model. In this di�usive model, explored by Wan et al. [25], vertices impact their
neighbors by di�using them information on their current state, but this mutual in�uence is
reduced when neighbors do not belong to the same part.

Figure 3 shows the sketch of our extended algorithm. On Figure 4(b), our algorithm would
move vertex 5 from Part 3 to Part 1. If a vertex has neighbors that are of its old part and others
that are in other parts, it can redirect some liquid to help in decreasing migration. In practice,
an amount of the standard liquid that cross these vertices, and which is proportional to their
migration cost, is converted into migration liquid . This migration liquid is then redirected so as
to favor the coming back of the vertex to its old part. The 2 gives some red liquid to vertex 5 to
help it come back to the �rst part while vertex 5 does not send green liquid to vertex 2 to reach
a higher probability to come back to its old part. Since it will not help vertex 5 to come back to
its old partition, vertices 7 and 8 will not send their migration liquid to it.

The bene�t of this method is that it gives good cut while taking load balance constraint in
account. Moreover, it is global, scalable and easily parallelizable. Yet, it has three drawbacks: it
is more expensive than the Fiduccia-Mattheyses heuristic; the load balance tolerance cannot be
chosen; and we cannot use it on graphs from which thek-way band graph cannot be extracted
(usually when there are lots of parts and the graph has a high degree).

4 Experimental results

The results presented in this paper have been computed on the nodes of the PLAFRIM clus-
ter, each blade comprising two quad-core Nehalem Intel® Xeon® X5550 processors running at
2:66 GHz and 24 Gb of main memory.

4.1 Protocol

To perform our experiments, we considered graphs which have unit weights and come from
various domains. They are described in Table 1.

We considered four metrics:

RR n ° 8246

10 Sébastien Fourestier, François Pellegrini

ˆ Cut: let G = (V; E) be a graph, and let we be the load of an edgee 2 E. We call S the
separator, that is the set of edges that cross two parts. Ourcut metric is a ratio de�ned

as

P
s2 S wsP
e2 E we

.

ˆ Imbalance: for any partition, let jVp j be the load sum of vertices in part p 2 P. Our

imbalance metric is a delta ratio de�ned as

P
p2 P

�
�
� jVp j � jV j

k

�
�
�

jV j
.

ˆ Migration : for an initial partition and a repartitioning, let Vm be the set of vertices that
belong, in the repartitioning, to a part that di�ers from their initial part. Our migration

metric is a ratio de�ned as
jVm j
jV j

.

ˆ Time: the execution time, in seconds.Scotch is executed on one processor andParMeTiS
on two processors. For the sake of clarity and even if it takes advantage from its parallel
execution, we have chosen to keepParMeTiS run time as is, without any kind of normal-
ization per processor.

Our protocol for testing repartitioning strategies is as follows.

1. We compute an initial partitioning of 128 parts with the default strategy of Scotch 6.0
(sq) and a balance constraint of0:051.

2. We compute amodi�ed graph by increasing by one the weights of the vertices that are in
the �rst 32 parts of the initial partitioning . This brings an imbalance ratio of about 0:16.

3. We use various strategies to compute a repartitioning (that keeps128 parts) of the initial
partitioning on the modi�ed graph with respect to a balance constraint of 0:05. For all
graphs and all strategies, this step is done 100 times for several migration costs comprised
in the range [0:5; 50]2.

The strategies that we experimented with are the following.

ˆ rb : The initial partition of the k-way multilevel framework is computed thanks to Recursive
Bipartitioning , and is uncoarsened without re�nement.

ˆ rbf : The initial partition of the k-way multilevel framework is computed thanks to Recur-
sive bipartitioning. During the uncoarsening phase, we use theBasic Fiduccia-Mattheyses
re�nement.

ˆ rf : The initial partition of the k-way multilevel framework is computed thanks to Recursive
bipartitioning . During the uncoarsening phase, we use theFiduccia-Mattheysesre�nement.
This is the same strategy asrbf with the optimisation explained in subsection 3.2.1.

ˆ rd : The initial partition of the k-way multilevel framework is computed thanks to Recur-
sive bipartitioning. During the uncoarsening phase, we use theDi�usion re�nement (cf.
subsection 3.2.2).

1The desired imbalance ratio of 0:05 passed to Scotch turned into the �lling of the ParMeTiS ubvec input
array with 1:05 values.

2We increase the migration cost by steps of 0:01 when it is less than 1, and by steps of 1 afterward. The
migration cost is translated into the itr parameter used in input of ParMeTiS , according to the following
formula: itr = 1

m

Inria

Toward a scalable re�nement strategy for multilevel graph repartitioning 11

ˆ sq: This is the default strategy of Scotch 6.0 using theSCOTCH_graphRemaproutine3 that
privileges cut (Quality) over strict balance4. The initial partition of the k-way multilevel
framework is computed thanks to recursive bipartitioning. During the uncoarsening phase,
we use di�usion and Fiduccia-Mattheyses re�nements.

ˆ pm: This is the ParMetis 4.0.2 [13] strategy using theParMETIS_V3_AdaptiveRepart rou-
tine.

4.2 K -way Fiduccia-Mattheyses heuristic behaviour

In Figure 5, we observe the behavior of Fiduccia-Mattheyses-like strategies on the10millions
graph. pmyields a slightly better cut, while bringing a small extra to the balance constraint
for migration costs higher than 1. rbf and rf are more sensitive to the variation of migration
cost. rf is a bit more expensive thanpmand, as explained in subsection 3.2.1,rbf has the most
expensive execution time. Asrbf explores more vertices, it is able to reach better balance.

In Figure 6, we observe, by strategy, the repartition of all runs. It con�rm our �rst observa-
tions. rbf and rf yield almost the same cut and migration ratios. rbf can be very expensive
but gives the best balance. pmgives a better cut but a worse balance, and is the fastest. The
migration ratio of pmis often close to40%. In the previous subsection, we explained how we
converted the migration value to the input ParMeTiS parameter itr . In these experiments, we
used anitr parameter that is included in the range [0:02; 2:0]. The ParMeTiS documentation
claims that itr can be set in the range[0:000001; 1000000:0]. We tried it without observing
major changes in the migration ratio.

As rf enforces the balance and gives the same cut and imbalance asrbf while being faster,
we will focus on this implementation for the rest of our analysis.

4.3 Global di�usion-based heuristic behavior

In Figure 7, we observe the behavior on graph10millions of the di�usion strategy (rd), com-
pared to sq, pmand the basic rb strategy. rd yields a cut that is less sensitive to the migration
cost. It does not always enforce the balance constraint and it is more expensive than Fiduccia-
Mattheyses-like strategies. Likerf and sq, rd is more sensitive to the migration cost thanpm.
sq, which combinesrd and rf , brings a cut close topm, which is better for high migration costs,
and a better imbalance, but it is more expensive.

Because of the nature of the algorithm, the balance constraint cannot be con�gured forrd ,
which brings in practice an imbalance close to0:05.

rd has the same behavior on the other graphs, save foraudikw_1, cage15and dielFilterV3real .
On these three high-degree graphs, ourk-band graph algorithm does not complete because some
parts do not contain three layers of vertices. As thek-ary band graph cannot be created, di�usion
re�nement is not performed and we get exactly the same behavior asrb .

For clarity of the analysis, we will now focus on the other graphs, to which we will collectively
refer asmesh-typegraphs.

RR n ° 8246

12 Sébastien Fourestier, François Pellegrini

Table 2: Execution time means for all runs on �mesh-type� graphs
Graphs rb rd rf sq pm
10millions 10.603 111.150 45.645 118.542 17.056
af_shell10 1.548 13.149 3.453 14.564 2.040
conesphere1m 1.551 11.464 4.991 14.363 1.580
coupole8000 2.490 11.014 3.459 11.768 5.231
ecology1 0.533 2.095 7.290 2.650 0.700
ldoor 1.302 13.828 2.274 15.397 2.033
thermal2 0.778 3.289 1.906 4.126 1.108
Global 2.68655 23.713 9.860 37.370 4.250

4.4 Strategy analysis

4.4.1 Migration

In Figure 8, we observe that allScotch strategies are more sensitive to the migration cost than
the ParMeTiS strategy. rd always migrates more than other strategies. In comparison torb and
rf , sq migrates more for small migration costs, and less for high migration costs. All strategies
exhibit an equivalent migration ratio for high migration costs.

4.4.2 Cut and imbalance

Figure 9 evidences that, as expected,rb yields the worst cut (0:0361). As the initial partition
is balanced before the plain uncoarsening phase, it gives a good balance (0:0366). pmgives the
best cut (0:0289) and rf gives the best balance (0:0340). sq gives a cut close to the one ofpm
(0:0297, with a ratio of 1:028), while bringing a better balance (0:0435, with a ratio of 0:852).
On average,pmslightly exceeds the0:05 balance constraint (0:001), while rd does so a little more
(0:006). On average,rd gives the second best cut, close behindpm(0:0296with a ratio of 1:025
and 53 %of its cut values that are less than the ones ofpm). rf brings a respectable cut (0:0307).

4.4.3 Time

From table 2, we see that the execution time ofrb is signi�cantly smaller than others. Con-
sequently, most of the execution time is consumed during the re�nement phase. The Fiduccia-
Mattheyses-like strategies are faster than the ones that comprise di�usion-like re�nement. pm
is close to them but faster than rf (its wall-clock time multiplied by two is still a bit smaller
than that of rf). On average, runningrd on one processor is5:6 times more expensive than the
execution of pmon two processors, and the execution ofsq is 8:8 times more expensive.

4.5 Summary

To sum up, pmand sq are the two best strategies in terms of cut and imbalance. TheScotch
strategies are more sensitive to the migration cost parameter. The Fiduccia-Mattheyses-like
strategies provide a good cut while enforcing a parametrizable balance constraint, and are fast.
rd gives a good cut, a load balance close to0:05, and is more expensive.

Becauserd is algorithmically more scalable than Fiduccia-Mattheyses-like strategies, a scal-
able strategy for parallel graph repartitioning could be the following:

3This strategy can be set by enabling the �ag SCOTCH_STRATQUALITY.
4This strategy can be set by enabling the �ag SCOTCH_STRATBALANCE.

Inria

Toward a scalable re�nement strategy for multilevel graph repartitioning 13

1. Perform parallel coarsening so as to get a graph small enough to be stored on one processor.

2. On each processor, perform a sequential repartitioning of this small graph using thesq
strategy.

3. During the uncoarsening phase, when the graph becomes too large to be stored on one pro-
cessor, compute ak-way band graph and re�ne it sequentially using the di�usion algorithm
followed by a Fiduccia-Mattheyses-like re�nement.

4. When the band graph becomes too big to be stored on one processor, get the best computed
repartitioning, compute a k-way parallel band graph and perform a parallel re�nement
thanks to the di�usion algorithm.

5 Conclusion and Future Work

This paper aims at proposing a strategy suitable for parallel graph repartitioning. To ful�ll
this goal, we performed an experimental analysis of several sequential repartitioning strategies.
These strategies are based on methods that were speci�cally adapted to the graph repartitioning
problem. This adaptation was made necessary because high migration costs and heavy imbalance
put a high stress on existing partitioning methods, which prevents them from behaving properly
on biased graphs. It is in this context that we presented our adaptation of the di�usion algorithm
to the repartitioning problem.

Future work includes the completion of the coding of the parallel version of our repartitioning
algorithms within the PT-Scotch software [6]. This will enable us to perform scalability studies
of our proposed parallel graph repartitioning strategy. Another area of work is the improvement
of our k-band graph algorithm so as to enable the use of di�usion re�nement methods on high
degree or non-mesh type graphs.

Acknowledgments

The results presented in this paper were obtained on the PLAFRIM test platform that was
put in production thanks to the action de développement INRIA PlaFRIM with support from
LaBRI, IMB and the following institutions: Conseil Régional d'Aquitaine, FeDER, Université de
Bordeaux and CNRS (see:https://plafrim.bordeaux.inria.fr/).

The �rst author would like to thanks Emmanuel Jeannot and Louis-Claude Canon for intro-
ducing himself to the R-project.

References

[1] S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems. Concurrency: Practice and Experience,
6(2):101�117, 1994.

[2] Umit Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdag, Robert Heaphy, and
Lee Ann Riesen. A repartitioning hypergraph model for dynamic load balancing. San-
dia National Laboratories Tech. Report SAND2008-2304J, Sandia National Laboratories,
Albuquerque, NM, 2008. Submitted to J. Par. Dist. Comp.

RR n ° 8246

https://plafrim.bordeaux.inria.fr/

14 Sébastien Fourestier, François Pellegrini

[3] Umit Catalyurek, Doruk Bozdag, Erik G. Boman, Karen D. Devine, Robert Heaphy, and
Lee Ann Riesen. Hypergraph-based dynamic partitioning and load balancing. Sandia Na-
tional Laboratories Tech. Report SAND2007-0043P, Sandia National Laboratories, Albu-
querque, NM, 2007.

[4] Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozda§, Robert T. Heaphy,
and Lee Ann Riesen. A repartitioning hypergraph model for dynamic load balancing. J.
Parallel Distrib. Comput. , 69:711�724, August 2009.

[5] C. Chevalier and F. Pellegrini. Improvement of the e�ciency of genetic algorithms for scal-
able parallel graph partitioning in a multi-level framework. In Proc. Euro-Par'06, Dresden,
volume 4128 ofLNCS, pages 243�252, September 2006.

[6] C. Chevalier and F. Pellegrini. PT-Scotch : A tool for e�cient parallel graph ordering.
Parallel Computing, 34:318�331, 2008.

[7] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors.J. Parallel
Distrib. Comput. , 7:279�301, October 1989.

[8] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network par-
titions. In Proc. 19th Design Automat. Conf., pages 175�181. IEEE, 1982.

[9] M. R. Garey and D. S. Johnson.Computers and Intractablility: A Guide to the Theory of
NP-completeness. W. H. Freeman, San Francisco, 1979.

[10] B. Hendrickson, R. Leland, and R. Van Driessche. Skewed graph partitioning. InProceedings
of the 8th SIAM Conference on Parallel Processing for Scienti�c Computing. IEEE, March
1997.

[11] Y. F. Hu, R. J. Blake, and D. R. Emerson. An optimal migration algorithm for dynamic
load balancing. concurrency: Practice and experience, 1998.

[12] G. Karypis and V. Kumar. ParMetis Parallel Graph Partitioning and Sparse Matrix Or-
dering Library . University of Minnesota, Department of Computer Science and Engineering,
Army HPC Research Center, Minneapolis, MN 55455, U.S.A., August 2003.

[13] MeTiS : Family of multilevel partitioning algorithms. http://glaros.dtc.umn.edu/
gkhome/views/metis .

[14] Henning Meyerhenke, Burkhard Monien, and Thomas Sauerwald. A new di�usion-based
multilevel algorithm for computing graph partitions. J. Parallel Distrib. Comput. , 69:750�
761, September 2009.

[15] Leonid Oliker and Rupak Biswas. Plum: Parallel load balancing for adaptive unstructured
meshes.Journal of Parallel and Distributed Computing, 52:150�177, 1998.

[16] F. Pellegrini. Static mapping by dual recursive bipartitioning of process and architecture
graphs. In Proc. SHPCC'94, pages 486�493. IEEE, May 1994.

[17] F. Pellegrini. A parallelisable multi-level banded di�usion scheme for computing balanced
partitions with smooth boundaries. In Proc. Euro-Par'07 , volume 4641 ofLNCS, pages
191�200. Springer, August 2007.

[18] Scotch : Static mapping, graph partitioning, and sparse matrix block ordering package.
http://www.labri.fr/�pelegrin/scotch/ .

Inria

Toward a scalable re�nement strategy for multilevel graph repartitioning 15

[19] Kirk Schloegel, George Karypis, and Vipin Kumar. Parallel multilevel di�usion algorithms
for repartitioning of adaptive meshes, 1997.

[20] Kirk Schloegel, George Karypis, and Vipin Kumar. Wavefront di�usion and lmsr: Al-
gorithms for dynamic repartitioning of adaptive meshes. Trans. Parallel Distrib. Syst. ,
12:451�466, May 2001.

[21] C. Walshaw. Variable partition inertia: graph repartitioning and load-balancing for adaptive
meshes. In S. Chandra M. Parashar and X. Li, editors,Advanced Computational Infrastruc-
tures for Parallel and Distributed Adaptive Applications. Wiley, New York, 2010. (Invited
chapter).

[22] C. Walshaw and M. Cross. Parallel optimisation algorithms for multilevel mesh partitioning.
Technical report, Parallel Comput, 2000.

[23] C. Walshaw and M. Cross. Dynamic Mesh Partitioning and Load-Balancing for Parallel
Computational Mechanics Codes. In B. H. V. Topping, editor, Computational Mechanics
Using High Performance Computing, pages 79�94. Saxe-Coburg Publications, Stirling, 2002.
(Invited chapter).

[24] C. Walshaw, M. Cross, and M. G. Everett. Parallel Dynamic Graph Partitioning for Adap-
tive Unstructured Meshes. J. Parallel Distrib. Comput. , 47(2):102�108, 1997.

[25] Y. Wan, S. Roy, A. Saberi, and B. Lesieutre. A stochastic automaton-based algorithm for
�exible and distributed network partitioning. In Proc. Swarm Intelligence Symposium, pages
273�280. IEEE, 2005.

RR n ° 8246

16 Sébastien Fourestier, François Pellegrini

initialize tab t and tab t +1 arrays to 0; /* Initialization */
set partval of tab t array to initial partition;
while (number of passes to do) { /* Main loop */

for (all k-parts p) { /* Refill sources vertices */
� sp

X

e=(sp ;v 0)

weight [e]; /* Sum weights of all adjacent edges */

tab t +1 [sp]:diffval tab t +1 [sp]:diffval +
jV j

k � � sp

; /* Update diffusion value of source vertex */

}
for (all vertices v in graph) {

reset contents of liquid array to 0;
for (all edges e = (v; v0)) { /* For all neighbours */

diffval tab t [v0]:diffval ; /* Get neighbour standard liquid contribution */
if (part [v0] = orgpart [v]) /* Add its migration liquid contribution */

diffval diffval + tab t [v0]:mdisval ;
else

diffval diffval + tab t [v0]:mdidval ;
liquid [tab t [v0]:partval] liquid [tab t [v0]:partval] + diffval ; /* Add its contribution to liquid array */

}
pmax max(liquid); /* Get part of most abundant liquid */
tab t +1 [v]:partval pmax ;
diffval liquid [pmax]; /* Get amount of most abundant liquid */
diffval diffval � weight [v]; /* Leak liquid */
�

X

e=(v;v 0)

weight [e]; /* Sum weights of all edges adjacent to v */

� old
X

e=(v;v 0) and part [v 0]= orgpart [v]

weight [e]; /* Sum weights of edges going to oldpart(v) */

migrval 0;
if ((� old 6= 0) and (� old 6= �)) /* If redirection of liquid can reduce mig. */

migrval migrcost [v]; /* Get vertex migration cost */
if (migrval > diffval) { /* Remove it from the amount of standard liq. */

migrval diffval ;
diffval 0;

}
else

diffval diffval � migrval ;

tab t +1 [v]:diffval
diffval

�
; /* Set t+1 fraction of standard liquid */

if (migrval = 0) { /* Handle migration liquid */
tab t +1 [v]:mdisval 0;
tab t +1 [v]:mdidval 0;

}
else {

if (orgpart [v] = tab t +1 [v]:partval) { /* If v will spread liquid of its old part */

tab t +1 [v]:mdisval
migrval

� old
; /* Mig. l. will go to vertices in the old part */

tab t +1 [v]:mdidval 0;
}
else {

tab t +1 [v]:mdisval 0;

tab t +1 [v]:mdidval
migrval

� � � old
; /* Mig. l. will go to vertices in other parts */

}
}

}
swap tab t and tab t +1 arrays;

}

Figure 3: Sketch of the jug-of-the-Danaides di�usion algorithm extended to repartitioning prob-
lem. For each step, the current and new contents of every vertex are stored in arraystab t and
tab t +1 , respectively.

Inria

Toward a scalable re�nement strategy for multilevel graph repartitioning 17

������������

������������

������������

�	��

�	��

�	��

�

��

��

��

��

��

�

��

��

����

(a) Partitioning

������������

������������

������������

�	�
�������������
���
����

����

����

����

��

��

��

��

��

��

��

��

��

����

(b) Repartitioning

Figure 4: Extension of the di�usion algorithm to the repartitioning problem. Three standard
liquids (red, blue and green) appears (the big spirals) from the source verticess1, s2 and s3.
Standard vertices leak some liquid (the small spirals). The dashed lines represents the liquid
�ow going from one vertex to another. The line heaviness is proportional the quantity for liquid
�owing across an edge. The orange liquid corresponds to themigration liquid , that is some
standard liquid that is redirected so as to favor the migration constraints.

RR n ° 8246

18 Sébastien Fourestier, François Pellegrini

lllllllllllll
llllllllllllllllllllllllllllllll

llllll l l

l

l
l

l

l
l l

l

l

l

l
l l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l

l

ll
l

l

l
l

l

l

l

l

0.5 1.0 2.0 5.0 20.0 50.0

0.
02

0
0.

03
0

0.
04

0

Migration cost

C
ut

l rbf
rf
pm

llll
l
ll
l

l
llll
l
l
l
ll
ll
l
ll
ll
ll

l

l

l

ll

l
l
l

l

l

ll
l
l
l
l
ll

l

l
ll

l
l

l

l l

l l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

lll

l

l

l
l

l

l

l

l

l
l

l

l
l

l

l
l

l

l

l

l

0.5 1.0 2.0 5.0 20.0 50.0

0.
02

5
0.

03
5

0.
04

5
0.

05
5

Migration cost

Im
ba

la
nc

e

l rbf
rf
pm

l

l

ll
l

llll

l

lll

l
l
ll

l

l

lll
l

l

lll

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l
l
l

l

l

ll
l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll
l

l
l
l

l

l

lll
l
l
ll
l
l

l
l

l

l

ll
l
l
l

0.5 1.0 2.0 5.0 20.0 50.0

30
35

40
45

50
55

60

Migration cost

M
ig

ra
tio

n
(%

)

l rbf
rf
pm

lll
llllll

lllllllll

l
llllll
ll

l
lllllllll

lllll
lllllllll

l l l

l
l

l

l

l

l

l

l

l

l

l

l
l l

l
l

l

l
l

l

l
l

l

l

l
l
l
l
l
l
ll

ll
l
l

l

l
llllll

l
l

0.5 1.0 2.0 5.0 20.0 50.0

50
10

0
15

0
20

0

Migration cost

T
im

e
(s

)

l rbf
rf
pm

Figure 5: Behaviour, on the graph10millions , of the basic (rbf) and the optimized (rf) k-way
Fiduccia-Mattheyses strategies implemented inScotch , and the ParMeTiS strategy (pm).

Inria

Toward a scalable re�nement strategy for multilevel graph repartitioning 19
0.

01
5

0.
02

5
0.

03
5

0.
04

5

rbf rf pm

Strategy

C
ut

0.
02

0.
03

0.
04

0.
05

0.
06

rbf rf pm

Strategy

Im
ba

la
nc

e

30
40

50
60

rbf rf pm

Strategy

M
ig

ra
tio

n
(%

)

20
50

10
0

20
0

rbf rf pm

Strategy

T
im

e
(s

)

Figure 6: These bean plots give, for all runs withrbf , rf and pmstrategies, the kernel density plot
of the four considered indicators. The pink shape corresponds to a nonparametric density plot.
The dashed horizontal line represents the global mean value for all strategies. The heavy, solid
horizontal lines represents the mean for each strategy. The small horizontal lines corresponds to
the values of each run within eachbean of the beanplot.

RR n ° 8246

20 Sébastien Fourestier, François Pellegrini

lllllllllllll
llllllllll

llllllllllllllllllllll
llllll

l
l

l
l

l

l

l

l

l

l

l
l l

l

l

l

l
l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l
ll
l
ll

l

l

l
lll
l
l

l

l

l

0.5 1.0 2.0 5.0 20.0 50.0

0.
02

0
0.

03
0

0.
04

0

Migration cost

C
ut

l rb
rd
sq
pm

llll
ll
l
ll
lllllllllllll

l
llll
ll
lll
lllll
llllllllllll

l
l l l

l l l

l
l l l l l

l
l l l

l
l

l
lll

l
l

l

l
l
ll
l

lllllll
lll
l
llll
l
l
lll

0.5 1.0 2.0 5.0 20.0 50.0

0.
04

0.
06

0.
08

0.
10

Migration cost

Im
ba

la
nc

e

l rb
rd
sq
pm

l

l

ll
l

ll
ll
l

lll
l
l
ll

l

l

lll
l

l

lll

l

l

l

l

l

l

l

l

l

l

l

ll

ll

l

l
ll

l

l

ll
l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

ll
l

l
l
l

l

l

ll
l
l
l
ll
l
l

l
l

l

l
ll
ll
l

0.5 1.0 2.0 5.0 20.0 50.0

30
40

50
60

Migration cost

M
ig

ra
tio

n
(%

)

l rb
rd
sq
pm

lll l l l l l l l l l l l l l l l l l l lllllllllllllllllllllllllllllll

0.5 1.0 2.0 5.0 20.0 50.0

50
10

0
15

0

Migration cost

T
im

e
(s

)

l rb
rd
sq
pm

Figure 7: Behaviour, on the graph 10millions , of the multilevel strategy without re�nement
(rb), the multilevel strategy with di�usion re�nement (rd), the Scotch default strategy (sq)
and the ParMeTiS strategy (pm).

Inria

Toward a scalable re�nement strategy for multilevel graph repartitioning 21

Strategy

M
ig

ra
tio

n
(%

)

40

45

50

rb rd rf sq pm

l

l

l

l

l

l

MigrationCost

rb rd rf sq pm

l

l

l

l

l
l

MigrationCost

rb rd rf sq pm

l

l

l

l

l

MigrationCost

l

l

l
l

l

MigrationCost

l

l

l l

l

l

l

MigrationCost

40

45

50

l l l
l l

MigrationCost

40

45

50

l
l

l l l

MigrationCost

l
l

l
l l

l

MigrationCost

Figure 8: A trellis box-plot (that is a grid of several box-plots) showing, on �mesh-type� graphs,
the migration behaviour of all the strategies for the following migration cost intervals: [0:49; 0:61]
(down left), [0:62; 0:74] (down middle), [0:75; 0:87] (down right), [0:88; 0:99] (middle left), [1; 12]
(middle), [13; 24] (middle right), [25; 37] (up left) and [38; 50] (up right).

RR n ° 8246

22 Sébastien Fourestier, François Pellegrini

Figure 9: Comparison matrices showing, on �mesh-type� graphs, the strategies speci�cities in
terms of cut and imbalance. On the diagonal, the strategy name, its mean and its standard
deviation are given. On the lower part, the repartition of the di�erence between the runs of the
above strategy and the ones of the right strategy is plotted. The empirical cumulative distribution
function is plotted in blue. On the upper part, several metrics are given to ease the comparison
between the left strategy (l) and the bottom one (b). They are de�ned as follows. ratio is equal

to
mean(l)
mean(b)

. prop corresponds to the proportion of runs of thel strategy which are superior to

the ones of theb strategy. medis the median of l � b. Eventally, the 25th and 75th quantiles of
l � b are given.

Inria

RESEARCH CENTRE
BORDEAUX – SUD-OUEST

351, Cours de la Libération

Bâtiment A 29

33405 Talence Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related work

