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Abstract We propose an algorithm that combines Proper Orthogonal Decomposition with a spectral
method to analyse and extract from time data series of velocity fields, reduced order models of flows.
The flows considered in this study are assumed to be driven by non linear dynamical systems exhibiting
a complex behavior within quasi-periodic orbits in the phase space. The technique is appropiate to
achieve efficient reduced order models even in complex cases for which the flow description requires a
discretization with a fine spatial and temporal resolution. The proposed analysis enables to decompose
complex flow dynamics into modes oscillating at a single frequency. These modes are associated with
different energy levels and spatial structures. The approach is illustrated using time resolved PIV data
of a cylinder wake flow with associated Reynolds number equal to 3900.
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1 Introduction

The reduced order modeling of fluid flow dynamics is of major interest in order to supply compu-
tationally affordable dynamical systems that may be used within data assimilation procedures [29,
7] or flow control strategies [18] for forecasting new or intermediate states of the flow. Such models
generally rely on the use of a sequence of velocity fields to build a low dimensional empirical basis
of the flow dynamics. Those velocity fields can be either supplied from numerical simulations or from
physical experiments through velocimetry measurement techniques, although in the latter case noise
comes into the picture and makes the problem much harder. The basis functions associated with such
reduced modeling provide in addition a compact kinematical description of the flow that can be used
for analysis or inspection purposes. In this latter case, one is interested in recovering or characterizing
specific dynamical instabilities or coherent structures to yield an insight in terms of distinct physical
events involved within the flow of interest.
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Different approaches have been proposed so far for the constitution of low order empirical dynamical
models of fluid flows from time series data. Among them, one of the most popular approach has been to
consider a Karhunen-Loeve decomposition of the data series [19]. This strategy, referred to as Proper
Orthogonal Decomposition (POD), supplies a compact flow description in term of topos (modes of the
spatial basis), that are ranked by their associated fluctuating kinetic energy. The most energetic modes
correspond generally to large scale structures but are generally not representative of distinct physical
events in the frequency domain. It is hence sometimes difficult to associate the set of POD modes
with clear distinguishable flow dynamical features or events. The correspondence of these modes with
the so called coherent structures of the flow reveals thus sometimes questionable. Only in the special
case of homogeneous correlation tensor (applicable for instance in isotropic turbulence, or flows with a
preferential direction of homogeneity [20] or with translational symmetries [26]) the POD basis reduces
to the Fourier modes [10]. However, in that case one loses spatial localization, which characterizes the
coherent structures of interest.

Reduced order dynamics is formally obtained after a Galerkin projection of the Navier Stokes
equations in the subspace spanned by the POD modes. This approach turns the partial differential
equations (PDE) description of the flow dynamics into a coupled system of ordinary differential equa-
tions (ODE) involving the POD temporal coefficients - called chronos. The dimension of the system
depends on the number of components retained for the analysis. This degree of freedom is usually
determined from an energetic criterion. Obviously, those models are strictly dedicated to a given flow
situation. This introduces an important drawback for flow control applications and has motivated dif-
ferent strategies to improve the expansion basis like balanced proper orthogonal decomposition [6] or
frequential snapshots [11].

A potential pitfall of POD-ROM technique lies in the numerical stability of the system extracted.
One of the most important causes for this loss of stability is related to truncation of low energy
modes, which as a result suppresses damping associated with energetic dissipation mechanism. It is
thus tempting, on the one hand, to keep a great number of modes (that is at most given by the
number of snapshots). On the another hand, the requirement of reducing the system and the difficulty
to accurately extract low energetic modes (associated with weak eigenvalues of the data autocorrelation
matrix) encourages to discard the lowest energetic modes. In worst cases, e.g. when the dimension of
the model becomes too large, the model predictions of the flow dynamics are prone to blow up even
at very short time horizons.

Different variations of the POD-Galerkin procedure have been proposed to overcome these limita-
tions. Some of them include additional dissipative models [12] or rely on nonlinear Galerkin projection
techniques [1,4,13]. Robust techniques based on optimal control strategies have been also proposed
for building reduced dynamical models from noisy data [9,15] and incomplete knowledge of the actual
flow dynamics (i.e. unknown initial condition, unknown or partially known forcing terms,...). Those
techniques have demonstrated to be able to extract very accurately low order dynamical system on the
time range on which the data are available but may experience some limitations for forecasting new
states of the system. Techniques to improve the stability of the reduced order model (ROM) have been
recently proposed for wake flows [4,27]. This is the kind of flow we consider in this work to illustrate
our approach even if the technique we propose could apply to any flow exhibiting a periodic character
in the phase space.

In this contribution, we aim at identifying a ROM whose dynamics is not obtained by integrating
in time a system of differential equations, but rather by performing matrix multiplication. At the
same time, we look for a model whose reduction relies on physical criterion, combining both energy
considerations and dynamical relevance. This is achieved by designing a model that relies on both
POD and dynamic mode decomposition (DMD).

DMD has been recently introduced in the field of fluid mechanics by Schmid [24] and Rowley
[5] to identify modes relevant with respect to the hidden system dynamics. The basic idea consists
to postulate the existence of an evolution operator that transforms the current observable snapshot –
most of the time a velocity snapshot – into the next one. This imposes the operator to be stationary, i.e.
constant in time. As a consequence, snapshots corresponding to an underlying non-linear dynamics,
are vectors lying in a vector space in which the evolution operator enables to map one vector into
another. DMD has been successfully applied to various physical configurations in order to identify
coherent structures in flows that have associated a well-defined temporal frequency [6,23,22].
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The DMD procedure assumes that for the phenomenon under study the N th snapshot is a linear
combination of the first (N − 1) ones. This is equivalent to consider that the N − 1 first snapshots
form a basis on which any new snapshot can be decomposed. Such an hypothesis is hardly satisfied,
and as a consequence in general the decomposition generates a residual. The dimension of the residual
space depends on the difference between the observable dimension and the number of snapshots. The
greater this difference the larger the residual dimension. The residual however will be assumed to be
almost negligible and thus not taken into account in the analysis.

The determination of the dynamic modes of this analysis requires estimating the (complex) eigen-
values of the evolution operator. The modes that are obtained with a DMD oscillate with a single
frequency that is determined by the eigenvalue associated with the mode. The eigenvalues, whose
number depends on the operator dimension, cannot be determined directly from the evolution opera-
tor as this operator is in general unknown. It is however possible to propose techniques that enables to
estimate some of these eigenvalues with matrix that are similar to the evolution operator (the number
of approximated eigenvalues agrees with the number of considered snapshots). In the usual case, when
the number of snapshots is lower than the dimension of the evolution operator, only some of the total
number of eigenvalues can be captured. As a result, in this situation any spectrum built considering
all the approximated eigenvalues may be incomplete as some frequency channels will be missing.

When the flow regime is perfectly permanent, theoretically the eigenvalues should map on the unit
circle of the complex plane. In this situation it is possible to define a power spectrum by associating
the L2-norm of any given dynamic mode to the frequency channel associated with the eigenvalue. In
a periodic regime case and when the data set under consideration is centered (vanishing average),
Chen [17] indicates that discrete Fourier transform (DFT) and DMD constitute formally equivalent
methods. We can mention however that this equivalence only applies when the number of snapshots
is lower than the dimension of the snapshot vector.

In most practical situations, eigenvalues are not strictly unitary and even when they lie in the
vicinity of the unit circle, it addresses the question of the meaning of the L2-norm. For instance, the
contribution to the dynamics of a mode whose eigenvalue is smaller than 1, may be significant on
short time range, while it is rapidly negligible over a larger time horizon. Hence, identification of power
spectrum with the mode amplitude spectrum may become questionable in such situations. One way
to recover a spectrum similar to a power spectrum would be to balance the L2-norm of the mode such
as to consider its mean contribution over the observation time range. Unfortunately, straightforward
calculus can show that no simple balance procedure can be derived.

In this study, we propose to build reduced order models that rely on the dynamic mode decompo-
sition of datasets of the POD chronos. The evolution operator associated with this procedure enables
to express any new set of chronos in terms of the preceding ones. This change of point of view of the
DMD has some important consequences. The evolution operator is no longer acting on a restriction of
the Identity operator on the experimental space – the velocity field – but on others observables: the
chronos. With POD we get an orthogonal basis that ranks modes according to an energy criterion
whereas DMD enables identifying, among chronos, those that are relevant with respect to their spec-
tral contribution. Hence, a direct link to the kinetic energy spectra can be established. In the following,
the technique will be referred to as Chronos-Koopman Spectral (CKS) analysis.

In the same way as for DMD, the approach we propose in this work decomposes the flow dynamics
into modes that oscillate at a single frequency, however their energy levels and their relative contribution
to the total flow energy can be clearly identified enabling to construct suitable power spectra. All
the attractive properties in terms of instability analysis of DMD analysis are naturally kept by the
CKS decomposition. The spatial structure of the dominant monofrequential modes can still be easily
distinguished and extracted.

To minimize the residual vector and to approximate the larger number of eigenvalues, DMD tech-
nique requires that the number of snapshots to be of the same order than the dimension of snapshot
vector. The method we propose does not present this strong constraint. The technique enables to
approximate almost the same number of eigenvalues of the operator it considers and the residuals
generated by the use of this approach will always be restricted to lie in a unidimensional space. In
cases in which the number of snapshots is much lower than the spatial dimension of the snapshots
the CKS will allow us coping with a simpler and better posed problem than traditional DMD. Similar
conditions can be attained for both approaches only by enlarging the dataset. In general, when this
will be possible it will be however paid by a higher computational cost.
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As we will show with CKS technique, predicting the chronos values does not require any time-
integration but simple matrix multiplications. Moreover because eigenvalues lie in proximity of the unit
circle, the model have associated modes with very low growth (or decay) rates. Hence, the dynamics
does not blow up in general over time scales several times larger than the data set time range. This
decomposition provides in a natural way a reduced order model of the chronos dynamics over long
time range without any need of tuning of stabilizing parameters.

The remainder of the manuscript is organized as follows. In section 2 we briefly recall the principles
governing the Proper Orthogonal Decomposition and the Dynamic Mode Decomposition. Section 3
focuses on the Chronos- Koopman Spectral analysis, that will be applied, in section 4, to the model
reduction of a wake behind a cylinder. In particular, we discuss the physical meaning of the L2-
norm of dynamic modes with respect to the energy content of the data set. We show that it is more
appropriate to perform DMD on the POD time-coefficients when one aims at devising a reduced order
model combining both an energy criterion and spectral relevance.

The flow considered in section 4 corresponds to a three dimensional flow in which the vortex
shedding imposes a fundamental dominant frequency accompanied with frequencies associated with
instabilities of the shear layer. CKS analysis is done on an experimental dataset made of time-resolved
velocity fields. We will see that the basic features of the energy frequency spectrum of the wake flow, at
the Reynolds number under consideration, are effectively well recovered with the CKS analysis whereas
it is not the case when applying the standard procedure of DMD. Section 5 is dedicated to a summary
of our results and opens further discussions.

2 Modal Decomposition Methods

In this section a brief introduction is given about the Proper Orthogonal Decomposition and the
spectral method based on Koopman operator theory. Thorough descriptions of the latter decomposition
can be found in [6,22,23]. Readers interested on theoretical aspects of the Koopman operator may also
refer to [14,3].

2.1 Proper Orthogonal Decomposition

The POD-Galerkin method has been extensively described in many articles. The method foundations
are for instance thoroughly described in [19]. Let us review very briefly its main characteristics when
it is computed from a sequence of 2 components of velocity fields contained in a slice of the flow.
Extension to 3 components and multi-slice cases is immediate.

Considering Ω ∈ R2 a physical domain with boundary ∂Ω, we assume that we have at our disposal
the following time series of measured velocity flow field u(x, t) ∈ L2(Ω)

H = {u(x, t0);u(x, t1);u(x, t2) . . . ;u(x, tN )} = {u0(x);u1(x);u2(x); . . . ;uN (x)} (1)

where N + 1 is the total number of snapshots that are assumed to be regularly spaced in time. We
look for a decomposition of the flow on a finite set of a N + 1 orthonormal spatial basis functions

{Φi(x) : Ω ⊂ R2 → R2, i = 1, . . . , N + 1} (2)

with temporal coefficients

{ai(t) : R+ → R, i = 1, . . . , N + 1} (3)

such that

u(x, t) = 〈u(x)〉+

N+1∑
i=1

ai(t)Φi(x), (4)

where

〈u(x)〉 = limT→∞
1

T

∫
u(x, t)dt. (5)
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The POD basis is constructed with the objective of minimizing the projection error

ε2 =

〈∫
Ω

|u(x, t)− 〈u(x)〉 −
N+1∑
i=1

ai(t)Φi(x)|2dx

〉
, (6)

Let us note D = (dkj) the (N + 1)× (N + 1) symmetric and semi-definite positive two-time correlation
matrix defined as

dkj =
1

N + 1

∫
Ω

u′k(x) u′j(x)dx, (7)

where we denoted u′i(x) = ui(x)− 〈u(x)〉 .
It is well known that the solution of the optimization problem is provided by theN+1 eigenfunctions

a1(.), a2(.), . . . , aN+1(.) associated with the ς1 ≥ ς2 ≥ . . . ςN+1 singular values of D. This method,
known in the literature as the snapshot methods [26], is well suited to vector fields sequences defined
on a time range much lower than the velocity field spatial dimension.

The POD modes of the velocity can then be expressed as

Φi(x) =
1

(N + 1)

N∑
k=0

1

ςi
ai(tk)u′k(x) for i = 1, . . . , N+1. (8)

The Galerkin projection of the Navier-Stokes equations, considering the representation (4), onto the
subspace spanned by the reduced set of orthonormal POD modes {Φ1(x), . . . , ΦM (x)} with M ≤ N + 1
results in a system of coupled ordinary differential equations (ODE) describing the temporal evolution
of coefficients ai(t) associated with the M modes retained in the POD basis. In a compact form this
system reads

da

dt
= ȧ = F(a), (9)

where F represents a nonlinear operator that can be expressed as a polynomial in a = (a1 . . . aM )T .
The resulting reduced model generally matches only roughly the flow dynamics as contributions of the
discarded modes are removed from this description. Obviously, one seek to remove the modes with
the weakest contribution on the dynamics. As the only truncature criterion at hand is an energetic
criterion, usually a remotion of POD modes with low eigenvalues is done. However, these modes may
correspond to small scales flow events, and their effect on dynamics may be quite important if they
are related for instance to energy dissipation mechanisms. As a consequence the temporal integration
of the reduced system derived from Galerkin projection may reveal to be unstable and prevents in
practice any direct integration over a long time intervals.

2.2 Spectral mode decomposition based on Koopman operator

This second family of techniques relies on a spectral decomposition inspired on the Koopman operator
theory. This operator is the adjoint of the Frobenius-Perron operator, also called transfer operator,
which corresponds to the push-forward measure with respect to a non singular measurable transfor-
mation. The Koopman operator describes the evolution of an observer function under the action of the
same transformation. These unitary operators are intensively used to study the asymptotic behavior
of chaotic deterministic system from a statistical point of view [16,14].

As a matter of example, let us consider a 3D flow in a 3D domain discretized on a grid of ng points.
The flow dynamics determined by the Navier Stokes equation in the corresponding continuous domain
of interest can then be represented by a system of ordinary differential equations for each point of the
grid. It is then possible to associate to the flow, a dynamical system in which a given state at time t
is defined by the state variable X ∈ Rn such that

dX

dt
= h(X). (10)
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For the state space Rn is considered the usual inner product and its norm.
The evolution of the state variable at discrete equidistant points in time, can be then expressed as

the mapping,

Xk+1 = f(Xk) for k = 0, 1, 2, . . . , N. (11)

For instance, when considering data issued from numerical simulations the function f can be asso-
ciated with a numerical flow solver that enables to step forward the velocity vectors in the grid space.
As the flow is three dimensional it is natural to define the system state variable as the 3D velocity at
each point of the grid. The space dimension is n = 3ng, and the state vector is evaluated over N time
steps.

One can consider now an observable defined as a vector-valued function g(X), with g : Rn → Rp,
in which p < n. The essential idea of the Koopman analysis is that by monitoring long time series
of an incomplete observable, one can characterize the behavior of the fluid dynamical system. This
is based on Taken’s embedding theorem [8] that assures that when the state of a system is confined
to an attractor in the phase space, the topology of the attractor is preserved by the embedding. The
observables of the state of a fluid flow system can be of different types [6]. In the most usual cases time
series of two velocity components determined in a slice are considered. For instance, if the velocity
fields are determined by means of a PIV system, the observable is a vector of size p = 2ng2D formed
with the components of the velocity fields at the different points of the grid of size ng2D .

The Koopman operator (or composition operator) Kf defined with respect to a function f : Rn →
Rn is a linear operator that acts on scalar-valued functions defined on Rn. In this analysis, as the
function f is determined by equation (11), we can drop the subindex and define the Koopman operator
K in the following way. If g : Rn → R then K maps g into a new function Kg : Rn → R such that

Kg(X) = g(f(X)),

where X ∈ Rn. Formally, we consider K : L2(Rn)→ L2(Rn).
One can observe that the Koopman operator steps forward the observable in time as

Kg(Xk) = g(f(Xk)) = g(Xk+1). (12)

The dynamics described by equation (11) can be analyzed through the eigenvalues and eigenvectors of
K. Let λj ∈ C indicate the eigenvalues and ϕj : Rn → C the eigenfunctions of the Koopman operator,
we have then

Kϕj(X) = λjϕj(X). (13)

According to [3,16] as N →∞, K is an unitary operator and therefore the sequence of eigenfunctions
ϕj forms an orthonormal expansion basis [14]. The observables can be thus expanded as:

g(X) =

∞∑
j=1

bjϕj(X), (14)

where bj ∈ C.
Now, considering as observable of the dynamic system a vector-valued function g : Rn → Rp,

g(X) =

 g1(X)
g2(X)
. . .

gp(X)

 (15)

where each component gi is a function of Rn into R and assuming that gi(X) lies in the space spanned
by the basis defined by the eigenfunctions, we get the following decomposition:

g(X) =

 g1(X)
g2(X)
. . .

gp(X)

 =


∑

j bj1ϕj(X)∑
j bj2ϕj(X)
. . .∑

j bjpϕj(X)

 . (16)
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This can be written more directly as

g(X) =
∑
j

vjϕj(X), (17)

in which vj = (bj1bj2 . . . bjp)
T ∈ Cp and ϕj(X) ∈ C . The vj , is called the Koopman mode j associ-

ated with the observable g. In traditional DMD when observables are velocity fields on a slice, each
component of this vector, is in correspondence with a point of the 2D spatial grid support of the PIV
measurements. It can be determined as

vj =< g(X0), ϕj(X
0) >L2(Rn) . (18)

This vector, that depends on the initial condition considered, should in principle be determined only
once for the first sample as the remaining samples can be expressed entirely in terms of this initial
observable. This can be observed considering that

g(Xk) = Kkg(X0) = Kk(

∞∑
j=1

ϕj(X
0)vj) =

∞∑
j=1

λkjϕj(X
0)vj . (19)

Equation (19) indicates that the sequence of observables are decomposed into spatial structures
whose temporal behavior is given by the associated eigenvalue λj . For a given eigenvalue λj ∈ C, its
phase argument is associated with the frequency of the mode j whereas the modulus value can be
associated with the growth rate of the mode. The growth rate of systems orbiting on an attractor is
always zero and eigenvalues lie in the unit circle.
In addition, the Koopman eigenfunction ϕj enables to associate to each mode an amplitude deter-

mined by ‖ϕj(X0)vj‖. This norm constitutes a measure of the relative importance of the mode. As
a consequence, it is possible to construct spectral graphs in which discrete frequencies are associated
with this norm. Note that in general this kind of graph does not necessarily represent the frequencies
against the associated energy of the mode.

2.3 Numerical estimation of Eigenfunctions and Eigenvalues of Koopman operator

Koopman modes can be calculated in principle considering the integral that defines the inner product
(18). However, this integral is computationally intractable as any initial condition should be considered.
Following the work of Schmid [24], we next describe other alternatives to compute these modes.

2.3.1 Companion Matrix Method

We consider in the following that a sequence of snapshots of the observable g is available. Let us note
this sequence

G = {g(x, t0); g(x, t1); g(x, t2) . . . ; g(x, tN )} = {g0; g1; g2; . . . ; gN}.

These velocity fields obtained experimentally or from numerical simulations are assumed to be sampled
with a constant time step δt. Let us define a matrix gathering column by column all these snapshots:

GN0 = [g0g1g2 . . . gN ].

As we are assuming dynamical systems that are orbiting on an attractor, for a very large number
of snapshots N , it is expected that the space spanned by the vectors constituting G will not change
by adding new snapshots to the time series. Any new snapshot can hence be approximated as a linear
combination of the previous ones

gN+1 =

N∑
m=0

smg
m + r = GN0 s+ r, (20)
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with s = (s0; s1; ....; sN )T and where r is a residual vector belonging to the complement space spanned
by {g0; g1; g2; . . . ; gN}.

Assuming a linear mapping determined by a Koopman operator K linking gk to gk+1, and that
this mapping is approximately stationary over the sampling interval, then

{g0, g1, . . . , gN} = {g0,Kg0,K2g0, . . . ,KNg0}.

From (20) we can write:

KGN0 = GN+1
1 = GN0 S + r eTN+1, (21)

where eN+1 denotes the (N + 1)-unit vector in RN+1 and S is a companion matrix of the form:

S =


0 0 · · · 0 s0
1 0 · · · 0 s1
0 1 · · · 0 s2
...

...
. . .

...
...

0 0 · · · 1 sN

 (22)

It is immediate to observe that when the residual is null the matrix S is similar to matrix K. Its eigen-
values can be used to approximate a subset of the eigenvalues of the infinite dimensional Koopman
operator. The matrix S can be determined by minimizing the residual r, which is equivalent to opti-
mally express the N + 1-snapshot as a linear combination of {g0, g1, . . . , gN} in a least-square sense.

Introducing in recursion (21) a QR-decomposition for GN0 such that QR = [g0g1 . . . gN ] (where Q is

an orthonormal matrix) and multiplying by R−1, we get

KQ = QRSR−1 + r eTN+1 R
−1. (23)

Denoting H = RSR−1, a Hessenberg type matrix, for small residuals we obtain the approximation

KQ ≈ QH,

MatricesK andH are similar (QTKQ = H) and share the same eigenvalues (with different eigenvectors
in general). Moreover, the last column of the companion matrix can be directly calculated as
s = [s0 s1 s2....sN ]T = R−1QT gN+1.

2.3.2 Preprocessing with singular value decomposition

In some cases when working with noisy experimental data, the direct implementation of the algorithm
with the companion matrix leads to an ill-conditioned system.

A more robust implementation has been proposed by Schmid [24] using a singular value decompo-
sition of GN0

GN0 = UΣWT ,

where U and W are square orthonormal matrices Considering equation(21) and the given decomposi-
tion of GN0 we get

UTKU = UTGN+1
1 WΣ−1. (24)

Defining UTGN+1
1 WΣ−1 = S̃, we have immediately that the companion matrix S and matrix S̃ are

similar. Hence the eigenvalues of S̃ approximate those of operator K. The eigenvectors zi of matrix S̃
are related with Koopman modes through:

ϕi = Uzi.

Note that for 2D velocity fields defined on a spatial grid of size (NP ×NQ) the dimension of GN0 is
2(NP ·NQ)× (N +1) (as the snapshot vector dimension p = 2(NP ·NQ)). When GN0 is rank deficient,

an incomplete SVD leads to a reduction of the size of matrix S̃ by keeping only the highest eigenvalues.
Such a reduction not only lowers the computational load but serves also to robustify the eigenvectors
estimation through a thresholding of the smallest eigenvalues.
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3 Chronos-Koopman Spectral Approach

In this section, we describe a formalism that allows us combining the respective advantages of POD
and the Koopman spectral analysis. This technique defined as a two steps decomposition will provide
a very attractive inspection technique for physical analysis of flows undergoing quasi-periodic orbits
in the phase space. The combination of both decomposition techniques has been already suggested in
[14] where the possibility to apply a Proper Orthogonal Decomposition subsequently to a Koopman
spectral analysis was suggested. The technique proposed here is however different and relies on pro-
ceeding first to Proper Orthogonal Decomposition and then to apply a Koopman spectral analysis on
the POD temporal modes. Although this might appear to be just as inversion of two computational
stages, it leads to a completely different approach that leads for instance to a significant reduction of
the residual space dimension generated by the spectral decomposition
Let us remark that POD technique relies intrinsically on a SVD. As explained above, Schmid’s pre-
processing also is based on the use of SVD but this author introduces an operation that amounts to
a projection, onto a POD basis, of the linear operator used in the DMD. We propose a technique
that does not project the operator but the snapshots of the velocity fields onto the POD basis. The
projected operator of Schmid enables to step forward in time the snapshots of velocity field whereas
the operator we consider enables to step forward in time the chronos (temporal coefficients of POD
modes).

3.1 CK Modal analysis

In the same way as in the previous context, in order to analyse a 3D flow we assume that we have at
our disposal on a spatial grid of size (NP ×NQ) a large time series of N + 1 snapshots of the velocity
flow field

H = {u(x, t0) u(x, t1) u(x, t2) . . . u(x, tN )}.

Proceeding to a POD analysis of this time series, we specify as an observable of the system the vector
composed by the temporal coefficients of the POD modes:

Ak = [a1(tk) a2(tk) . . . aM (tk)]T for k = 0, 1, 2, . . . , N .

The size M of this vector is at most the total number of snapshots N + 1 if all the POD modes are
retained in the analysis. We can then construct the sequence of observables

G = {A0;A1;A2; . . . ;AN}.

Performing a spectral analysis of this observable and considering equation (19) we can write :

Ak = KkA0 =

∞∑
j=1

λkjϕj(A
0)Vj =

∞∑
j=1

ei(2πkΩj)ϕj(A
0)Vj . (25)

In practice the upper limit of summation is bounded by the total number of snapshots. Modes Vj are

vectors of size M such that each component corresponds to a POD mode. We identify these vectors as
the Chronos-Koopman (CK) modes.
Each one of these CK modes is associated with a single frequency Ωj , that can be obtained in the
same way as described in the traditional spectral decomposition of the Koopman operator. In practice
we rely on the technique based on the companion matrix without the SVD preprocessing step which
appears to be unnecessary in this case.

It is worthy to note that s, the last column of the companion matrix, can be calculated through a
least square technique as

s = [s0 s1 s2....sN ]T = (GN0
T
GN0 )−1GN0

T
gN+1. (26)
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The observable at time tk with a CK analysis Ak is determined as a projection of the velocity field at
this time onto POD spatial modes (topos), ΦTu(x, tk) = Ak

Introducing this last expression in eq. (26) (and recalling that ΦTΦ = I where I denotes the iden-
tity matrix) we can see straightforwardly that the last column of the companion matrix of traditional
DMD (taking as observable the velocity field) or CK approach (taking as observable the temporal coef-
ficients of POD) are both the same. Thus the eigenvalues computed with both approaches are identical.

Each of the CK modes Vj is associated with a spatial structure in the physical domain through the

POD spatial modes Φi(x). Defining the coefficient associated with the POD mode r as prj = Vj(r)ϕj(0),
the spatial representation reads:

Ψ j(x) =

M∑
r=1

Φr(x)prj . (27)

These spatial structures (or spatial modes), obtained as a summation of the spatial modes of the
POD weighted by the amplitudes of the CK modes are identical to the Koopman spatial modes vj that

would be obtained with a DMD analysis performed directly on the snapshots of the velocity field. With
this approach we can thus recover all the significant results obtained when performing a traditional
DMD analysis from snapshots of the velocity fields.

However, compared to the traditional DMD approach, the technique we propose presents several
advantages:

– In traditional DMD the evolution operator has a dimension that is bounded by the square of the
snapshot vector dimension (p). In the usual case, in which N , the number of snapshots, is lower
than the dimension of the snapshot vector, the number of eigenvalues that can be estimated is
only N −1. As the evolution operator has a maximum number of eigenvalues equal to the snapshot
vector size, an important amount of modes of the decomposition (p−N) will likely be missing . The
CKS approach we propose considers an evolution operator with a maximum dimension (N ×N).
The number of eigenvalues that is possible to approximate is N −1. The decomposition is expected
to be almost complete as only one mode may be missing .

– The implementation of spectral methods based on Koopman’s operator relies on the hypothesis
that a basis can be formed with N − 1 snapshots such that any new snapshots can be expressed in
terms of the preceding ones. When N − 1 is much lower than the snapshot vector size, the basis is
far to be complete, and the residual vector r will lie in a high dimensional space (p−N). In the CKS
approach a vector of observable of size N may be approximated with a basis formed by the N − 1
preceding vectors. If all these vectors are linearly independent then the basis is almost complete. In
this case, the subspace spanned by the basis is more appropriate and the residual lies only in a one
dimensional space. Obviously similar conditions can be attained for both approaches by enlarging
the dataset. This is however paid by an unnecessary higher computational cost that may become
prohibitive in cases where accurate flow descriptions requires the use of fine spatial-temporal grids.

– As further discussed in the following section, the amplitude of DMD modes have an easy physical
interpretation only in the ideal case when all eigenvalues are complex roots of 1. The mode ampli-
tude of our approach enables to construct a suitable power spectrum representation.

3.1.1 Energy Spectrum

Considering the traditional algorithm of DMD, for unitary eigenvalues |λj | = 1, it is easy to show that
the power spectral density is recovered by considering the L2-norm of the Koopman modes associated
with each frequency channel. When |λj | is either smaller or greater than one, equivalence between
power spectral density and Koopman mode norm does not hold anymore. This is due to the fact that
the modes are non orthogonal, and, that when |λj | < 1 (resp. |λj | > 1) their weight is decreasing (resp.
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increasing) along time. To recover the power spectral density in this case one natural idea would be to
weight the norm of the Koopman mode by a coefficient of the form

1

N

N∑
j=1

|λj |2,

that would write

1

T

∫ T

0

e2 ln |λj |tdt

in the continuous form, such as to take into account the mean weight of the mode over the observation
time range T = (N)δt. Still, this would not be equivalent to the power spectral density, as a straight-
forward calculus would show.

With the technique we propose each CK mode can be related to an energy content. Denoting

mr =

N∑
j=1

| prj |
2
, (28)

and

Z = [A0 A1 . . . AN−1] (29)

it is possible to express Z as a product of two matrices, Z = ΞT where

Ξ =


p11 p12 p13 · · · p1N
p21 p22 p23 · · · p2N
p31 p32 p33 · · · p3N
...

...
. . .

...
...

pM1 pM2 pN3 · · · pMN

 (30)

and

T =


1 λ1 λ21 · · · λN−11

1 λ2 λ22 · · · λN−12
...

...
. . .

...
...

1 λN λ2N · · · λ
N−1
N

 (31)

is a Vandermonde matrix.
Considering the product ZZT = ΞT (ΞT )T , and provided that all eigenvalues are complex N-th

roots of 1, then ZZT = NΞIΞT , where I denotes the identity matrix.
It is a consequence of this equation that the kinetic energy of any r-th POD mode will satisfy the
following identity 〈a2r〉 = mr.

This identity indicates that the energy of a given POD mode receives a contribution of the modes
associated with the different eigenvalues (frequency channels) determined by the square of the mode
amplitude prj . The energy associated with a j-th frequency channel when the eigenvalues map perfectly
in the unit circle can be expressed as

Ej =

M∑
r=1

|prj |2 (32)
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However, in general the restriction imposed to the mapping expressed above is not satisfied (for in-
stance due to the existence of evanescent modes) and the identity 〈a2r〉 = mr does not hold anymore.
In a more general case, it is possible to consider that the energy of a given r-th POD mode 〈a2r〉 is

distributed among the different frequency channels j with a proportionality factor equal to |pjr|2/mr.

The energy content of the CK mode can then be formalized as the sum

Ej =

M∑
r=1

[1/mr]|prj |2〈a2r〉, (33)

The summation of the energy content of all CK modes allows us recovering the total fluctuating
kinetic energy of the flow. Note that this expression reduces to equation (32) in the ideal case when
the restriction of the mapping is satisfied.
It is sometimes convenient to normalize the energy expression (33) as follows

Ẽj = [1/

N∑
j=0

Ej ]{
M∑
r=1

[1/mr]| prj |2〈a2r〉}. (34)

The approach proposed here enables thus to categorize the modes Vj with an energy criterion. This

gives us the possibility to identify modes that concentrate higher energy levels, and to determine the
respective contribution of each mode to the total fluctuating energy of the flow.

An inspection of CK modes enables to detect the coupling between dynamical structures of high
and low energy which are sharing a common frequency. In many cases the structures with higher
levels of energy exhibit larger spatial structures and finer scales can be associated with structures of
lower energy. It is expected that suitable analysis of these modes may provide essential elements for
the modeling of interacting structures of different size. Although, beyond of the scope of this article,
characteristic features enabling to propose sub-grid models could be for instance unveiled from such a
data analysis.

3.1.2 CK Spectral analysis and Discrete Fourier transform

As we are considering dynamical systems with attractors, Koopman modes may be calculated by har-
monic averages, which for finite-time datasets reduce to discrete Fourier transforms [6,14].

We can analyse the series {A0, A1, . . . , AN} and the DFT of this sequence, denoted as {B0, B1, . . . , BN},
and defined by

Bj = limN→∞
1

(N + 1)

N∑
k=0

Ake−i
2πk
N+1 j for j = 0, . . . , N.

As

Ak =

N∑
l=0

λkl vl

we get

Bj = limN→∞
1

(N + 1)

N∑
k=0

N∑
l=0

λkl vle
−i 2πk

N+1 j = limN→∞
1

(N + 1)

N∑
l=0

vl

N∑
k=0

λkl e
−i 2πk

N+1 j .
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provided |λl| = 1, and particularly considering λl = ei
2πnl
N+1 , we obtain

Bj = limN→∞

N∑
l=0

vlδ(nl − j) = vnl

The DFT coefficients in the expansion are regularly distributed along the frequency domain and
taking into account [16] the same regular spacing should be observed for the Koopman’s modes in
the energy spectrum. Thus, the number of Fourier and Koopman’s mode are the same and under
the hypothesis considered for a given frequency their amplitude (or energy spectrum) should be also
identical up to a constant.

In practice however the eigenvalues do not lie exactly on the unit circle. This can be related for
instance to small fluctuations in experimental conditions that lead to damping modes in the interior of
the unit circle. The numerical errors and also the approximations of the algorithms used to estimate
the eigenvalues and eigenvectors of Koopman operator may also introduce a discrepancy between the
estimates and the unit circle. As the cyclic character of Koopman operator indicates that eigenvalues
should be equispaced, errors in eigenvalues estimation may become evident through an irregular angular
spacing of the eigenvalues on the complex plane. Also, for finite datasets (N finite), the state of the
system starting at time 0 will not necesarilly agree with the sate corresponding at the instant of the
last snapshot N and also a repetition of the trajectory observed in the first sequence do noy necesarilly
will be reproduced by the following sequences of N snapshots. The implementation of a discrete Fourier
analysis over a sequence assumes implicitely such a periodicity. Diverse strategies can be proposed to
overcome this limitation but is important to signal here that this kind of requirement is not present
in a Koopman analysis. Thus in practice the correspondence between results issued from a Fourier
or Koopman decomposition has to be carefully analysed in each case. Particularly, special attention
should be paid when associating the values of mode amplitude of traditional Koopman’s analysis to
energy content of the mode.

3.1.3 Graphical Interpretation of Chronos-Koopman spectral decomposition

A clear interpretation of the procedure proposed and the links between POD and spectral modes can
be easily pictured by considering the following scheme. Let us construct a discrete 3D graph (see Fig-
ure 1) in the following way. In one axis we represent frequencies. As each CK mode j has a single
frequency wj we can include a slice containing the mode Vj weighted by ϕj(0) in each one of these

coordinates. Then we have as coordinate for the second axis of the graph the POD mode number and
for the third axis prj = Vj(r)ϕj(0). When making intersection of this graph with planes with a constant
POD mode number r, we get a spectrum showing the contribution of the temporal mode along the
frequency domain wj .

Fig. 1 Schematic representation of Chronos-Koopman Spectral Decomposition.
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It is of interest to recall that the spatial structures of traditional Koopman modes associated with
a given frequency wj can be obtained in this case considering the different topos and the vertical co-
ordinate of this graph prj as:

ψ
j
(x) =

M∑
r=1

φ
r
(x) prj . (35)

3.2 CK Reduced Order Dynamical Modeling

In several applications, for forecast or analysis purposes, it is primordial to devise dynamical models
that allow reconstructing accurately the velocity fields not only at the snapshot instants but also at
intermediate or future instants. For the particular case of dynamical system orbiting around attractors,
and using the CK decomposition we have:

Ak =

N∑
j=1

λkjϕj(A
0)Vj (36)

where k corresponds to the instant at which one wishes to get an interpolated or forecasted chronos
value. The value of k to be considered is determined by the instant at which model prediction is required
and time scale is determined by the time step between snapshots. Thus the dynamics of chronos
can be described as a summation along the different frequencies arising from the CK decomposition.
Note that this gives an equivalent representation as the one would expect integrating equation (9).
However it is important to outline that neither the precise form of the POD-Galerkin system, nor
any specific assumption on boundary conditions on pressure has to be settled with this approach. As
spatial POD modes are available, the reconstruction of velocity fields or eventually derived quantities
such as vorticity for any time is direct.

Hence to describe the dynamics of the flow, one can propose a CK ROM that is formed as a su-
perposition of all the CK modes. A further reduction of the system can obtained keeping only a set of
selected CK modes chosen based on an energetic threshold criteria.
Obviously predictions at intermediate states are likely to be accurate only if sampling enables to con-
struct a model that includes all modes with significant energy (that assure that no aliasing problem
could appear) and predictions at times larger than the learning interval will be reliable provided exper-
imental conditions are kept identical. It should be mentioned that this modeling requires eigenvalues
that fit almost perfectly the unit circle. The system otherwise diverges or vanishes. On long time peri-
ods, when discrepancies to the unit circle occur, corrections of outliers are possible. However a general
criterion is difficult to devise.

4 Description of the experimental database (cylinder wake)

In order to assess the performances of the method proposed, we have constituted a benchmark com-
posed of experimental PIV data. The experimental data concerns a wake of a circular cylinder at
Reynolds 3 900. The flow considered is three dimensional with two fundamental frequencies. fV S is
associated with Karman vortex shedding (VS) and the second one fKH corresponds to the instability
of the separated shear layer, so called Kelvin-Helmoltz instability. Results are shown using time series
of velocity field obtained in one plane perpendicular to the cylinder axis.
The wake behind a circular cylinder has been generated in the IRSTEA(Cemagref) wind tunnel. Ex-
perimental conditions are coincident with the same as those described in [9].

The free-stream velocity has been adjusted at 1.82m/s so that the Reynolds number be 3 900
(Reynolds number based on the free stream velocity Ue, the kinematic viscosity ν and the diameter of
the circular cylinder D = 32mm). For this Reynolds number, the flow is relatively well documented in
the literature [25,28,30] and the Strouhal number St is 0.208 (thus in our case fV S , vortex shedding
frequency of the von Karman street, is about 11.8Hz).
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Time-resolved PIV experiments giving two in-plane velocity components in a slice have been carried
out with Nd-YAG laser and a CMOS camera with 50 − 3 000Hz acquisition frequency range for
1 024× 1 024 px image size.

The measurement area was located just behind the circular cylinder, in the plane lying at mid
cylinder axis. The camera was located perpendicularly to the laser sheet at a distance of 60 cm and
the resulting field of view was about 3D × 3D. Sequences of 3 072 successive image pairs (equivalent
to the 8Go buffer memory of the fast camera) has been obtained with a 500Hz acquisition rate (≈ 40
snapshots by vortex shedding). The time interval between two pulses was 250µs.

The PIV records have been analyzed through a cross-correlation technique implemented with a Fast-
Fourier-Transform algorithm in a multi-grid process with 5 iterations and sub-pixel shift(1×128×128,
1 × 64 × 64 and 3 × 32 × 32 pixels) and 50% overlapping. The cross-correlation peaks were fit with
a Gaussian function on 3 pixels. Erroneous velocity vectors have been identified by a median filter
and replaced by their local mean value. To give an idea of the corresponding experimental accuracy,
the particle displacement range is about −1 to +5 pixels (with an error less than 0.2 pixel on the
instantaneous displacement) and less than 0.1% of the velocity vectors are erroneous.

Figure 2 illustrates a snapshot of the span wise vorticity ωz (dimensionless with Ue and ν). Spatial
resolution for (32 × 32 pixels final window size and 50% overlapping) act as a low-pass filter but the
noise level is emphasized by the derivative scheme.

Fig. 2 Vorticity field of a snapshots of a PIV sequence.(Case I)

The spanwise vorticity ωz highlights the two shear layers on both sides of the cylinder. In this
image whereas one of the two shear layers is almost straight up to x/D = 2, the second one rolls up
to form a primary vortex. Small vortices resulting from the instability of this shear layers accumulate
in this primary large scale structure. This scenario is observed alternatively in the two shear layers
and at different stages of their evolution in the instantaneous fields. A comparison of such kind of
experimental data with numerical simulations results has been already published [21]. The three-
dimensional instantaneous flow fields obtained by numerical simulations, which are not illustrated
here, show clearly the fully three-dimensional character of the dynamics. Representing a slice of these
results it can be observed a more complex pattern of vorticity with numerous vortex filaments that
cannot be observed in the experiments because of the spatial resolution here adopted.

A time-resolved sequence of 3 072 successive snapshots of velocity fields is directly used as data.
The sampling enables to obtain approximatively 80 snapshots by vortex shedding period. Results
obtained by Dong et al [25] show that the signature of vortex shedding remains a long time in the
wake whereas the influence of high frequency shear layer vortices is confined to the very near wake
of the cylinder. Thus the characteristic peak of the shear layer instabilities in flow spectra vanishes
quite soon downstream. To undertake a spectral analysis that brings to surface the modes associated
with the shear layer instabilities it is convenient to analyse a reduced window of the field of view. In
this work we selected the upper left quarter of the field referred as case II to distinguish from case I
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Table 1 Characteristics of the available velocity fields, N :number of snapshots, nc:number of cycles of vortex
shedding, nx, ny number of PIV grid points in both directions.

N T [nc] Lx × Ly nx × ny

Case I (VS) 3 072 72 3D × 3D 64 × 64
Case II (KH) 2 048 72 1.5D × 1.5D 32 × 32

that involves the whole picture. Table 1 summarizes the main characteristics of the velocity fields used
directly from the PIV database.

5 CK Analysis of the cylinder wake data

A Proper Orthogonal Decomposition was performed with the snapshot method [26] using the sequences
of the PIV measurements. The analysis has been carried out subtracting from the data the mean (time-
average of the sequence) velocity field of the flow. The norm of the mean velocity field is shown in
Figure 3. It is comparable to those observed by other researchers (see for instance [25]) for the same
type of flows.

Fig. 3 Velocity norm of the mean flow.

Figure 4 presents the distribution of the cumulative fluctuating kinetic energy with respect to the
number of modes. The first two modes are the principal modes of the flow. Modes 1 and 2 represent
62% of the total fluctuating kinetic energy, whereas the first 32 modes concentrate 84%. An important
amount of energy is thus concentrated in the first two modes and the remaining energy is more scattered
distributed. This can be explained by the relatively ”high” Reynolds number of the considered flow on
the other modes.

On Figure 5a) and 5b) we display the spatial modes associated with the first two modes. In these
figures we represent as a color map the velocity norm. The graph enables to show that these modes
exhibit symmetric and regular structures of relatively large size.

The first and second modes correspond to the structure of the von Karman street vortices and
to their advection downstream. This can be observed through the Power spectrum of the temporal
coefficients of mode 1 and 2 obtained by DFT. These spectra are shown in Figure 6 and illustrate that
these modes exhibit peaks close to the natural shedding frequency (∼ 11.5Hz).

Also we performed a traditional DMD analysis (Schmid’s method) for the time series of the velocity
fields. Observables considered in this analysis are the components of the velocity vector in the different
points of the PIV grid. To allow comparison with POD Koopman analysis of next section, we remove
from the snapshots data the mean velocity flow of Figure 3. The spectral decomposition is thus done
just considering the fluctuating part of the field. Results of such analysis for case I and case II are
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Fig. 4 Cumulative fluctuating energy distribution with respect to the number of POD modes. Values are
normalized with the value of the total fluctuating energy.

Fig. 5 Spatial modes of POD (Velocity norm)- a)Mode 1, b)Mode 2.

Fig. 6 Frequency spectrum of temporal coefficients of Mode 1 and 2 of POD obtained by Fourier analysis
(Case I).
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shown in terms of the map of eigenvalues (Figure 7a) and 7b)) and spectra (Figure 9 and 10). The
vertical coordinate of the spectra represents the norm ‖ vj ‖.

Fig. 7 Map of eigenvalues of DMD modes. a)Case I, b)Case II.

As we can observe, for the case I the eigenvalues align remarkably well on the circumference of the
unit circle. A very reduced dispersion occurs and the points that are in the exterior of the circle lie
at a distance from the center lower than 1.0017. For case II few outliers inside or outside of the unit
circle can be observed.

Spectra for case I show a sharp peak corresponding to the vortex shedding frequency. Other peaks
related to second and third harmonic of this frequency are also visible. In the spectra of case II, the
peak associated with vortex shedding is much less important. In this graph and contrary to Dong
et al work, we do not identify a broadband spectrum with a peak close to 7.3× fV S that could be
associated with vortex formation in the shear layer. Besides, data do not fit very well with the -5/3
slope that should be observed in the inertial range. Next we present some results obtained using the
CKS procedure we have detailed previously.

5.1 Chronos-Koopman spectral analysis of a wake flow

We recall that for the CK analysis the observables are defined as the temporal coefficients of the POD
modes. As discussed previously eigenvalues of CK approach and those of DMD should agree, so the
mapping of CK eigenvalues correspond to those of Figure 7. On figure 8 we also show for case I and
for the first two temporal coefficients, the frequency spectrum of mode amplitudes of a CK analysis

(respectively |p1j |
2

and |p2j |
2
) and the spectrum of mode amplitudes of a DFT analysis. As we can see

in this case we study, similar results are obtained with both approaches.

5.1.1 Energy Spectra of Chronos-Koopman modes

We show in Figure 11a) and b) the normalized energy spectrum of Chronos-Koopman modes for the
case I and II respectively. The graph is constructed by representing, for the different frequencies of
each Chronos-Koopman mode, the associated fluctuating kinetic modal energy as proposed in equation
(34). Frequencies are determined considering the argument of the different eigenvalues. The horizontal
and vertical scale for the graph represented in Figure 11 are logarithmic. Because the eigenvalues
are organized in conjugated pairs, the spectrum is symmetric with respect to vertical axis at null
frequency. In these graphs only the positive frequencies side is shown and contribution of modes with
negative frequencies is incorporated in the corresponding positive frequency mode. Conjugate pairs of
eigenvalues have associated conjugate pairs of eigenvectors. Then the modal energy content for each
positive frequency is thus doubled because of the contribution of the negative counterpart. Continuous
line with a slope equal to -5/3 are represented to identify the inertial range of the spectrum.

For frequencies close to the vortex shedding frequency, we can observe in Figure 11a) a group of
modes that concentrate the higher peaks of energy. The maximum of this group occurs for a frequency
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Fig. 8 Comparison of modes amplitudes of DFT and CK analysis.

of 11.39 Hz. Smaller peaks exist in proximity of this peak but this takes place in a narrow band. This
first group of peaks concentrate 61.5 percent of the total fluctuating energy. This value is quite similar
to the energy contained in the first two modes of POD whose predominant frequencies determined
by DFT are close to 11.6Hz. Pronounced group of energy peaks are also found at frequencies close to
first harmonic and second harmonic of the vortex shedding frequency. The graph of Figure 11b is less
scattered at the higher frequencies. These graphs show the peak associated with vortex shedding but
also helps in clearly identifying the inertial subrange. This range has an extension of almost one decade
in agreement with works of other researchers [21,25]. The analysis performed with a reduced window
reveal the relative broadband spectrum corresponding to the shear layer instabilities. This occurs at
frequencies close to these documented in the literature for this flow (fKH = 7.33 × fV S= 83.5Hz)
[25]. The broadband nature of shear layer vortices has been attributed in different works [2,25] to
temporal variations of velocity scale owing to Karman vortex formation and also to the oscillations of
the separation point. A comparison of this graph with the one of Figure 9b emphasizes the interest of
representing energy frequency spectra (POD Koopman spectral approach) instead of mode amplitude
frequency spectra (DMD approach).

5.1.2 Chronos-Koopman modes at the frequency of instabilities fV S and fKH

We represent on Figure 12 the CK modes that correspond to the frequencies of the vortex shedding
and on Figure 13 those related to shear layer instability. This representation of the modes allows to
visualize how are coupled coarser structures associated with POD modes at low frequencies and finer
structures associated with POD modes at higher frequencies. As can be observed the number of POD
modes coupled by VS are mainly those that have associated larger energies (coarser scales). For the
component number (or POD mode) whose number exceeds 380 the coupling is very reduced. For these
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Fig. 9 Frequency spectrum obtained by DMD using as observables the velocity field components: Case I
a)Using Companion matrix algorithm, b)Using the SVD preprocessing [22].

components the values of prj are lower than 1 per cent of the maximum value observed for component
1 and 2. It can also be seen that in this CK mode a pairing of component appears, this means for
instance that amplitudes for component 1 and 2 are equal as it happens for the successive pairs.

Shear layer instability modes exhibit larger number of interacting POD modes involving more finer
structures. The coupling can be perceived for modes number much greater than 1000. This graph
illustrates the difficulties that have to face traditional POD-ROM formulated with a few number of
modes to suitably recover the flow dynamics .

5.1.3 Spatial Modes with associated frequency fV S and fKH

As already signaled, it is possible to recover the spatial configuration of velocity fields associated with
the different CK modes. It is worth mentioning that these modes coincide with the spatial mode a
traditional DMD analysis would have given. Due to the three dimensional character of the flow, we
cannot directly associate the spatial structures to global modes of instabilities. Being the data obtained
within a slice of the flow, they just represent the spatial structure of the observable associated with
each CK mode. Figure 14 and Figure 15 show the spatial modes for the case of the modes with peaks
in frequencies of fV S and fKH respectively.

We can observe that the modes lying in the narrow band frequency associated with the Karman
vortex shedding exhibit a relative large and organized structure. This agrees with the results of Ma
et al [28] who observed that most of the contribution to the fluctuating energy comes from the
largest organized flow structures. In particular, the mode associated with the peak of the spectrum,
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Fig. 10 Frequency spectrum obtained by DMD using as observables the velocity field components:Case
II.a)Using Companion matrix algorithm, b)Using the SVD preprocessing [22] .

represented on Figure 14, shows a great similarity with the first spatial POD mode of Figure(5). This
can be associated with the relative monochromatic character of the most energetic modes of POD
as pictured the results of Figure 6. Modes corresponding to the broadband spectrum of shear layer
instabilities are less organized and exhibit smaller structures. Typical vortex of the shear layer are of
the order of D/4.

5.2 CK Model Reduction

As outlined previously, our approach enables to obtain values of the chronos at the observation instants
and also at intermediate or future instants.

The chronos values at any instant k are given by

Ak =

N∑
j=1

λkjϕj(A
0)V j .

Note that no model identification nor time integration is required to determine the chronos. Moreover,
it is possible to reduce the number of terms involved in the summation by proposing a truncation of
the CK modes based on an energy criterion. This truncation can be operated thresholding the energy
spectrum to properly separate from the analysis the high frequency modes suspected to be related to
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Fig. 11 Normalized Energy spectra of CK modes. a)Case I, b) Case II.

Fig. 12 Real Part of CK modes with associated frequency fV S = 11.39Hz.
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Fig. 13 Real Part of PK modes with associated frequency fKH = 82.99Hz.

Fig. 14 Spatial structure associated with CK modes at fV S = 11.39Hz. Isocontours of the norm of velocity
field.

Fig. 15 Spatial structure associated with CK modes at fKH = 82.99Hz. Isocontours of the norm of velocity
field.

noise.

5.2.1 Stability of the model

We can observe in Figure 16 and Figure 17 the time evolution of the POD modes and the values
predicted using the reduced order model described by equation (36). We consider in figure 16 a



24 A. Cammilleri et al.

system that includes all the CK modes (3070 CK modes), each one of these modes oscillating with
its own frequency. On figure 17 we consider a truncated system composed by the modes having a
normalized energy greater than 0.0001 (1230 CK modes were kept). On Figures 16a) and Figure 17a)
we represent the predictions of the model at different times considering the whole data set. Both
figures show a remarkable agreement between observations and values issued from the model. This
agreement is also observed for modes of higher order of the POD. Note that the represented interval
is very long (about 7 seconds) and that the period for which snapshots are available are more than
60 vortex shedding cycles (about 6 seconds). Problems of system stabilization that usually occur with
POD-Galerkin methods are not encountered with our approach. The system is stable and does not
diverge in the interval of observations without any tunning even in the truncated system.

At times much larger than those corresponding to observations, the system may exhibit a slight
tendency to diverge. This effect is associated with an influence of the eigenvalues that are slightly
larger than unit. However stability at very long times can be recovered by forcing these eigenvalues to
lie on the unit circle.

Once we determine the time evolution of the temporal POD coefficients it becomes easy to recon-
struct at any time the dynamics of velocity field or any derived quantity like for instance vorticity.
Reconstruction is achieved for any instant superposing the topos weighted by the corresponding values
of the chronos. As an example we show an image of instantaneous vorticity (Figure 18a) for the system
with 3070 CK modes and for the truncated system with 1230 CK modes (Figure 18b) that can be
compared to original data of Figure 2. The reconstruction is quite remarkable specially considering
that the comparison is done with a derived quantity and that reconstruction involves the instanta-
neous values of a very large number of components of the observables. To illustrate the quality of
reconstructions along the time, a film is also available with this document (Online Resource 1). This
animation shows original vorticity issued from observations (upper frame) and the vorticity predicted
using the full model (bottom left frame) and truncated model (bottom right frame). For model predic-
tions regularly spaced intermediate reconstructions, at a number of three between observation delays,
are included. As expected from figure 16 and figure 17 very good predictions of the vorticity in the
flow is attained by the model and the reconstructions are very satisfactory at any instant in both cases.

5.2.2 Model prediction at intermediate states of the learning period

To check the adequacy of the model to predict intermediate states of the learning period we performed
a second CK analysis, with a half and a third of snapshots of the sequence, thus artificially reducing
the sampling rate. It is then possible to confront the predictions against the measured values. The
results can be observed on figure 16b) and 17b). The agreement is remarkable with no significant
differences even for the truncated system.

5.2.3 Short term tracking

Reduced order models are tools ideally suited for different applications like gaining insight into temporal
dynamics and the motion of coherent structures, for understanding the energy exchange mechanisms
between small and large scales and for isolating the physical mechanisms involved in transition.

The study of short time tracking of a model is of interest when it is desired to control the dynamics
of coherent structures with actuators. For systems in which there may be a significant time lag between
identification of the state of the system and the control action it becomes necessary to predict the state
of the system at the future time when the control action will be effected. The model then must be
capable of short term predictions.

Being the flow considered turbulent and with noisy initial conditions it is expected that there will
always exist a rate of separation of trajectories in the phase space between the real dynamical system
and predictions of the reduced model. It is of course futile for any system with a dynamic determined
by a strange attractor, to try to track the state of coherent structures of the full fluid flow in the
long term. This dynamical feature imposes to regularly recalibrate the initial state, before continuing
prediction.
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Fig. 16 Time evolution of temporal modes of POD and predictions by Chronos-Koopman spectral analysis
(3070 CK modes).a) for long time period, b) Time zoom, filled markers are observations, hollow markers are
predictions by the model

For the short term and for a given realisation of the fluid velocity field taken as initial condition, it
is expected to obtain predictions of a low dimensional model that enable the tracking during a lapse
of time.

The error represented by the difference between real and modeled flows grows with time and it is
of interest to consider an average tracking error under a certain norm. In short time tracking at times
t larger than the learning period, the error can be evaluated by the following phase space norm.

ζ(u0, tn) =
‖A(tn)− Pu(tn)‖
‖Pu(tn)‖

where A(tn) is associated with the predictions of the model and P accounts for the projection of
instantaneous velocity field u(tn) onto the POD modes calculated in the learning period. This error
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Fig. 17 Time evolution of temporal modes of POD and predictions by Chronos-Koopman spectral analysis
with a truncated model (1230 CK modes).a) for long time period, b) Time zoom, filled markers are observations,
hollow markers are predictions by the model

can be bounded in general by the following expression [19]

ζ(u0, tn) < (K/L)exp(L(tn − t0))

where K and L are constants.
The error depends on the considered initial conditions u0. It is convenient to undertake an average

over all initial conditions likely to occur. We calculated the error for a set of initial conditions that lie
in a vortex shedding period and averaged them. Taking as initial conditions all those corresponding to
a vortex shedding cycle starting at time=5 s and fitting the error with a least square technique gave
us the following averaged values K=8.02 s−1 and L=11.3 s−1. Other tests undertaken with initial
conditions at larger times or with the truncated model gave similar results.
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Fig. 18 Vorticity field reconstruction for the same snapshot of Figure 2. a)with 3072 CK modes b) with 1230
CK modes

These results indicate that differences may become significant in our case only when the elapsed
time exceeds about half a cycle. For recalibration purposes, this value can be taken as a good indicator
of the upper limit of time in which it is expected to have an accurate tracking. Note however, as can be
observed in Figures 19, that the short term model expressed by (36) could still be capable to reproduce
relatively well the dynamics of the most energetic structures of the flow even for times larger than half
a cycle.

Fig. 19 Time evolution of temporal modes of POD and predictions by Chronos-Koopman spectral analysis
with a learning period of 5 s (2500 CK modes).a) for long time period, b) Time zoom; filled markers are
observations, continuous lines are predictions by the model

6 Conclusions

In this work we analyse the possibility to obtain stable reduced order modeling of flows using time
data series of velocity fields. For this purpose we propose an algorithm that combines Proper Or-
thogonal Decomposition with spectral methods applied on the POD time-coefficients. On one hand,
this algorithm allows to keep one of the main advantages of the POD: the energy computation of the
modes. On the other hand, it overcomes the lack of bijective relationship between single frequencies
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and POD modes. Thus in order to decide which modes are relevant to describe the dynamics of the
flow, a selection can be proposed based on the energy spectra. An inspection of the associated spatial
modes helps to identify the flow features that can be associated with the frequency of interest.

Compared to traditional DMD in which the considered observables are snapshots of the velocity
fields, our technique is particular of interest when the number of snapshots is much lower than the
dimension of the snapshot vector or when eigenvalues do not lie into the unit circle in the complex
plane.

We have illustrated our approach considering time resolved PIV data of a cylinder wake at Re=3900.
Looking at the kinetic energy spectrum, the peaks of which are well separated, it is easy to clearly
observe the inertial subrange that extends over about a decade. The two predominant non station-
ary features of the flow, corresponding respectively to the vortex shedding and the shear instability
frequencies can be identified. A classical DMD analysis undertaken directly over the velocity field com-
ponents, did not enable to recognize the inertial subrange and frequencies of modes associated with
shear layer instabilities.

Assuming that the emergence of a same given frequency in some POD modes expresses their
effective coupling, we find which of the POD modes are coupled to the most distinctive instabilities of
the flow. Vortex shedding instability involved a more reduced number of POD modes than shear layer
instability mode.

A suitable model reduction could be obtained with a truncated system that excluded about 2/3
of the total number of CK modes. No tunning was required to obtain this model stabilization. In the
case studied, a precise tracking of the most energetic structures of the flow was possible when finished
the learning period in a time horizon of about half a cycle.

Reconstruction of magnitudes derived from the velocity field, as vorticity, were also satisfactorily
reproduced at intermediate states for which it was available the data of the system.

In conclusion, we think that this kind of analysis opens the possibility to post-process and analyze
experimental and numerical data even in complex problems. The extension of the model reduction
here proposed to flow control problems is matter of future studies.
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