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Abstract

Image sequence analysis in video-microscopy has now gaineddortance since molec-
ular biology is presently having a profound impact on the way research is being
conducted in medicine. However, image processing technigs that are currently
used for modeling intracellular dynamics, are still relatively crude and yield impre-
cise results. Indeed, complex interactions between a largeumber of small moving
particles in a complex scene cannot be easily modeled, liniitg the performance of
object detection and tracking algorithms. This motivates our present research ef-
fort which is to develop a general estimation/simulation framework able to produce
image sequences showing small moving spots in interactiorwith variable veloci-
ties, and corresponding to intracellular dynamics and traxcking in biology. It is
now well established that spot/object trajectories can play a role in the analysis
of living cell dynamics and simulating realistic image segences is then of major
importance. We demonstrate the potential of the proposed snulation/estimation
framework in experiments, and show that this approach can bealso used to evaluate
the performance of object detection/tracking algorithms in video-microscopy and
°uorescence imagery.
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1 Introduction

1.1 Context in biology

The development ofsystems biologys characterized by the settlement of new
techniques and technologies producing a vast amount of dathd®erent types
or origins. Only automatic approaches for analysis and interptation of com-
plex and massive data will allow researchers to face this new dkage. This
is already well established for a number of biological elds su@s DNA se-
guence analysis, expression data analysis, DNA micro-arrays arsay Also, in
dynamical imaging of biological samples substantial amount @fork is neces-
sary to overcome conceptual and technological obstacles. Thmotivates our
present research e®ort which is to develop novel approaches base recent
methods in computer vision and signal processing, able to anadymmformation
from 4D data related to intracellular dynamics and membranéransport.

In °uorescence video-microscopy, methods that estimate trajecies of small
objects of interest (chromosomes, vesicles, ...) may encountetallties if the
number of objects is large and the signal-to-noise ratio is lowloreover, the
tracked objects are not always visible in the sequence when ¢agg molecules
separate suddenly from the target objects. Obviously, the coneity of dy-
namical processes involving many objects or groups of objeatsinteraction
cannot be easily modeled. The corpus of data to be considered #docompar-
ative analysis in a single experiment formed by multiple imagseries, is also
massive. Nevertheless, it is now clear that the localization and ajmo-temporal
conformation of a large number of molecular constructions thin the cell, their
dynamical response to diverse chemical, physical or bio-mol&uperturba-
tions, are key elements for understanding the essential funatial mechanisms
in life sciences. Motion information and trajectories have tde extracted in
order to analyze the dynamical response of the cell to di®erergnurbations
and experimental conditions.

In this paper, we propose a simulation/estimation framework db to model
complex data corresponding to interactions between movingagicles with
variable velocities. Parsimonious models representing “uoresce microscopy
image sequences will be de ned to summarize complex data intooavldimen-
sional set of parameters. These models will be exploited to geaier arti cial
image sequences that mimic dynamics observed in real image ssges. In our
study, the acquisition rate of a real image sequence is typicalbne stack per
second at most. The volume/stack being is composed of 10 slices bi25 512
pixels. This constitutes standard settings in °uorescence wide{dmicroscopy.
The speed of the vesicles ranges from 1 to 10 pixels and the numbfeobjects
can be large (about a few hundreds).



Traditionally, tracking algorithms compute object trajedories that have to
be analyzed. Unlike previous methods (Smal et al., 2007; Gewreio et al.,
2006), we need to simultaneously estimate the tratc component.(g moving
objects) and the cytosolic component, both involved in membre transport.
The main dixculty is that these two adding components are perttbed by noise
and photo-bleaching. Our goal is then to robustly estimate ehcfactor and
component for analysis. We introduce the simulation frameworto evaluate
the performance of estimation methods we propose.

1.2 Needs for simulation tools

In many application "elds such as medical imaging or astronomgimulations
are required for validating physical models and understandinrecorded data.
In this section, we explain the rationale for simulation methds in video-
microscopy.

First, realistic simulations of dynamical processes usually give qualitative
and controlled representation of the observed spatio-tempadtaiological events.
Simulation can be then considered as a computational tool thaan help to un-
derstand some mechanisms of internal components within the lc@8y interact-
ing with the control parameters, an expert can arti cially simdate processes
close to the reality provided the dynamical models are knownthis philos-
ophy has been successfully exploited to understand dynamics oicrotubule
networks (Gibbons et al., 2001; Ngdglec, 2001). By miniomg the di®erence
between a set of descriptors computed from a real image sequenoe the
same set of descriptors computed from a simulated sequence, theapaeters
of the simulation method can be tuned to obtain an arti cial seqgance that
reveals apparently the same dynamical characteristics thameé observed se-
guence. This set of estimated control parameters can then bensiered a
parsimonious representation of the underlying process.

Moreover, dynamical information extraction usually relie®n tasks such as ob-
ject detection, motion estimation or object tracking. The mgt commonly used
tracking concept is the so-called \connexionist" approach (Aserson et al.,
1992; Shalzarini and Koumoutsakos, 2005; Bonneau et al., 20Bacine et al.,
2006) which consists in detecting particles independently ieach frame in a
“rst step, and then linking the detected objects over time. The @lated data
associationtask is the most critical step in this approach, especially if the
number of objects is very high and if the trajectories interet. Sophisticated
particle Ttering techniques (Smal et al., 2007; Genovesio al., 2006; Li et al.,
2007) or graph-theory based methods (Thomann et al., 2003)Jebeen then
developed to improve temporal matching. These tasks cannot lbene manu-
ally, and they must be fast, reliable and reproducible. Furth@nore, comparing



object tracking results to ground truth is the more straightfeward method to
assess the performance of the applied method. Accordingly, siaibn of a reli-
able ground truth is an important and challenging task espedis in biomedical
imaging. Let us point out that benchmarking data sets are fomistance widely
used to compare methods in image restoration (Portilla et al2003) and op-
tical °ow estimation (Barron et al., 1994). In °uorescence videmnicroscopy,
the proposed simulation methods used to build benchmarking datsets are
limited yet since they are not able to represent complex inteciions between
objects as observed in real image sequences. Nevertheless, in (idadjetriou
et al., 2006), the authors proposed to estimate the dynamics ofiter tips of
microtubules ; the method is validated on arti cial data thatmimic real image
sequences. As for vesicle tracking within living cellsandom walkscombined
with parametric models are commonly used for validation (Gevesio et al.,
2006), but they cannot account for the complex movements oéal moving
objects in video-microscopy sequences.

1.3 Simulation framework and properties

Let us brie°y discuss the expected properties of a tool to perior simulation
of image sequences:

(1) Two modeling approaches can be proposed for simulatiodata-driven
modelingand physically-based modelingrhe physics-based approach re-
lies on the physical properties of the scene and the optical chateristics
of the imaging system for image modeling. The main advantage tisat
the model parameters are motivated by physics. Hence, they arasg to
interpret because they directly correspond to the real worldConversely,
the complexity of scenes and models usually limits such an appith and
the inverse problemcannot be easily solved. Thalata-driven modeling
aims at describing image sequences through statistical modeézained
from real images (Soatto et al., 2001). This approach can gnmimic
dynamical processes but is not able to describe the physical pespes
of real processesData-driven and physically-basedapproaches can be
also combined to model the main components of the image sequena
video-microscopy, these components are essentially the movioigjects,
the xed or slowly-varying background and noise.

(2) A simulation method must also becontrollable (Wang and Zhu, 2003).
This means that the representation must be parsimonious, which useful
for interpretation by an expert. In most cases, the parametersarelated
to the physical properties of the system but also to the propertseof the
object image like scale or velocity. By using such a representati, the
simulation method becomes more interactive and allows the gert to
exploit a priori knowledge or to plan a set of experiments by editing the



simulation. For example, an expert can indicate the locati®of source
and destination points of moving objects, and by varying the ptions of

these extremity points, she/he can observe the evolution of thensulated

intracellular tratcking. Finally, the expert feedback can ke used to set
up a realistic simulation.

Our aim is to ful'll these requirements.

1.4 Our approach

In this paper, we propose a powerful method for simulating corgx video-
microscopy image sequences. We design a realistic image sequeradehmg
framework able to mimic the dynamical and photometric contas of video-
microscopy image sequences showing traxcking. Unlike the bioigal ap-
proach which aims at describing the underlying physical phenwena (Gib-
bons et al., 2001; Ngd®lec, 2001), the proposed approachril based on the
analysis of original image sequences. While being quite gergetiae proposed
method has been designed for analyzing the role of °uorescetagged pro-
teins moving around the Golgi apparatus and participatingn the intracellular
tratcking. These proteins can be linked to vesicles. The vesiclase propelled
by motor proteins moving along polarized \cables" called mrotubules, that
form a dense network. This mechanism explains the observed higélocities
which could not be accounted by basic di®usions. In order to modbke con-
tent of these sequences, it is decomposed in two components. The oste
is the almost static background of the scene while the second orentains
the objects of interest, that is the tagged vesicles moving viathigh velocities.
This representation yields a compact description of the dynaical processes
corresponding to small moving objects within the cell.

The remainder of this paper is organized as follows. In Seati@, a dynamical
background model is proposed and a method is de ned to estimateet model
parameters. In Section 3, a photometric and network-based dgmical model
is introduced to represent moving Spots in °uorescence microsgopage se-
guences. A statistical method is also presented for moving spot detion.
Finally, in Section 4, we report several experimental resultand demonstrate
the potential of the proposed approach.

2 Dynamical background modeling

In this section, we propose a statistical framework for modelirend estimating
the time-varying background.



2.1 Image model

Large structures lying inside the cell like the Golgi apparatsiappear as nearly
static during the observation time interval. In images showinguorescently

tagged particles, the global image intensity is proved to varglowly along

time. This is due to several physical phenomena such as phot@#thing or
di®usion of “uorescent proteins within the cell. Therefore, itsiappropriate to

propose a model able to describe the (slowly) time-varying baglound since a
stationary model would be too restrictive. The modeling of m& complex small
moving objects with variable velocities (traxc component) vll be discussed
in Section 4.

We have conducted experiments showing that the intensity vation with re-

spect to time can be well captured by a linear model for each @kof the image
grid, mainly since we are dealing with sequences of limited fgih. This simple

model provides a compact representation of the backgroundofeach point, it

amounts to two parameters (linear temporal model). Consequoty, the back-

ground can be fully described by two 2D maps corresponding toghwo spa-
tially varying parameters. The processing of 3D volume sequescgields 3D
maps if considered. Nevertheless, the involved parameters areatsly cor-

related, which must be taken into account in the estimation proess. Let us
point out that the proposed approach, explained below, can badapted to
non-linear intensity models (exponential or bi-exponentiamodels) in 2D or
3D, if desired.

Formally, we propose the following image sequence model foethackground:
f(x;1) = a(x) + b(x)t + u(x;t) + 2(x;t) (1)

where f (x;t) denotes the intensity observed at pixek = (x;y)" 2 - (or

x =(x;y;z)" for 3D volume sequences) and timewhere - denotes the 2D or

3D image support. The two coexcientsa(x) and b(x) varies with the spatial

image position andu(x;t) is a positive function that describes the intensity
of moving vesicles if any. In the sequef(x;t) is an additive white Gaussian
noise. This model is able to describe the background intensity the whole

image sequence with only two 2D/3D maps = fa(x)g and b = fh(x)g of

the same size as the image grid. In the next section, we describe ethod to

estimate the mapsa and b representing the time-varying background model.

2.2 Pixel-wise estimation of the background model parameste

We rst deal with the estimation of parametersa(x) and b(x) at a given
location x, i.e., for a single temporal 1D signal. Let us stress out that this
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Fig. 1. The Asymmetric Leclerc robust function allows us to better discard outliers
related to moving vesicles when estimating the background @mponent.

point-wise estimation must be performed several millions of ties (for each
image point) if the method is applied to a 3D image sequence. Axdingly,

the proposed estimation procedure must be very fast. Besides, inratudy,

vesicles have an erratic behavior and sometimes stop for a longné. Conse-
guently, prior motion detection cannot be used to extract thee objects from
the background. The estimation of the time-varying backgroud will be then

based on the image intensity only. Also, since the background estation can
be altered by the presence of moving vesicles, we will resort to @ust esti-
mation framework.

2.2.1 Robust M-estimation

The two parametersa(x) and b(x) are estimated by minimizing a robust error
function of the form

x
Ea(x);b(x)) = AT 1) i (alx)+ bx)t); (@)

t=1

wheren is the number of temporal samples in the 1D signal arig is a robust
function. A local minimum of E(a(x); b(x)) is commonly obtained by using the
iteratively re-weighted least squares (IRLS) procedure (Hulbbgl981).

The choice of the robust function’49) is usually guided by the noise prob-
ability density function (leng et al., 2004). In our case, the werall noise is
the sum of two componentau(x;t) and 2(x;t). In order to take into account
that u(x;t) usually takes high positive values (vesicles appear as brigbpots
in the image), we choose an asymmetric robust function, more speally,
the Leclerc estimator (Allende et al., 2006; Ruckstuhl et al.,@1) plotted in
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Fig. 2. Regression using the asymmetric robust Leclerc furtion and the symmetric
one. The asymmetric estimator (red) ts well the ground truth (green), while the
symmetric function provides biased results (dotted line).

Figure 1 and de ned as:

8 A !
31, A .
1 exp~.2—% if z- O
Yz2) = Ao (3)
_Eli exp j 2—3/5 otherwise

The scale¥, factor can be estimated by applying a robust least-trimmed
squares (LTS) estimator to thepseuHo_—residuaI:(Gasser et al., 1986) de ned
as:s(x;t) = (f(x;t+1) j f(x;t))= 2, where the coexcient £ 2 ensures
that E[(s(x;1))?] = E[(f (x;(t))?]. The scale factor¥,; is estimated by using
the variance of the residuals given by the least-mean squaresimsttor and
obtained at the initialization step. Let us point out that, in regions where there
are no moving vesiclesys and % are found almost equal. The scale parameter
, acts as a threshold and is chosen in the range 8l. Theoretically, this value
is relative to the point where the derivative of the’& §-function is zero (Black
et al., 1998).

As a matter of fact, the proposed estimator is biased (Ruckstuhl etl., 2001)
but the bias is small. Simulations proved that thelL, risk of the estimator
is smaller when an asymmetric cost function is used and when thetdaare
corrupted by an additive positive signal. Figure 2 shows that th proposed
estimator is able to deal with heavily contaminated data and wtperforms the
symmetric Leclerc M-estimator.



2.2.2 Con dence matrix

An accurate estimation of the con dence matrix for the estimategarameters
is needed for the subsequent steps described in Section 2.3. We thgeap-
proximation proposed in (leng et al., 2004) to compute the caviance matrix
of the estimator

0 0 0 1
W(f(X )(r(x; t))2 (w(r(x;t)))? w(r(x;1)) w(r (x; )t
E(x) = A aE: %%1 X E
w(r (x: 1)) 1 W(r(X:t))t W(r(x t)t>
t=1 t=

4)
wherer(x;t) = f(x;t)j (a(x)+ b(x)t) and the weights are de ned asv(z) =
A z)=z. Unlike the expression given in (Huber, 1981), the approximatiogiven
by (4) is not asymptotic and yields a better estimation of the caariance matrix
whenn is small (e.g.,n < 500).

2.3 Spatial coherence for background estimation

In this section, we introduce a process to regularize the 2D/3Bapsa and b.
This can be accomplished by adopting théias-variance trade-o&ramework
described in (Lepski, 1991; Maurizot et al., 1995; Ercole et. a2005; Kervrann
and Boulanger, 2006). Instead of using a single temporal signakach location
x to estimate a(x) and b(x), a set of temporal 1D signals is rst collected in a
spatial neighborhood of pixelk. This collection of signals is then analyzed in
order to take into account the desired spatial coherence of tipgarameters. In
practice, a nite set of nested space-time tubes/parallelepipsds considered
whose temporal section is formed by a growing spatial neighbadd centered
at point x (see Figure 3). Each tubd(x) centered at pointx is parameterized
by its diameter A (x) and | 2 [1;::; L] denotes the index associated to each tube
de ned as

Ti(x)= fy 2 -1 kxi yk, <A|(x)g; (5)
wherek ¢ k denotes theL, norm. In our experiments, we arbitrarily choose
the L; norm to design the set of nested parallelepipeds shown in Fig. 3.

In order to select the optimal diameter of the space-time tubeye propose to
minimize the point-wiseL , risk E[(A(x) i (x))?] of the parametric estimator
where p(x) = (a(x);b(x))T is the true parameter vector andfi(x) its corre-
sponding estimator, at positionx. The L, risk can be decomposed into the
squared bias and the variance. As shown in Figure 4, while the diater A (x)
increases withl, the bias increases too. This can be explained by the fact that
the data cannot be described any longer at same stage by a uniqueametric
model. In contrast, by taking more data points, the variance dgeases. This



Fig. 3. Set of nested tubedT | gi=1 .¢c¢c. RESPECtively red, blue, green parallelepipeds
are successively considered if we choose thg norm (see text).

behavior, also calledbias-variance trade-o®is exploited to detect the min-
imum of the point-wise L, risk which is nearly equal to twice the variance
(Lepski, 1991) (see Fig. 4).

For each diameterA(x), new estimates of the background model parame-
ters fi(x) and the associated covariance matri®,(x) are computed with the
procedure described in Section 2.2 but using now all the datartained in
the considered neighborhood. It can be shown that th@as-variance trade-o®
writes down as the following test (Kervrann and Boulanger, ZIb):

ni 2+1° T : o

—or— BOOT B Gl A i Re(x) < (6)
for all 1 - 1°< 1. While this inequality is satis ed, the diameter of the tube
is increased and the estimation process is continued. It is esliahed that the
threshold” can be de ned as a quantile of a Fisher distribution of parameter
2andnj 2j 1, since an estimator of covariance matrix is only available.

In this section, we have proposed a spatially and temporally wing back-
ground model and a statistical framework to estimate the invokd model
parameters. In the second part of the paper, we develop a simutat frame-
work to generate dynamical content corresponding to small mimg spots in
image sequences.

3 Spot model

In video-microscopy, vesicles appear in many image sequencesmall bright
spots against a dark background. The object diameter theoretlly ranges
from 60 nm to 150 nm. The resolution of the microscope is about@313CE 300

10
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Fig. 4. Bias-variance trade-o®principle. When the tube diameter increases, the bias
increases and the variance decreases. The optimum is achexlwhen the bias and
the variance are of the same order.

nm. Then, the diameters of spots are often below this spatialselution. How-
ever, the point spread function of the video-microscope makésem appear
as larger structures even if a deconvolution process is apgli€Sibarita et al.,
2002). Furthermore, when the density of objects increases, \&@es gather to-
gether and constitute small rods.

These vesicles are also known to move along microtubules, thaelsng poly-
mers that have an exceptional bending sti®ness and can be easilpytsmooth
curves. Microtubules are conveyor belts inside the cell. Theyrive vesicles,
granules, organelles like mitochondria, and chromosomes kvipecial attach-
ment proteins using molecular motors. It is also established thanholecular
motors form a class of proteins responsible for the intracelar transport in-
side the cell (White et al.,, 1999). The dynein and kinein proias are two
classes of motors associated with microtubules. It has been showrait the
concentration of these molecular motors in°uences the struatel and the dy-
namics of the microtubule network (Ngd®lec, 2001). In stebconditions, the
speed and polarization of these motors is assumed to be constanhisl ex-
plains partially why the observed velocity of vesicles is corestt if they move
along the same microtubule.

In our study, vesicles move along the microtubule, leaving a dor organelle
and reaching an acceptor organelle, e.g., from the Golgi apptus to the
Endoplasmic Reticulum. Unlike (Hadjidemetriou et al., 2006)ywe assume that
the microtubule network is static when compared to moving vedies and we
rather aim at generating video-microscopy image sequencebldwing a data-
driven approach.

11
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Fig. 5. Gaussian model of the spot oriented in the direction & the microtubule
axis. The covariance matrix of the Gaussian function depend on the velocity of
the vesicle. The simulated vesicles are then elongated algnwith the displacement
direction.

3.1 Photometric model

Large vesicles or sets of nearby vesicules can be satisfyinglyrespnted by
anisotropic Gaussian spots with variances related to the spot dansions rang-
ing from 60 nm to 150 nm. Furthermore, the size of vesicles in theage is
close to the pixel size. The size of spots will be estimated in theage sequence
as described in Section 3.3. In our approach, occlusions ar¢ handled since
tagged molecules attached to vesicles can di®use over time. tididion, split
and merge processes involving several vesicles occur in realgenaequences
leading to rods (Zhang et al., 2006). The latter can be consia as a unique
object since the merged spots move along the same microtubule.

In what follows, the covariance matrix of the anisotropic Gausan spot is a
function of the displacement direction. The ellipticity alsodepends on the ve-
locity. Figure 5 displays how the covariance matrix of the asbtropic Gaussian
function allows us to modify the orientation of spots accordg to the direction
of the microtubule axis.

12



3.2 Dynamical model for tratc

3.2.1 Microtubule network modeling

A physics-based simulation of the self-organization of the midubule network

can be found in (Surrey et al., 2001). It is based on the interaon between

the motors (e.g., kinesine) and microtubules, and explains sencharacteristic
conformations such as mitotic spindle. Typically, it takes itb account the

dynamical behavior of the microtubules. However, this compat simulation

only describes the behavior of the microtubule networkn-vitro and is not

adapted for the more complexn-vivo case in which the microtubules interact
with other organelles of the cell. In addition, the observatin time intervals

are usually short compared to the dynamics of the network itselassumed to
be xed in the following.

In order to generate a synthetic but realistic microtubule netork, we exploit
real image sequences as input for the modeling. A real netwartuld be tagged
with Green Fluorescence Protein (GFP) but this network is toacomplex and
individual microtubules cannot be easily extracted. Howevethe microtubule
network can be also coarsely computed from a maximum intensityggection
map with respect to time, that is from the paths followed by thetagged
vesicles. For instance, Fig. 6 shows the maximum intensity projim map of
a real sequence of 300 2D images. This simple projection allovesta select
a subset of the main paths used for the intracellular tratcking,dading to a
network with low complexity. This approach has been succesdfuéxploited for
the construction of kymograms in (Sibarita et al., 2006). Hower, as shown in
Fig. 6, all the paths are not complete, especially if the sequemduration is too
short. The gaps are then completed by usingd-hocimage processing tools.
The locations of the roads are extracted from the network ingge using the
unbiased line detectioralgorithm de ned in (Steger, 1998). Finally, each road
is nally described by its length, its width, its source node andts destination
node.

3.2.2 Selection of source/destination nodes

In the proposed simulation, vesicles are going from one regioa &nother.
Typically, they leave a donor organelle and move toward an eeptor organelle.
Once the network has been computed, the expert needs to spgdciie source
and destination nodes on the network. In order to take into acwnt the lack of
a priori information on the organelles and their function, a node cabe both
a source and a destination, while the other nodes represent thaersection
points of the network and are only used for routing. Source-denation pairs
are important cues for the simulation and corresponds to a biitdeath map

13



Fig. 6. Maximum intensity projection map computed from an image sequence. The
paths followed by the vesicles appear as bright Taments. Themaximum inten-
sity projection map has been simpli ed using the denoising mthod described in
(Kervrann and Boulanger, 2006).

Fig. 7. Representation of a realistic synthetic network. This network is based on a
maximum intensity projection map and has been manually simpi ed. This network
is composed of 146 nodes and 160 bi-directional links which oespond to 320
directional edges in the graph associated to the network.

as described in (Wang and Zhu, 2003). These labels are actuakyated to the
locations and relationships of speci ¢ organelles inside thellce

14



In Fig. 7, the source and destination nodes have been manuallylesged by
the expert. The destination nodes displayed in red correspond Yend-points",
while the source nodes corresponding to the membrane of the Gi@pparatus
are displayed in green. In this simulation, vesicles are onlyigg from the Golgi
to the \end-points" located at the periphery of the cell. Thus,the retrograde
transport from \end-points" to Golgi is prohibited and assumed b be inhibited
by bio-chemical alterations.

In our approach, the paths are de ned as the minimal paths bewen the
source and the destination nodes. They are computed using the Kifra al-
gorithm (Dijkstra, 1959). In that case, the weight associated teach edge can
be de ned as a function of the length of the corresponding roabdut it could
take into account other parameters as well. Let us note for gtance the al-
lowed speed for a given edges could be retained to estimate thersbst path.
Finally, as expected, the vesicles move along the estimatecads with veloc-
ities distributed around the speed-limit of the roads. At eachiime step, the
vesicle is moved along the microtubule with a displacement stephich is a
proportional to the velocity.

3.3 Estimation of model parameters and spot detection

Given a simulated sequence as described above, we now addresgptbblem
of detecting moving vesicles with minimal prior knowledge. fle performance
of any detector is better assessed if ground truth is available hich is precisely
what this simulation framework can o®er. Blob/spot detectionn image se-
guences is an important task in video-microscopy. Here, we prage a method
able to decide with high con dence whether any image point baigs to the
image background or a moving object. Our approach is unsupésed. It will
be applied to arti cial image sequences obtained by the modedj framework
described in the paper and to real image sequences.

Our two-step method for temporal detection is based on the mimization of
a penalized likelihood criterion in the line of work of Birgfland Massart (Birg®
and Massart, 2001) for model selection. In this step, we considerlsaquence
of n observationsYy; ¢ ¢ ¢Y,, (assumed to be i.i.d.) that take its values inR™.
We assume that a subset afij ;" 2f 0;¢ ¢ ¢ng, observations are realizations
of a hidden variablem at some unknown instants. HereK- will denote the
unknown numbern j ° of temporal observations de ned at timet as:

Yi=m+»; »»N (0 (;2): (7)

where m and the variance¢? are also unknown. To detect theK- observa-
tions corresponding to this model, we adopt a global approackhere all the
relevant observations are simultaneously detected, by miniaing a penalized

15



least squares criterion. The role of the least squares term is tceasure the t
of of some observation¥;'s to m the more accurately possible. The penalty
term is used for determining the number of observations used tstanate m
and ¢2.

In our application, a subset of residualy; e (x;t)i (a(x)+ b(x)t) (obtained

as explained in Section 2.2.1) is assumed to belong to the darkckground of
intensity m at pixel x. The remaining observations are assumed to be related
to the moving objects. For the sake of simplicity in the notatios, we will
omit the variable x since the detection is performed independently at each
pixel. Without loss of generality, the sequence of residuak = fY;;¢ ¢ ¢Y,Q

is rst re-ordered to produce a new sequencé® = fYZ ¢ ¢¢Yy such that
iYg > jY.2,j since theY,'s are assumed to be independent. Now, we consider
the following collection of modeldM = fMy;::;; M 0:

8
§ My =(Y20 0 ;07
% (8)

My, =(Y2 Y2 Y2 YoT:

whereM- is a n-dimensional vector andK- = nj " is the number of compo-
nents of the background . Since the number of components ofthackground
is unknown, we introduce a penalized version of the least squareriterion for
signal decomposition (Huet, 2006), de ned as :

u u 1 1 ..
n n K-
J (M) = Zlog(g?) + n cilog K K-

(9)

where oy 0 2 0
Y% M- 1
2 _ I — @.
= —— = — Y, 10
b . a Y (10)

Y %is the set ofn re-ordered observations . The two universal constants and
c, were calibrated in (Huet, 2006) and found to be&;, = 2 and ¢, = 4. Since
the numbern of observations is small, we computé (M-) for each modelM-
and select the modeM-, such that:

M?Z M~;=DI;¢¢Q1J (M)1 (11)

for every pixel in the image. This procedure amounts to thresiding the
sequence of residuals (Huet, 2006).

In the second step, we collect the estimated modeé¥s,(x) at each pixelx 2 -.
Since the model selection amounts to determining a thresholdx) such that
T(X) = Yp; k.(x) for the 1D sequence of residuals, a threshold map is
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Fig. 8. lllustration of the model selectionprinciple applied to a synthetic signal
(n = 1000). The number of samples corresponding to the backgraud is about 800.
The X-axis represents the model number ; the left ordinate caresponds to the value
jY-j associated to the modelM- plotted in blue ; the right ordinate represents the
value of the cost functionJ (M-).

computed. Finally, we determine a global threshold for the whole image in
order to detect the highest intensity level corresponding to # background
component for the whole image sequence (see Fig. 8). Practigave use the
model selection procedure described earlier to threshold tiemap. In that
case, the threshold valued (x) are considered as i.i.d. observed variables.
Finally, a pixel x belongs to the background iff (x;t) i (a(x)+ b(x)t) - °
and to moving objects otherwise.

4 Experiments

In this section, we report two experiments to illustrate the poposed simulation
method. First, we show how we can generate a realistic image seutesfrom
real images. Second, a synthetic image sequence whose pararadtave been
manually determined is exploited to evaluate the performare of an image
denoising method as well as the estimation method of the backgnd as
described in Section 3.
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4.1 Realistic image sequence simulation

We utilize a real image sequence in order to simulate a sequendaghvgimi-

lar and controlled photometric and dynamical content. Onerbme of the real
image is shown in Fig. 9(a) and contains vesicles moving frometGolgi ap-
paratus to the Endoplasmic Reticulum. The parameters of theirme-varying
background are rst estimated as described in Section 2. The twdD2mapsa
and b are respectively shown in Fig. 9(e) and in Fig. 9(f). Once thesamme-
ter maps have been estimated, the background is subtracted finche original
images in order to obtain the sequence of residuals displayed kig. 9(g),

which is a noisy representation of the moving spots. The main patHollowed
by vesicles through the 150 frames of the real sequence can bgeobked on the
maximum intensity projection map in the time direction as show in Fig. 9(b).

We have further enhanced the maximum intensity projection mausing op-
timal steerable Tters (Jacob and Unser, 2004) (Fig. 9(c)). Theinbiased line
detection algorithm (Steger, 1998) is then applied to the resulting ergmced
image in order to estimate the positions of the roads plotted ifig. 9(d). Fi-

nally 150 vesicles are generated and moved along the reconsted network.
The velocities of the vesicles are tuned so that the simulated sempce pro-
vides the same visual e®ect than the original sequence. It was cored by

biologist-experts that the proposed simulation method suppléerealistic image
sequences both considering photometry and dynamics aspects.

4.2 Benchmark generation

This simulation framework can also be exploited for benchmarkg. More
speci cally, in order to objectively evaluate the performane of the proposed
background estimation method, we have simulated a 1Z3128£ 150 image
sequence. This simulation comprises 20 vesicles moving along thetwork
plotted in Fig. 10(a). To generate the background model, wedve manually
designed the spatial appearance of the background as shown img.FL0(b).
Then, we have computed the image such that after a period eqaab twice
the duration of the simulation, we would obtain a uniform °at background.
The two arti cial maps ap and bq for the background model are then shown
in Fig. 10(b)-(c). Three frames of the noise-free simulated sgence are given
in Fig. 10(d)-(f). A zero-mean Gaussian noise of standard deviah %= 9 has
been added to these frames and the resulting noised images aspldiyed in
Fig. 10(i,},k). The intensity of the vesicles are assumed to follv a Gaussian
law with mean 30 and standard deviation 3 leading to a signal-tooise ratio
of 136dB. By combining all the mentioned inputs, we have speci ed theseful
set of parameters to control the simulation.
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Now, we apply the algorithm described in Boulanger et al. (2002007) to
restore the noisy image sequence obtained as explained abovee Two-step
denoising method exploits 3D+time information to improve tte signal-to-noise
ratio of images corrupted by mixed Poisson-Gaussian noise (Bondger et al.,
2008, 2007). A data-driven variance stabilization transforns rst applied to
the image-data to introduce independence between the meandavariance.
In a second step, an original statistical patch-based frameworkrf noise re-
duction and preservation of space-time discontinuities has &e developped.
In our study, discontinuities are related to small moving spots ith high ve-
locity observed in °uorescence video-microscopy. The idea is animize an
objective nonlocal energy functional involving image spatitemporal patches.
The minimizer has a simple form and is de ned as the weighted aege of
input data taken in spatially-varying neighborhoods. The sizef each neigh-
borhood is optimized to improve the performance of the poinise estimator.
By running 6 iterations of the adaptive denoising algorithm 3£ 3 patches),
the resulting mean squared error of the recovered image 89, which corre-
sponds to a signal-to-noise ratio of 30dB. The noise is therefore drastically
reduced (see Fig. 11) and, visually the reconstructed image seque looks
similar to the original sequence. Let us also stress that no vesitias disap-
peared. Denoising algorithms are commonly applied to real age sequences
in microscopy to make easier other image processing tasks.

We have evaluated the performance of our estimation method ttie time-
varying background model. This method is applied to a simulad noisy image
sequence. The two estimated maps and B are shown in Fig. 11. The mean
squared error between the original ma@gy and the estimated mapéa is 150
and the signal-to-noise ratio is 344dB. The signal-to-noise ratio calculated
from the original map b, and the estimated mapB is 3270dB. The results
of the temporal detection method described in Section 3.3, eapresented in
Fig.11(j,k,l) attime t=0;t =75 and t = 100.

5 Conclusion

In this paper, we have proposed a framework for the analysis arlde sim-
ulation of the dynamical content corresponding to membraneratcking in

°uorescence video-microscopy. We have designed models for timeetvarying
background and moving vesicles. We have also proposed statistioathods
for estimating the model parameters. The proposed simulationdmework has
been demonstrated on arti cial and data-driven image sequerse

More generally, the simulation framework can be used to genégarealistic
image sequences in °uorescence time-lapse microscopy. Any tragkiobject
detection and segmentation algorithm can be evaluated sindeet ground truth
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is available. Since it is challenging to assess the performamfemage process-
ing algorithms on real image sequences, our motivation was t@tdrmine a
priori the limits of each algorithm (based on metrics to be aiitrarily de ned
such as mean square error, false alarm rate, ...). When appliemireal images,
the results can be better quanti ed if well known on arti cial images.

Nevertheless, further validations with biologist-experts areequired to improve
the proposed modeling framework. As already investigated ingfeot et al.,
2007, 2008), we also plan to address the tratc estimation problebased on
the image sequence modeling we have described in this paper.
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Fig. 9. Simulation of a video-microscopy image sequence exgiting a 3D real images
acquired with time-lapse wide- eld microscopy. (a) one frame 6the sequence pro-
jected (maximum) along z axis (depth) computed from the original 3D+time image
sequence ; (b) maximum intensity projection 2D mapwrt time t ; (c) results of
steerable Ttering ; (d) results of the un-biased line detecta ; (€) map a; (f) map b
; (g) residual map ; (h) noise-free image reconstruction fromestimated parameters.
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Fig. 10. Simulation of a synthetic video-microscopy image sguence: (a) hand-made
network ; (b) true map a corresponding to the background model ; (c) true map
b corresponding to the temporal variation of the background ;(d,e,f) three frames
(t =0;t =75;t = 100) extracted from the noise-free synthetic image sequere;
(i,j,k) three noisy frames (t = 0;t = 75;t = 100) corresponding to a signal-to-noise

ratio of 13:6dB.
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Fig. 11. Computation of the background model parameters anddetection of moving
noisy vesicles: (a,b,c) three framest(= 0;t = 75;t = 100) of the denoised im-
age sequence ; (d) maximum intensity projection map ; (e) estnated map b ; (f)
estimated mapB ; (9,h,i) residual images at timet = 0;t = 75 and t = 100 (af-
ter background subtraction) ; (j,k,l) detected vesicles usng the proposed temporal
detection method (t =0;t = 75;t = 100).
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