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Abstract

Image sequence analysis in video-microscopy has now gained importance since molec-
ular biology is presently having a profound impact on the way research is being
conducted in medicine. However, image processing techniques that are currently
used for modeling intracellular dynamics, are still relatively crude and yield impre-
cise results. Indeed, complex interactions between a largenumber of small moving
particles in a complex scene cannot be easily modeled, limiting the performance of
object detection and tracking algorithms. This motivates our present research ef-
fort which is to develop a general estimation/simulation framework able to produce
image sequences showing small moving spots in interaction,with variable veloci-
ties, and corresponding to intracellular dynamics and tra±cking in biology. It is
now well established that spot/object trajectories can play a role in the analysis
of living cell dynamics and simulating realistic image sequences is then of major
importance. We demonstrate the potential of the proposed simulation/estimation
framework in experiments, and show that this approach can bealso used to evaluate
the performance of object detection/tracking algorithms in video-microscopy and
°uorescence imagery.
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1 Introduction

1.1 Context in biology

The development ofsystems biologyis characterized by the settlement of new
techniques and technologies producing a vast amount of data of di®erent types
or origins. Only automatic approaches for analysis and interpretation of com-
plex and massive data will allow researchers to face this new challenge. This
is already well established for a number of biological ¯elds suchas DNA se-
quence analysis, expression data analysis, DNA micro-arrays analysis. Also, in
dynamical imaging of biological samples substantial amount ofwork is neces-
sary to overcome conceptual and technological obstacles. Thismotivates our
present research e®ort which is to develop novel approaches based on recent
methods in computer vision and signal processing, able to analyze information
from 4D data related to intracellular dynamics and membranetransport.

In °uorescence video-microscopy, methods that estimate trajectories of small
objects of interest (chromosomes, vesicles, ...) may encounter di±culties if the
number of objects is large and the signal-to-noise ratio is low. Moreover, the
tracked objects are not always visible in the sequence when tagging molecules
separate suddenly from the target objects. Obviously, the complexity of dy-
namical processes involving many objects or groups of objectsin interaction
cannot be easily modeled. The corpus of data to be considered for a compar-
ative analysis in a single experiment formed by multiple imageseries, is also
massive. Nevertheless, it is now clear that the localization and spatio-temporal
conformation of a large number of molecular constructions within the cell, their
dynamical response to diverse chemical, physical or bio-molecular perturba-
tions, are key elements for understanding the essential functional mechanisms
in life sciences. Motion information and trajectories have tobe extracted in
order to analyze the dynamical response of the cell to di®erent perturbations
and experimental conditions.

In this paper, we propose a simulation/estimation framework able to model
complex data corresponding to interactions between moving particles with
variable velocities. Parsimonious models representing °uorescence microscopy
image sequences will be de¯ned to summarize complex data into a low dimen-
sional set of parameters. These models will be exploited to generate arti¯cial
image sequences that mimic dynamics observed in real image sequences. In our
study, the acquisition rate of a real image sequence is typically one stack per
second at most. The volume/stack being is composed of 10 slices of 512£ 512
pixels. This constitutes standard settings in °uorescence wide-¯eld microscopy.
The speed of the vesicles ranges from 1 to 10 pixels and the number of objects
can be large (about a few hundreds).
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Traditionally, tracking algorithms compute object trajectories that have to
be analyzed. Unlike previous methods (Smal et al., 2007; Genovesio et al.,
2006), we need to simultaneously estimate the tra±c component (e.g. moving
objects) and the cytosolic component, both involved in membrane transport.
The main di±culty is that these two adding components are perturbed by noise
and photo-bleaching. Our goal is then to robustly estimate each factor and
component for analysis. We introduce the simulation frameworkto evaluate
the performance of estimation methods we propose.

1.2 Needs for simulation tools

In many application ¯elds such as medical imaging or astronomy,simulations
are required for validating physical models and understanding recorded data.
In this section, we explain the rationale for simulation methods in video-
microscopy.

First, realistic simulations of dynamical processes usually givea qualitative
and controlled representation of the observed spatio-temporal biological events.
Simulation can be then considered as a computational tool that can help to un-
derstand some mechanisms of internal components within the cell. By interact-
ing with the control parameters, an expert can arti¯cially simulate processes
close to the reality provided the dynamical models are known ;this philos-
ophy has been successfully exploited to understand dynamics of microtubule
networks (Gibbons et al., 2001; N¶ed¶elec, 2001). By minimizing the di®erence
between a set of descriptors computed from a real image sequenceand the
same set of descriptors computed from a simulated sequence, the parameters
of the simulation method can be tuned to obtain an arti¯cial sequence that
reveals apparently the same dynamical characteristics than the observed se-
quence. This set of estimated control parameters can then be considered a
parsimonious representation of the underlying process.

Moreover, dynamical information extraction usually relieson tasks such as ob-
ject detection, motion estimation or object tracking. The most commonly used
tracking concept is the so-called \connexionist" approach (Anderson et al.,
1992; Sbalzarini and Koumoutsakos, 2005; Bonneau et al., 2005; Racine et al.,
2006) which consists in detecting particles independently ineach frame in a
¯rst step, and then linking the detected objects over time. The related data
association task is the most critical step in this approach, especially if the
number of objects is very high and if the trajectories interact. Sophisticated
particle ¯ltering techniques (Smal et al., 2007; Genovesio etal., 2006; Li et al.,
2007) or graph-theory based methods (Thomann et al., 2003) have been then
developed to improve temporal matching. These tasks cannot bedone manu-
ally, and they must be fast, reliable and reproducible. Furthermore, comparing
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object tracking results to ground truth is the more straightforward method to
assess the performance of the applied method. Accordingly, simulation of a reli-
able ground truth is an important and challenging task especially in biomedical
imaging. Let us point out that benchmarking data sets are for instance widely
used to compare methods in image restoration (Portilla et al.,2003) and op-
tical °ow estimation (Barron et al., 1994). In °uorescence video-microscopy,
the proposed simulation methods used to build benchmarking data sets are
limited yet since they are not able to represent complex interactions between
objects as observed in real image sequences. Nevertheless, in (Hadjidemetriou
et al., 2006), the authors proposed to estimate the dynamics ofouter tips of
microtubules ; the method is validated on arti¯cial data thatmimic real image
sequences. As for vesicle tracking within living cells,random walkscombined
with parametric models are commonly used for validation (Genovesio et al.,
2006), but they cannot account for the complex movements of real moving
objects in video-microscopy sequences.

1.3 Simulation framework and properties

Let us brie°y discuss the expected properties of a tool to perform simulation
of image sequences:

(1) Two modeling approaches can be proposed for simulation:data-driven
modelingand physically-based modeling. The physics-based approach re-
lies on the physical properties of the scene and the optical characteristics
of the imaging system for image modeling. The main advantage isthat
the model parameters are motivated by physics. Hence, they are easy to
interpret because they directly correspond to the real world.Conversely,
the complexity of scenes and models usually limits such an approach and
the inverse problemcannot be easily solved. Thedata-driven modeling
aims at describing image sequences through statistical models learned
from real images (Soatto et al., 2001). This approach can only mimic
dynamical processes but is not able to describe the physical properties
of real processes.Data-driven and physically-basedapproaches can be
also combined to model the main components of the image sequence. In
video-microscopy, these components are essentially the movingobjects,
the ¯xed or slowly-varying background and noise.

(2) A simulation method must also becontrollable (Wang and Zhu, 2003).
This means that the representation must be parsimonious, which is useful
for interpretation by an expert. In most cases, the parameters are related
to the physical properties of the system but also to the properties of the
object image like scale or velocity. By using such a representation, the
simulation method becomes more interactive and allows the expert to
exploit a priori knowledge or to plan a set of experiments by editing the
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simulation. For example, an expert can indicate the locations of source
and destination points of moving objects, and by varying the positions of
these extremity points, she/he can observe the evolution of the simulated
intracellular tra±cking. Finally, the expert feedback can be used to set
up a realistic simulation.

Our aim is to ful¯ll these requirements.

1.4 Our approach

In this paper, we propose a powerful method for simulating complex video-
microscopy image sequences. We design a realistic image sequence modeling
framework able to mimic the dynamical and photometric contents of video-
microscopy image sequences showing tra±cking. Unlike the biophysical ap-
proach which aims at describing the underlying physical phenomena (Gib-
bons et al., 2001; N¶ed¶elec, 2001), the proposed approach isonly based on the
analysis of original image sequences. While being quite general, the proposed
method has been designed for analyzing the role of °uorescence-tagged pro-
teins moving around the Golgi apparatus and participating in the intracellular
tra±cking. These proteins can be linked to vesicles. The vesiclesare propelled
by motor proteins moving along polarized \cables" called microtubules, that
form a dense network. This mechanism explains the observed highvelocities
which could not be accounted by basic di®usions. In order to modelthe con-
tent of these sequences, it is decomposed in two components. The ¯rstone
is the almost static background of the scene while the second one contains
the objects of interest, that is the tagged vesicles moving with high velocities.
This representation yields a compact description of the dynamical processes
corresponding to small moving objects within the cell.

The remainder of this paper is organized as follows. In Section 2, a dynamical
background model is proposed and a method is de¯ned to estimate the model
parameters. In Section 3, a photometric and network-based dynamical model
is introduced to represent moving spots in °uorescence microscopy image se-
quences. A statistical method is also presented for moving spot detection.
Finally, in Section 4, we report several experimental resultsand demonstrate
the potential of the proposed approach.

2 Dynamical background modeling

In this section, we propose a statistical framework for modelingand estimating
the time-varying background.
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2.1 Image model

Large structures lying inside the cell like the Golgi apparatus appear as nearly
static during the observation time interval. In images showing°uorescently
tagged particles, the global image intensity is proved to varyslowly along
time. This is due to several physical phenomena such as photo-bleaching or
di®usion of °uorescent proteins within the cell. Therefore, it is appropriate to
propose a model able to describe the (slowly) time-varying background since a
stationary model would be too restrictive. The modeling of more complex small
moving objects with variable velocities (tra±c component) will be discussed
in Section 4.

We have conducted experiments showing that the intensity variation with re-
spect to time can be well captured by a linear model for each pixel of the image
grid, mainly since we are dealing with sequences of limited length. This simple
model provides a compact representation of the background. For each point, it
amounts to two parameters (linear temporal model). Consequently, the back-
ground can be fully described by two 2D maps corresponding to the two spa-
tially varying parameters. The processing of 3D volume sequences yields 3D
maps if considered. Nevertheless, the involved parameters are spatially cor-
related, which must be taken into account in the estimation process. Let us
point out that the proposed approach, explained below, can beadapted to
non-linear intensity models (exponential or bi-exponential models) in 2D or
3D, if desired.

Formally, we propose the following image sequence model for the background:

f (x; t) = a(x) + b(x)t + u(x; t) + ²(x; t) (1)

where f (x; t) denotes the intensity observed at pixelx = ( x; y)T 2  (or
x = ( x; y; z)T for 3D volume sequences) and timet where  denotes the 2D or
3D image support. The two coe±cientsa(x) and b(x) varies with the spatial
image position andu(x; t) is a positive function that describes the intensity
of moving vesicles if any. In the sequel,²(x; t) is an additive white Gaussian
noise. This model is able to describe the background intensity of the whole
image sequence with only two 2D/3D mapsa = f a(x)g and b = f b(x)g of
the same size as the image grid. In the next section, we describe a method to
estimate the mapsa and b representing the time-varying background model.

2.2 Pixel-wise estimation of the background model parameters

We ¯rst deal with the estimation of parameters a(x) and b(x) at a given
location x, i.e., for a single temporal 1D signal. Let us stress out that this
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Fig. 1. The Asymmetric Leclerc robust function allows us to better discard outliers
related to moving vesicles when estimating the background component.

point-wise estimation must be performed several millions of times (for each
image point) if the method is applied to a 3D image sequence. Accordingly,
the proposed estimation procedure must be very fast. Besides, in our study,
vesicles have an erratic behavior and sometimes stop for a long time. Conse-
quently, prior motion detection cannot be used to extract these objects from
the background. The estimation of the time-varying background will be then
based on the image intensity only. Also, since the background estimation can
be altered by the presence of moving vesicles, we will resort to a robust esti-
mation framework.

2.2.1 Robust M-estimation

The two parametersa(x) and b(x) are estimated by minimizing a robust error
function of the form

E(a(x); b(x)) =
nX

t=1

½(f (x; t) ¡ (a(x) + b(x)t)) ; (2)

wheren is the number of temporal samples in the 1D signal and½(¢) is a robust
function. A local minimum of E(a(x); b(x)) is commonly obtained by using the
iteratively re-weighted least squares (IRLS) procedure (Huber, 1981).

The choice of the robust function½(¢) is usually guided by the noise prob-
ability density function (Ieng et al., 2004). In our case, the overall noise is
the sum of two componentsu(x; t) and ²(x; t). In order to take into account
that u(x; t) usually takes high positive values (vesicles appear as brightspots
in the image), we choose an asymmetric robust function, more speci¯cally,
the Leclerc estimator (Allende et al., 2006; Ruckstuhl et al., 2001) plotted in
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Fig. 2. Regression using the asymmetric robust Leclerc function and the symmetric
one. The asymmetric estimator (red) ¯ts well the ground truth (green), while the
symmetric function provides biased results (dotted line).

Figure 1 and de¯ned as:

½(z) =

8
>>>><

>>>>:

1 ¡ exp

Ã

¡
z2

¸ 2¾2
1

!

if z · 0;

1 ¡ exp

Ã

¡
z2

¸ 2¾2
2

!

otherwise:
(3)

The scale¾2 factor can be estimated by applying a robust least-trimmed
squares (LTS) estimator to thepseudo-residuals(Gasser et al., 1986) de¯ned
as: s(x; t) = ( f (x; t + 1) ¡ f (x; t))=

p
2, where the coe±cient 1=

p
2 ensures

that E[(s(x; t))2] = E[(f (x; (t))2]. The scale factor¾1 is estimated by using
the variance of the residuals given by the least-mean squares estimator and
obtained at the initialization step. Let us point out that, in regions where there
are no moving vesicles,¾1 and ¾2 are found almost equal. The scale parameter
¸ acts as a threshold and is chosen in the range [1; 3]. Theoretically, this value
is relative to the point where the derivative of the½0(¢)-function is zero (Black
et al., 1998).

As a matter of fact, the proposed estimator is biased (Ruckstuhl etal., 2001)
but the bias is small. Simulations proved that theL2 risk of the estimator
is smaller when an asymmetric cost function is used and when the data are
corrupted by an additive positive signal. Figure 2 shows that the proposed
estimator is able to deal with heavily contaminated data and outperforms the
symmetric Leclerc M-estimator.
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2.2.2 Con¯dence matrix

An accurate estimation of the con¯dence matrix for the estimatedparameters
is needed for the subsequent steps described in Section 2.3. We usethe ap-
proximation proposed in (Ieng et al., 2004) to compute the covariance matrix
of the estimator

bC(x) =

nX

t=1

w(r (x; t))( r (x; t))2
nX

t=1

(w(r (x; t))) 2

Ã nX

t=1

w(r (x; t))

! 2 £

0

B
B
B
B
@

nX

t=1

w(r (x; t))
nX

t=1

w(r (x; t)) t
nX

t=1

w(r (x; t)) t
nX

t=1

w(r (x; t)) t2

1

C
C
C
C
A

¡ 1

(4)
wherer (x; t) = f (x; t) ¡ (a(x) + b(x)t) and the weights are de¯ned asw(z) =
½0(z)=z. Unlike the expression given in (Huber, 1981), the approximation given
by (4) is not asymptotic and yields a better estimation of the covariance matrix
when n is small (e.g.,n < 500).

2.3 Spatial coherence for background estimation

In this section, we introduce a process to regularize the 2D/3Dmapsa and b.
This can be accomplished by adopting thebias-variance trade-o®framework
described in (Lepski, 1991; Maurizot et al., 1995; Ercole et al., 2005; Kervrann
and Boulanger, 2006). Instead of using a single temporal signal at each location
x to estimate a(x) and b(x), a set of temporal 1D signals is ¯rst collected in a
spatial neighborhood of pixelx. This collection of signals is then analyzed in
order to take into account the desired spatial coherence of theparameters. In
practice, a ¯nite set of nested space-time tubes/parallelepipeds is considered
whose temporal section is formed by a growing spatial neighborhood centered
at point x (see Figure 3). Each tubeTl (x) centered at pointx is parameterized
by its diameter Ál (x) and l 2 [1; ::; L] denotes the index associated to each tube
de¯ned as

Tl (x) = f y 2  : kx ¡ ykp < Á l (x)g; (5)

where k ¢ kp denotes theLp norm. In our experiments, we arbitrarily choose
the L1 norm to design the set of nested parallelepipeds shown in Fig. 3.

In order to select the optimal diameter of the space-time tube,we propose to
minimize the point-wiseL2 risk E[( bµ(x) ¡ µ(x))2] of the parametric estimator
where µ(x) = ( a(x); b(x))T is the true parameter vector andbµ(x) its corre-
sponding estimator, at positionx. The L2 risk can be decomposed into the
squared bias and the variance. As shown in Figure 4, while the diameter Ál (x)
increases withl, the bias increases too. This can be explained by the fact that
the data cannot be described any longer at same stage by a unique parametric
model. In contrast, by taking more data points, the variance decreases. This
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Time

Fig. 3. Set of nested tubesfT i;l gl=1 ;¢¢¢;3. Respectively red, blue, green parallelepipeds
are successively considered if we choose theL 1 norm (see text).

behavior, also calledbias-variance trade-o®, is exploited to detect the min-
imum of the point-wise L2 risk which is nearly equal to twice the variance
(Lepski, 1991) (see Fig. 4).

For each diameterÁl (x), new estimates of the background model parame-
ters bµl (x) and the associated covariance matrixbCl (x) are computed with the
procedure described in Section 2.2 but using now all the data contained in
the considered neighborhood. It can be shown that thebias-variance trade-o®
writes down as the following test (Kervrann and Boulanger, 2006):

n ¡ 2 + 1
2n

³
bµl (x) ¡ bµl0(x)

´ T bC¡ 1
l0 (x)

³
bµl (x) ¡ bµl0(x)

´
< ´ (6)

for all 1 · l0 < l . While this inequality is satis¯ed, the diameter of the tube
is increased and the estimation process is continued. It is established that the
threshold ´ can be de¯ned as a quantile of a Fisher distribution of parameters
2 and n ¡ 2 ¡ 1, since an estimator of covariance matrix is only available.

In this section, we have proposed a spatially and temporally varying back-
ground model and a statistical framework to estimate the involved model
parameters. In the second part of the paper, we develop a simulation frame-
work to generate dynamical content corresponding to small moving spots in
image sequences.

3 Spot model

In video-microscopy, vesicles appear in many image sequences as small bright
spots against a dark background. The object diameter theoretically ranges
from 60 nm to 150 nm. The resolution of the microscope is about 130£ 130£ 300
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Fig. 4. Bias-variance trade-o®principle. When the tube diameter increases, the bias
increases and the variance decreases. The optimum is achieved when the bias and
the variance are of the same order.

nm. Then, the diameters of spots are often below this spatial resolution. How-
ever, the point spread function of the video-microscope makesthem appear
as larger structures even if a deconvolution process is applied (Sibarita et al.,
2002). Furthermore, when the density of objects increases, vesicles gather to-
gether and constitute small rods.

These vesicles are also known to move along microtubules, that isalong poly-
mers that have an exceptional bending sti®ness and can be easily ¯tby smooth
curves. Microtubules are conveyor belts inside the cell. Theydrive vesicles,
granules, organelles like mitochondria, and chromosomes with special attach-
ment proteins using molecular motors. It is also established thatmolecular
motors form a class of proteins responsible for the intracellular transport in-
side the cell (White et al., 1999). The dynein and kinein proteins are two
classes of motors associated with microtubules. It has been shown that the
concentration of these molecular motors in°uences the structure and the dy-
namics of the microtubule network (N¶ed¶elec, 2001). In stable conditions, the
speed and polarization of these motors is assumed to be constant. This ex-
plains partially why the observed velocity of vesicles is constant if they move
along the same microtubule.

In our study, vesicles move along the microtubule, leaving a donor organelle
and reaching an acceptor organelle, e.g., from the Golgi apparatus to the
Endoplasmic Reticulum. Unlike (Hadjidemetriou et al., 2006),we assume that
the microtubule network is static when compared to moving vesicles and we
rather aim at generating video-microscopy image sequences following a data-
driven approach.
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vesicle

direction of displacement

microtubule location

Fig. 5. Gaussian model of the spot oriented in the direction of the microtubule
axis. The covariance matrix of the Gaussian function depends on the velocity of
the vesicle. The simulated vesicles are then elongated along with the displacement
direction.

3.1 Photometric model

Large vesicles or sets of nearby vesicules can be satisfyingly represented by
anisotropic Gaussian spots with variances related to the spot dimensions rang-
ing from 60 nm to 150 nm. Furthermore, the size of vesicles in theimage is
close to the pixel size. The size of spots will be estimated in the image sequence
as described in Section 3.3. In our approach, occlusions are not handled since
tagged molecules attached to vesicles can di®use over time. In addition, split
and merge processes involving several vesicles occur in real image sequences
leading to rods (Zhang et al., 2006). The latter can be considered as a unique
object since the merged spots move along the same microtubule.

In what follows, the covariance matrix of the anisotropic Gaussian spot is a
function of the displacement direction. The ellipticity alsodepends on the ve-
locity. Figure 5 displays how the covariance matrix of the anisotropic Gaussian
function allows us to modify the orientation of spots according to the direction
of the microtubule axis.

12



3.2 Dynamical model for tra±c

3.2.1 Microtubule network modeling

A physics-based simulation of the self-organization of the microtubule network
can be found in (Surrey et al., 2001). It is based on the interaction between
the motors (e.g., kinesine) and microtubules, and explains some characteristic
conformations such as mitotic spindle. Typically, it takes into account the
dynamical behavior of the microtubules. However, this computer simulation
only describes the behavior of the microtubule networkin-vitro and is not
adapted for the more complexin-vivo case in which the microtubules interact
with other organelles of the cell. In addition, the observation time intervals
are usually short compared to the dynamics of the network itself, assumed to
be ¯xed in the following.

In order to generate a synthetic but realistic microtubule network, we exploit
real image sequences as input for the modeling. A real networkcould be tagged
with Green Fluorescence Protein (GFP) but this network is toocomplex and
individual microtubules cannot be easily extracted. However, the microtubule
network can be also coarsely computed from a maximum intensity projection
map with respect to time, that is from the paths followed by thetagged
vesicles. For instance, Fig. 6 shows the maximum intensity projection map of
a real sequence of 300 2D images. This simple projection allows us to select
a subset of the main paths used for the intracellular tra±cking, leading to a
network with low complexity. This approach has been successfully exploited for
the construction of kymograms in (Sibarita et al., 2006). However, as shown in
Fig. 6, all the paths are not complete, especially if the sequence duration is too
short. The gaps are then completed by usingad-hoc image processing tools.
The locations of the roads are extracted from the network image using the
unbiased line detectionalgorithm de¯ned in (Steger, 1998). Finally, each road
is ¯nally described by its length, its width, its source node andits destination
node.

3.2.2 Selection of source/destination nodes

In the proposed simulation, vesicles are going from one region to another.
Typically, they leave a donor organelle and move toward an acceptor organelle.
Once the network has been computed, the expert needs to specify the source
and destination nodes on the network. In order to take into account the lack of
a priori information on the organelles and their function, a node canbe both
a source and a destination, while the other nodes represent the intersection
points of the network and are only used for routing. Source-destination pairs
are important cues for the simulation and corresponds to a birth/death map
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Fig. 6. Maximum intensity projection map computed from an image sequence. The
paths followed by the vesicles appear as bright ¯laments. Themaximum inten-
sity projection map has been simpli¯ed using the denoising method described in
(Kervrann and Boulanger, 2006).
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Fig. 7. Representation of a realistic synthetic network. This network is based on a
maximum intensity projection map and has been manually simpli¯ed. This network
is composed of 146 nodes and 160 bi-directional links which correspond to 320
directional edges in the graph associated to the network.

as described in (Wang and Zhu, 2003). These labels are actuallyrelated to the
locations and relationships of speci¯c organelles inside the cell.
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In Fig. 7, the source and destination nodes have been manually selected by
the expert. The destination nodes displayed in red correspond to \end-points",
while the source nodes corresponding to the membrane of the Golgi apparatus
are displayed in green. In this simulation, vesicles are only going from the Golgi
to the \end-points" located at the periphery of the cell. Thus,the retrograde
transport from \end-points" to Golgi is prohibited and assumed to be inhibited
by bio-chemical alterations.

In our approach, the paths are de¯ned as the minimal paths between the
source and the destination nodes. They are computed using the Dijkstra al-
gorithm (Dijkstra, 1959). In that case, the weight associated toeach edge can
be de¯ned as a function of the length of the corresponding road,but it could
take into account other parameters as well. Let us note for instance the al-
lowed speed for a given edges could be retained to estimate the shortest path.
Finally, as expected, the vesicles move along the estimated roads with veloc-
ities distributed around the speed-limit of the roads. At each time step, the
vesicle is moved along the microtubule with a displacement stepwhich is a
proportional to the velocity.

3.3 Estimation of model parameters and spot detection

Given a simulated sequence as described above, we now address theproblem
of detecting moving vesicles with minimal prior knowledge. The performance
of any detector is better assessed if ground truth is available, which is precisely
what this simulation framework can o®er. Blob/spot detection in image se-
quences is an important task in video-microscopy. Here, we propose a method
able to decide with high con¯dence whether any image point belongs to the
image background or a moving object. Our approach is unsupervised. It will
be applied to arti¯cial image sequences obtained by the modeling framework
described in the paper and to real image sequences.

Our two-step method for temporal detection is based on the minimization of
a penalized likelihood criterion in the line of work of Birg¶e and Massart (Birg¶e
and Massart, 2001) for model selection. In this step, we consider asequence
of n observationsY1; ¢ ¢ ¢; Yn (assumed to be i.i.d.) that take its values inR+ .
We assume that a subset ofn ¡ `; ` 2 f 0; ¢ ¢ ¢; ng, observations are realizations
of a hidden variablem at some unknown instants. HereK ` will denote the
unknown numbern ¡ ` of temporal observations de¯ned at timet as:

Yt = m + »t ; »t » N (0; ¿2): (7)

where m and the variance¿2 are also unknown. To detect theK ` observa-
tions corresponding to this model, we adopt a global approachwhere all the
relevant observations are simultaneously detected, by minimizing a penalized
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least squares criterion. The role of the least squares term is to measure the ¯t
of of some observationsYt 's to m the more accurately possible. The penalty
term is used for determining the number of observations used to estimate m
and ¿2.

In our application, a subset of residualsYt
4
= f (x; t) ¡ (a(x)+ b(x)t) (obtained

as explained in Section 2.2.1) is assumed to belong to the dark background of
intensity m at pixel x. The remaining observations are assumed to be related
to the moving objects. For the sake of simplicity in the notations, we will
omit the variable x since the detection is performed independently at each
pixel. Without loss of generality, the sequence of residualsY = f Y1; ¢ ¢ ¢; Yng
is ¯rst re-ordered to produce a new sequenceY 0 = f Y 0

1; ¢ ¢ ¢; Y 0
ng such that

jY 0
t j > jY 0

t+1 j since theYt 's are assumed to be independent. Now, we consider
the following collection of modelsM = f M 1; :::; Mng:

8
>>>>>>>><

>>>>>>>>:

M 1 = ( Y 0
1; 0; 0; :::; 0)T

...

M n¡ 1 = ( Y 0
1; Y 0

2; Y 0
3; :::; 0)T

M n = ( Y 0
1; Y 0

2; Y 0
3; :::; Y0

n )T :

(8)

whereM ` is a n-dimensional vector andK ` = n ¡ ` is the number of compo-
nents of the background . Since the number of components of the background
is unknown, we introduce a penalized version of the least squares criterion for
signal decomposition (Huet, 2006), de¯ned as :

J (M ` ) =
n
2

log(b¿2
` ) + n

µ

c1 log
µ n

n ¡ K `

¶

+ c2

¶ n ¡ K `

K `
(9)

where

b¿2
` =

kY 0¡ M `k2

n
=

1
n

nX

t= `

Y 02
t ; (10)

Y 0 is the set ofn re-ordered observations . The two universal constantsc1 and
c2 were calibrated in (Huet, 2006) and found to bec1 = 2 and c2 = 4. Since
the number n of observations is small, we computeJ (M ` ) for each modelM `

and select the modelM ? such that:

M ? = inf
M ` ;l=1 ;¢¢¢;n

J (M ` ); (11)

for every pixel in the image. This procedure amounts to thresholding the
sequence of residuals (Huet, 2006).

In the second step, we collect the estimated modelsM ?(x) at each pixelx 2 .
Since the model selection amounts to determining a thresholdT(x) such that
T(x) = Yn¡ K ? (x) for the 1D sequence of residuals, a threshold mapT is
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Fig. 8. Illustration of the model selectionprinciple applied to a synthetic signal
(n = 1000). The number of samples corresponding to the background is about 800.
The X-axis represents the model number ; the left ordinate corresponds to the value
jY` j associated to the modelM ` plotted in blue ; the right ordinate represents the
value of the cost function J (M ` ).

computed. Finally, we determine a global threshold° for the whole image in
order to detect the highest intensity level corresponding to the background
component for the whole image sequence (see Fig. 8). Practically, we use the
model selection procedure described earlier to threshold theT map. In that
case, the threshold valuesT(x) are considered as i.i.d. observed variables.
Finally, a pixel x belongs to the background iff (x; t) ¡ (a(x) + b(x)t) · °
and to moving objects otherwise.

4 Experiments

In this section, we report two experiments to illustrate the proposed simulation
method. First, we show how we can generate a realistic image sequence from
real images. Second, a synthetic image sequence whose parameters have been
manually determined is exploited to evaluate the performance of an image
denoising method as well as the estimation method of the background as
described in Section 3.
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4.1 Realistic image sequence simulation

We utilize a real image sequence in order to simulate a sequence with simi-
lar and controlled photometric and dynamical content. One frame of the real
image is shown in Fig. 9(a) and contains vesicles moving from the Golgi ap-
paratus to the Endoplasmic Reticulum. The parameters of the time-varying
background are ¯rst estimated as described in Section 2. The two 2D mapsa
and b are respectively shown in Fig. 9(e) and in Fig. 9(f). Once these parame-
ter maps have been estimated, the background is subtracted from the original
images in order to obtain the sequence of residuals displayed inFig. 9(g),
which is a noisy representation of the moving spots. The main paths followed
by vesicles through the 150 frames of the real sequence can be observed on the
maximum intensity projection map in the time direction as shown in Fig. 9(b).
We have further enhanced the maximum intensity projection map using op-
timal steerable ¯lters (Jacob and Unser, 2004) (Fig. 9(c)). Theunbiased line
detection algorithm (Steger, 1998) is then applied to the resulting enhanced
image in order to estimate the positions of the roads plotted inFig. 9(d). Fi-
nally 150 vesicles are generated and moved along the reconstructed network.
The velocities of the vesicles are tuned so that the simulated sequence pro-
vides the same visual e®ect than the original sequence. It was con¯rmed by
biologist-experts that the proposed simulation method supplies realistic image
sequences both considering photometry and dynamics aspects.

4.2 Benchmark generation

This simulation framework can also be exploited for benchmarking. More
speci¯cally, in order to objectively evaluate the performance of the proposed
background estimation method, we have simulated a 128£ 128£ 150 image
sequence. This simulation comprises 20 vesicles moving along the network
plotted in Fig. 10(a). To generate the background model, we have manually
designed the spatial appearance of the background as shown in Fig. 10(b).
Then, we have computed the image such that after a period equals to twice
the duration of the simulation, we would obtain a uniform °at background.
The two arti¯cial maps a0 and b0 for the background model are then shown
in Fig. 10(b)-(c). Three frames of the noise-free simulated sequence are given
in Fig. 10(d)-(f). A zero-mean Gaussian noise of standard deviation ¾= 9 has
been added to these frames and the resulting noised images are displayed in
Fig. 10(i,j,k). The intensity of the vesicles are assumed to follow a Gaussian
law with mean 30 and standard deviation 3 leading to a signal-to-noise ratio
of 13:6dB. By combining all the mentioned inputs, we have speci¯ed theuseful
set of parameters to control the simulation.
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Now, we apply the algorithm described in Boulanger et al. (2008, 2007) to
restore the noisy image sequence obtained as explained above. The two-step
denoising method exploits 3D+time information to improve the signal-to-noise
ratio of images corrupted by mixed Poisson-Gaussian noise (Boulanger et al.,
2008, 2007). A data-driven variance stabilization transformis ¯rst applied to
the image-data to introduce independence between the mean and variance.
In a second step, an original statistical patch-based framework for noise re-
duction and preservation of space-time discontinuities has been developped.
In our study, discontinuities are related to small moving spots with high ve-
locity observed in °uorescence video-microscopy. The idea is tominimize an
objective nonlocal energy functional involving image spatio-temporal patches.
The minimizer has a simple form and is de¯ned as the weighted average of
input data taken in spatially-varying neighborhoods. The sizeof each neigh-
borhood is optimized to improve the performance of the pointwise estimator.
By running 6 iterations of the adaptive denoising algorithm (3 £ 3 patches),
the resulting mean squared error of the recovered image is 1:35, which corre-
sponds to a signal-to-noise ratio of 30:0dB. The noise is therefore drastically
reduced (see Fig. 11) and, visually the reconstructed image sequence looks
similar to the original sequence. Let us also stress that no vesiclehas disap-
peared. Denoising algorithms are commonly applied to real image sequences
in microscopy to make easier other image processing tasks.

We have evaluated the performance of our estimation method ofthe time-
varying background model. This method is applied to a simulated noisy image
sequence. The two estimated mapsba and bb are shown in Fig. 11. The mean
squared error between the original mapa0 and the estimated mapba is 1:50
and the signal-to-noise ratio is 31:44dB. The signal-to-noise ratio calculated
from the original map b0 and the estimated mapbb is 32:70dB. The results
of the temporal detection method described in Section 3.3, are presented in
Fig.11(j,k,l) at time t = 0; t = 75 and t = 100.

5 Conclusion

In this paper, we have proposed a framework for the analysis andthe sim-
ulation of the dynamical content corresponding to membrane tra±cking in
°uorescence video-microscopy. We have designed models for the time-varying
background and moving vesicles. We have also proposed statisticalmethods
for estimating the model parameters. The proposed simulation framework has
been demonstrated on arti¯cial and data-driven image sequences.

More generally, the simulation framework can be used to generate realistic
image sequences in °uorescence time-lapse microscopy. Any tracking, object
detection and segmentation algorithm can be evaluated since the ground truth
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is available. Since it is challenging to assess the performanceof image process-
ing algorithms on real image sequences, our motivation was to determine a
priori the limits of each algorithm (based on metrics to be arbitrarily de¯ned
such as mean square error, false alarm rate, ...). When applied to real images,
the results can be better quanti¯ed if well known on arti¯cial images.

Nevertheless, further validations with biologist-experts arerequired to improve
the proposed modeling framework. As already investigated in(P¶ecot et al.,
2007, 2008), we also plan to address the tra±c estimation problembased on
the image sequence modeling we have described in this paper.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. Simulation of a video-microscopy image sequence exploiting a 3D real images
acquired with time-lapse wide-¯eld microscopy. (a) one frame of the sequence pro-
jected (maximum) along z axis (depth) computed from the original 3D+time image
sequence ; (b) maximum intensity projection 2D map wrt time t ; (c) results of
steerable ¯ltering ; (d) results of the un-biased line detector ; (e) map a ; (f) map b
; (g) residual map ; (h) noise-free image reconstruction fromestimated parameters.
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Fig. 10. Simulation of a synthetic video-microscopy image sequence: (a) hand-made
network ; (b) true map a corresponding to the background model ; (c) true map
b corresponding to the temporal variation of the background ;(d,e,f) three frames
(t = 0 ; t = 75; t = 100) extracted from the noise-free synthetic image sequence ;
(i,j,k) three noisy frames (t = 0 ; t = 75; t = 100) corresponding to a signal-to-noise
ratio of 13:6dB.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 11. Computation of the background model parameters anddetection of moving
noisy vesicles: (a,b,c) three frames (t = 0 ; t = 75; t = 100) of the denoised im-
age sequence ; (d) maximum intensity projection map ; (e) estimated map ba ; (f)
estimated map bb ; (g,h,i) residual images at time t = 0 ; t = 75 and t = 100 (af-
ter background subtraction) ; (j,k,l) detected vesicles using the proposed temporal
detection method (t = 0 ; t = 75; t = 100).
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