From Stochastic Integration wrt Fractional Brownian Motion to Stochastic Integration wrt Multifractional Brownian Motion

Abstract : Stochastic integration w.r.t. fractional Brownian motion (fBm) has raised strong interest in recent years, motivated in particular by applications in finance and Internet traffic modelling. Since fBm is not a semi-martingale, stochastic integration requires specific developments. Multifractional Brownian motion (mBm) is a Gaussian process that generalizes fBm by letting the local Hölder exponent vary in time. This is useful in various areas, including financial modelling and biomedicine. In this work we start from the fact, established in \cite[Thm 2.1.(i)]{fBm_to_mBm_HerbinLebovitsVehel}, that an mBm may be approximated, in law, by a sequence of ''tangent" fBms. We used this result to show how one can define a stochastic integral w.r.t. mBm from the stochastic integral w.r.t. fBm, defined in \cite{Ben1}, in the White Noise Theory sense.
Type de document :
Article dans une revue
Annals of the University of Bucharest. Mathematical series, București : Editura Universității din București, 2013, 4 (LXII), pp.397-413
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00795494
Contributeur : Joachim Lebovits <>
Soumis le : vendredi 26 avril 2013 - 16:49:56
Dernière modification le : lundi 29 septembre 2014 - 00:19:36
Document(s) archivé(s) le : mardi 4 avril 2017 - 00:00:14

Fichiers

hal-00795494.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00795494, version 2
  • ARXIV : 1305.0342

Collections

Citation

Joachim Lebovits. From Stochastic Integration wrt Fractional Brownian Motion to Stochastic Integration wrt Multifractional Brownian Motion. Annals of the University of Bucharest. Mathematical series, București : Editura Universității din București, 2013, 4 (LXII), pp.397-413. 〈hal-00795494v2〉

Partager

Métriques

Consultations de la notice

122

Téléchargements de fichiers

111