P. K. Agarwal, S. Har-peled, and H. Yu, Embeddings of surfaces, curves, and moving points in euclidean space, ACM SoCG, 2007.

M. Belkin and P. Niyogi, Towards a theoretical foundation for laplacian-based manifold methods, COLT, 2005.

M. Belkin and P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Computation, vol.15, issue.6, pp.1373-1396, 2003.
DOI : 10.1126/science.290.5500.2319

C. M. Bishop, Pattern Recognition and Machine Learning, 2007.

C. M. Bishop, M. Svensen, and C. K. Williams, GTM: The Generative Topographic Mapping, Neural Computation, vol.39, issue.1, pp.215-234, 1998.
DOI : 10.1007/BF01889678

F. Chazal, D. Cohen-steiner, and A. Lieutier, A sampling theory for compact sets in euclidean space, Proceedings of the 22nd ACM Symposium on Computational Geometry, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00864493

F. Chazal, D. Cohen-steiner, and Q. Mérigot, Stability of boundary measures, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00154798

S. Cheng, Y. Wang, and Z. Wu, Provable dimension detection using principal component analysis, Symposium on Computational Geometry, pp.208-217, 2005.

R. R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler et al., Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. of Nat. Acad. Sci, pp.7426-7431, 2005.
DOI : 10.1073/pnas.0500334102

R. R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler et al., Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods, Proc. of Nat. Acad. Sci, pp.7432-7437, 2005.
DOI : 10.1073/pnas.0500896102

V. De-silva, J. C. Langford, and J. B. Tenenbaum, Graph approximations to geodesics on embedded manifolds, 2000.

V. De-silva and J. B. Tenenbaum, Global versus local methods in nonlinear dimensionality reduction, Advances in Neural Information Processing Systems 15, 2003.

M. Demazure, Bifurcations and Catastrophes: Geometry of Solutions to Nonlinear Problems, 1898.
DOI : 10.1007/978-3-642-57134-3

D. Donoho and C. Grimes, Hessian eigenmaps: Locally linear embedding techniques for highdimensional data, Proceedings of the National Academy of Sciences, pp.5591-5596, 2003.

J. Giesen and U. Wagner, Shape dimansion and intrinsic metric from samples of manifolds with high co-dimension, Proc. of the 19th Annual symp, pp.329-337, 2003.

J. Ham, D. D. Lee, S. Mika, and B. Schölkopf, A kernel view of the dimensionality reduction of manifolds, Twenty-first international conference on Machine learning , ICML '04, p.47, 2004.
DOI : 10.1145/1015330.1015417

T. Hastie and W. Stuetzle, Principal Curves, Journal of the American Statistical Association, vol.26, issue.406, pp.502-516, 1989.
DOI : 10.1080/03610927508827223

M. Hein and M. Maier, Manifold denoising, NIPS, pp.561-568, 2006.

S. Lafon and A. B. Lee, Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.28, issue.9, pp.1393-1403, 2006.
DOI : 10.1109/TPAMI.2006.184

J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction, 2007.
DOI : 10.1007/978-0-387-39351-3

F. Memoli and G. Sapiro, Distance functions and geodesics on point clouds, 2005.

S. T. Roweis and L. K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol.290, issue.5500, pp.2323-2326, 2000.
DOI : 10.1126/science.290.5500.2323

S. T. Roweis and L. K. Saul, Think globally, fit locally: Unsupervised learning of low dimensional manifolds, Journal of Machine Learning Research, vol.4, pp.119-155, 2003.

J. B. Tenenbaum, V. De-silva, and J. C. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, vol.290, issue.5500, pp.2319-2323, 2000.
DOI : 10.1126/science.290.5500.2319

L. J. Van-der-maaten, E. O. Postma, and H. J. Van-den-herik, Dimensionality reduction: a comparative review, 2007.

Q. Kilian, L. K. Weinberger, and . Saul, Unsupervised learning of image manifolds by semidefinite programming, pp.988-995, 2004.

Q. Kilian, F. Weinberger, L. K. Sha, and . Saul, Learning a kernel matrix for nonlinear dimensionality reduction, ICML '04: Proceedings of the twenty-first international conference on Machine learning, p.106, 2004.

K. Q. Weinberger and L. K. Saul, An introduction to nonlinear dimensionality reduction by maximum variance unfolding, AAAI, 2006.

K. Q. Weinberger and L. K. Saul, Unsupervised Learning of Image Manifolds by Semidefinite Programming, International Journal of Computer Vision, vol.26, issue.1, pp.77-90, 2006.
DOI : 10.1007/s11263-005-4939-z

L. Yang, Building connected neighborhood graphs for isometric data embedding, Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining , KDD '05, pp.722-728, 2005.
DOI : 10.1145/1081870.1081963

H. Zhang, O. Van-kaick, and R. Dyer, Spectral Mesh Processing, Computer Graphics Forum, vol.21, issue.3, 2008.
DOI : 10.1111/j.1467-8659.2010.01655.x

A. Amadei, A. B. Linssen, and H. J. Berendsen, Essential dynamics of proteins, Proteins: Structure, Function, and Genetics, vol.158, issue.4, pp.412-425, 1993.
DOI : 10.1002/prot.340170408

K. D. Ball, R. S. Berry, R. Kunz, F. Li, A. Proykova et al., From Topographies to Dynamics on Multidimensional Potential Energy Surfaces of Atomic Clusters, Science, vol.271, issue.5251, pp.271963-966, 1996.
DOI : 10.1126/science.271.5251.963

O. Becker and M. Karplus, The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics, The Journal of Chemical Physics, vol.106, issue.4, pp.1495-1517, 1997.
DOI : 10.1063/1.473299

O. M. Becker, Principal coordinate maps of molecular potential energy surfaces, Journal of Computational Chemistry, vol.194, issue.399, pp.1255-1267, 1998.
DOI : 10.1002/(SICI)1096-987X(199808)19:11<1255::AID-JCC5>3.0.CO;2-J

R. , S. Berry, N. Elmaci, J. P. Rose, and B. Vekhter, Linking topography of its potential surface with the dynamics of folding of a proteinmodel, Proceedings of the National Academy of Sciences, pp.9520-9524, 1997.

B. Robert, G. Best, and . Hummer, Chemical Theory and Computation Special Feature: Reaction coordinates and rates from transition paths, Proceedings of the National Academy of Sciences, pp.6732-6737, 2005.

P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, : Throwing Ropes Over Rough Mountain Passes, in the Dark, Annual Review of Physical Chemistry, vol.53, issue.1, pp.291-318, 2002.
DOI : 10.1146/annurev.physchem.53.082301.113146

P. G. Bolhuisdagger, C. Dellago, and D. Chandler, Reaction coordinates of biomolecular isomerization, pp.5877-5882, 2000.

C. L. Brooks, J. Onuchic, and D. J. Wales, STATISTICAL THERMODYNAMICS: Taking a Walk on a Landscape, Science, vol.293, issue.5530, pp.612-613, 2001.
DOI : 10.1126/science.1062559

L. Chavez, J. N. Onuchic, and C. Clementi, Quantifying the Roughness on the Free Energy Landscape:?? Entropic Bottlenecks and Protein Folding Rates, Journal of the American Chemical Society, vol.126, issue.27, pp.8426-8432, 2004.
DOI : 10.1021/ja049510+

S. Samuel, Y. Cho, P. G. Levy, and . Wolynes, P versus Q: Structural reaction coordinates capture protein folding on smooth landscapes, Proceedings of the National Academy of Sciences, pp.586-591, 2006.

P. Das, M. Moll, H. Stamati, L. Kavraki, and C. Clementi, Low-dimensional, free-energy landscapes of protein-folding reactions by nonlinear dimensionality reduction, Proceedings of the National Academy of Sciences, vol.103, issue.26, pp.9885-9890, 2006.
DOI : 10.1073/pnas.0603553103

P. Das, C. J. Wilson, G. Fossati, P. Wittung-stafshede, K. S. Matthews et al., Characterization of the folding landscape of monomeric lactose repressor: Quantitative comparison of theory and experiment, Proceedings of the National Academy of Sciences, pp.14569-14574, 2005.
DOI : 10.1073/pnas.0505844102

R. Du, V. Pande, A. Y. Grosberg, T. Tanaka, and E. I. Shakhnovich, On the transition coordinate for protein folding, The Journal of Chemical Physics, vol.108, issue.1, pp.334-350, 1998.
DOI : 10.1063/1.475393

R. L. Dunbrack, Rotamer Libraries in the 21st Century, Current Opinion in Structural Biology, vol.12, issue.4, pp.431-440, 2002.
DOI : 10.1016/S0959-440X(02)00344-5

H. A. Scheraga, A united-residue force field for off-lattice protein-structure simulations. i. functional forms and parameters of long-range side-chain interaction potentials from protein crystal data, J. of Computational Chemistry, vol.18, issue.7, pp.849-873, 1997.

A. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, 1999.

A. T. Fomenko and T. L. Kunii, Topological Modeling for visualization, 1997.
DOI : 10.1007/978-4-431-66956-2

D. Frenkel and B. Smit, Understanding Molecular Simulation, Computers in Physics, vol.11, issue.4, 2002.
DOI : 10.1063/1.4822570

A. E. Garcia, Large-amplitude nonlinear motions in proteins, Physical Review Letters, vol.68, issue.17, pp.2696-2699, 1992.
DOI : 10.1103/PhysRevLett.68.2696

D. Gfeller, P. De-los-rios, A. Caflisch, and F. Rao, Complex network analysis of free-energy landscapes, Proceedings of the National Academy of Sciences, pp.1817-1822, 2007.
DOI : 10.1073/pnas.0608099104

N. Go and H. Taketomi, Respective roles of short- and long-range interactions in protein folding., Proceedings of the National Academy of Sciences, pp.559-563, 1978.
DOI : 10.1073/pnas.75.2.559

A. Isaac, E. J. Hubner, E. I. Deeds, and . Shakhnovich, Understanding ensemble protein folding at atomic detail, Proceedings of the National Academy of Sciences, pp.17747-17752, 2006.

G. Hummer, From transition paths to transition states and rate coefficients, The Journal of Chemical Physics, vol.120, issue.2, 2004.
DOI : 10.1063/1.1630572

T. Ichiye and M. Karplus, Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations, Proteins: Structure, Function, and Genetics, vol.82, issue.3, pp.205-217, 1991.
DOI : 10.1002/prot.340110305

C. Brooks, I. , M. Gruebele, J. Onuchic, and P. Wolynes, Chemical physics of protein folding, Proceedings of the National Academy of Sciences, vol.95, issue.19, pp.9511037-11038, 1998.
DOI : 10.1073/pnas.95.19.11037

S. E. Jackson, How do small single-domain proteins fold? Fold Des, pp.81-91, 1998.

J. Janin, S. Wodak, M. Levitt, and B. Maigret, Conformation of amino acid side-chains in proteins, Journal of Molecular Biology, vol.125, issue.3, pp.357-386, 1978.
DOI : 10.1016/0022-2836(78)90408-4

T. Komatsuzaki, K. Hoshino, Y. Matsunaga, G. J. Rylance, R. L. Johnston et al., How many dimensions are required to approximate the potential energy landscape of a model protein?, The Journal of Chemical Physics, vol.122, issue.8, 2005.
DOI : 10.1063/1.1854123

R. E. Kunz and R. S. Berry, Statistical interpretation of topographies and dynamics of multidimensional potentials, The Journal of Chemical Physics, vol.103, issue.5, pp.1904-1912, 1995.
DOI : 10.1063/1.469714

O. F. Lange and H. Grubmller, Generalized correlation for biomolecular dynamics, Proteins: Structure, Function, and Bioinformatics, vol.29, issue.4, pp.1053-1061, 2006.
DOI : 10.1002/prot.20784

J. W. Milnor, Morse Theory, 1963.

E. Paci, M. Vendruscolo, and M. Karplus, Native and non-native interactions along protein folding and unfolding pathways, Proteins: Structure, Function, and Genetics, vol.109, issue.3, pp.379-392, 2002.
DOI : 10.1002/prot.10089

M. Pettini, Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics, 2007.
DOI : 10.1007/978-0-387-49957-4

E. Plaku, H. Stamati, C. Clementi, and L. E. Kavraki, Fast and reliable analysis of molecular motion using proximity relations and dimensionality reduction, Proteins: Structure, Function, and Bioinformatics, vol.108, issue.4, pp.897-907, 2007.
DOI : 10.1002/prot.21337

G. Rylance, R. Johnston, Y. Matsunaga, C. Li, A. Baba et al., Topographical complexity of multidimensional energy landscapes, Proceedings of the National Academy of Sciences, vol.103, issue.49, pp.18551-18555, 2006.
DOI : 10.1073/pnas.0608517103

M. Tirion, Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis, Physical Review Letters, vol.77, issue.9, pp.1905-1908, 1996.
DOI : 10.1103/PhysRevLett.77.1905

D. J. Wales, Energy Landscapes, 2003.
DOI : 10.1017/CBO9780511721724

URL : https://hal.archives-ouvertes.fr/hal-01423280