N
N

N

HAL

open science

Improving Context-Awareness in Self-Adaptation Using
the DYNAMICO Reference Model

Gabriel Tamura, Norha Villegas, Haussi Muller, Laurence Duchien, Lionel

Seinturier

» To cite this version:

Gabriel Tamura, Norha Villegas, Haussi Muller, Laurence Duchien, Lionel Seinturier.
Context-Awareness in Self-Adaptation Using the DYNAMICO Reference Model. 8th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, May 2013, San Fran-

cisco, United States. pp.153-162. hal-00796275

HAL Id: hal-00796275
https://inria.hal.science/hal-00796275

Submitted on 25 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Improving

https://inria.hal.science/hal-00796275
https://hal.archives-ouvertes.fr

Improving Context-Awareness in Self-Adaptation
using the DYNAMICO Reference Model

Gabriel Tamura*, Norha M. Villegas*', Hausi A. Miiller’, Laurence Duchien?, Lionel Seinturiert
*Department of Information and Communications Technologies, Icesi University, Cali, Colombia
gtamura@icesi.edu.co
TDepartment of Computer Science, University of Victoria, Victoria, Canada
{nvillega, hausi}@cs.uvic.ca
{INRIA Lille-Nord Europe - LIFL - University of Lille 1, Lille, France
{laurence.duchien, lionel.seinturier} @inria.fr

Abstract—Self-adaptation mechanisms modify target systems
dynamically to address adaptation goals, which may evolve con-
tinuously due to changes in system requirements. These changes
affect values and thresholds of observed context variables and
monitoring logic, or imply the addition and/or deletion of context
variables, thus compromising self-adaptivity effectiveness under
static monitoring infrastructures. Nevertheless, self-adaptation
approaches often focus on adapting target systems only rather
than monitoring infrastructures. Previously, we proposed DY-
NAMICO, a reference model for self-adaptive systems where
adaptation goals and monitoring requirements change dynam-
ically. This paper presents an implementation of DYNAMICO
comprising our SMARTERCONTEXT monitoring infrastructure
and QOS-CARE adaptation framework in a self-adaptation so-
lution that maintains its context-awareness relevance. To evaluate
our reference model we use self-adaptive system properties and
the Znn.com exemplar to compare the Rainbow system with
our DYNAMICO implementation. The results of the evaluation
demonstrate the applicability, feasibility, and effectiveness of
DYNAMICO, especially for self-adaptive systems with context-
awareness requirements.

I. INTRODUCTION

Self-adaptation mechanisms, driven by adaptation goals
(i.e., functional and non-functional requirements), monitor
entities from the target system environment to decide when and
how to perform adaptations [1]. Nevertheless, when adaptation
goals change while the system executes, both monitoring
and self-adaptation mechanisms may become inapplicable
thus compromising the accomplishment of the target system
objectives and the assurance of its quality properties [2]. This
happens because either the adaptation mechanism addresses
out-of-date goals, or the monitoring mechanism addresses
monitoring requirements that are irrelevant to the actual adap-
tation goals.

In a previous research work we proposed DYNAMICO (Dy-
namic Adaptation, Monitoring and Control Objectives model),
a reference model that provides guidelines for designing and
implementing self-adaptive software (SAS) systems where
both adaptation and monitoring infrastructures require self-
adaptive capabilities [3]. That is, DYNAMICO targets specially
SAS systems that must cope with changes in adaptation goals
and context monitoring requirements at runtime. DYNAM-
ICO specifies three types of feedback loops: (i) the control

objectives feedback loop, which keeps track of changes in
adaptation goals; (ii) the target system adaptation feedback
loop, which models the target system adaptation mechanism;
and (iii) the dynamic monitoring feedback loop, which models
a self-adaptive monitoring mechanism. Adaptation goals, con-
trolled by the first feedback loop, govern the dynamic behavior
of the other two feedback loops. Besides raising the visibility
of feedback loops—an important concern in the engineering of
SAS systems [4], [S], DYNAMICO characterizes the separation
of concerns and interactions among the different types of
feedback loops required to engineer this kind of systems.
Our contribution in this paper is twofold. First, we realize
an implementation of the DYNAMICO reference model that
demonstrates its applicability to realize SAS systems enabled
with dynamic monitoring infrastructures. The purpose of a
dynamic monitoring infrastructure is to maintain the relevance
of the SAS deployed monitoring elements with respect to
changing adaptation goals. Our implementation integrates the
SMARTERCONTEXT monitoring infrastructure [6] and the
QO0S-CARE adaptation framework [7], contributions of our
previous research. SMARTERCONTEXT realizes the dynamic
monitoring feedback loop specified by DYNAMICO. QOS-
CARE realizes the adaptation framework to reconfigure both
the dynamic monitoring infrastructure of SMARTERCONTEXT
and the target system. Second, we present a comparative eval-
uation of our implementation against Rainbow/Znn.com [8].
We selected Rainbow because it has been recognized by the
software engineering for adaptive and self-managing systems
(SEAMS) research community as a reference approach to
architectural self-adaptation, and the availability of quantita-
tive data about its evaluation. We conducted an experimental
case study to analyze the feasibility and effectiveness of
DYNAMICO to improve context-awareness of SAS solutions
derived from it. Our case study focuses on a dynamic SOA
governance scenario where Znn.com is used as a service-
oriented target system to be adapted in order to guarantee
service level agreements (SLA), which are renegotiated at run-
time. Given that Znn.com was explicitly developed to evaluate
the effectiveness of Rainbow [9], we also use it as our target
system for comparability purposes. On one side, the evaluation
results demonstrate the feasibility of our reference model in

terms of the settling time (i.e., the time required to adapt
a monitoring strategy upon changes in control objectives)
of our DYNAMICO implementation. On the other side, these
results demonstrate the effectiveness of using DYNAMICO to
improve context-awareness in SAS solutions. Finally, based
on the findings of our comparative evaluation, we analyze
the suitability of Znn.com as a benchmark target system to
compare self-adaptation implementations.

This paper is organized as follows. Section II introduces
the dynamic SOA governance case study. Section III explains
our DYNAMICO reference model. Sections IV and V evaluate
the applicability of DYNAMICO and its support for changes in
system requirements at runtime. Section VI presents our com-
parative evaluation analysis and results on the effectiveness
and feasibility of DYNAMICO. Section VII discusses related
work, and Section VIII concludes the paper.

II. CASE STUDY: DYNAMIC SOA GOVERNANCE BASED ON
SELF-ADAPTATION

Znn.com has been proposed as a target system exemplar for
the SEAMS community. This system imitates a news website
that follows a three-tier architecture consisting of databases,
application servers, and clients [9]. The adaptation goal of
Znn.com is to provide news contents within an acceptable
response time and quality. To satisfy this goal, the adaptation
strategy is based on the modification of parameters of the
Apache configuration file, including the content pages. Thus,
Znn.com was implemented to support parametric adaptation
based on performance, cost, and content fidelity. The control
actions (i.e., the mechanisms that affect the target system)
supported by Znn.com consist of switching the server contents
mode from multimedia to text and vice versa, and increment-
ing or decrementing the Apache server thread pool size. The
context variables required to be observed are request-response
time, server load, and connection bandwidth.

Based on DYNAMICO, we implemented a dynamic SOA
governance mechanism that adapts Znn.com to guarantee the
satisfaction of a performance SLA. Throughput, defined as
the time spent to process a news request (ms/request), is
the quality factor we defined for the initial SLA. Later, while
the system is operating, the performance SLA is renegoti-
ated by adding capacity as a new quality factor. This new
contracted condition states that the way of delivering the
contents must vary according to the connection bandwidth.
That is, depending on the available bandwidth, news contents
delivered to clients will be based on either text or multimedia.
Our solution implements a dynamic monitoring system that
deploys new context gatherers and monitors at runtime. These
elements, required to satisfy new monitoring requirements, are
automatically synthesized from SLAs and deployed without
sensible interruptions in the execution of neither the target
system nor the adaptation mechanism.

III. THE DYNAMICO REFERENCE MODEL

DYNAMICO provides guidelines for designing the software
architecture of SAS systems that are affected by changes in

context situations and adaptation goals [3]. In our opinion, for
a software system (i.e., target system) to become effectively
context-driven self-adaptive, it should incorporate at least three
types of feedback loops to control three levels of dynamics: (a)
the regulation of the target system requirements satisfaction;
(b) the continuous accomplishment of adaptation goals and
the preservation of the target system quality attributes under
changing conditions of execution; and (c) the relevance of the
context monitoring infrastructure according to the varying ex-
ecution environment and changing adaptation goals. Figure 1
is an abstraction of our DYNAMICO reference model.

Legend:
—> Control/data flow

D Feedback loop abstraction

Reference Control
Objectives (e.g., SLAs)
CO-FL
Objectives Feedback Loop

Adaptation Feedback Loop

T(C) (D)

A-FL

(B) (A)
M-FL
Monitoring Feedback Loop
I Sensed
Context
Information
Figure 1. The three levels of dynamics in a context-driven self-adaptive

software systems [3].

The separation of concerns among these three levels of
dynamics made explicit by DYNAMICO is particularly crucial
for cases such as the service-oriented news system presented
in the previous section. In this scenario, changes in SLAs at
runtime require the adaptation of not only the target system,
but also the monitoring infrastructure to preserve the relevance
of the adaptation mechanism with respect to the current
contracted conditions. However, the automatic reconfiguration
of the monitoring infrastructure is impractical having the
context manager tightly coupled to the adaptation mechanism.
Similarly, the explicit control of changes in SLAs (i.e., control
objectives) requires separate instrumentation. Figure 2 depicts
a detailed view of the feedback loops for the three levels of
dynamics presented in Fig. 1.

A. The Control Objectives Feedback Loop (CO-FL)

The Control Objectives Feedback Loop (cf. CO-FL in
Fig. 2) addresses the first level of dynamics specified by
DyNaMIco. It governs changes in control objectives (e.g.,
SLAs) with the collaboration of the adaptation feedback loop
(A-FL) and the monitoring feedback loop (M-FL). We define
requirements and adaptation properties as system variables to
be controlled. We refer to these variables as control objec-
tives and adaptation goals interchangeably. Moreover, control
objectives are subject to change by user-level (re)negotiations
at runtime and therefore must be addressed in a consistent
and synchronized way by the adaptation mechanism (i.e., A-
FL) and the context manager (i.e., M-FL). For example, in

User Level
Negotiations [DYNAMICO Reference Model|

lRefevence Control

Objectives
| Context

! Symptoms [opjecti Objecti Objectives Controller
— > jectives |, jectives
CO-FL [Monitor | Control | Analyzer | Control
bjectives Objectives
Symptoms Differences Control Objectives Outputs
Reference Adapt.atlon
Control Control Input —C | Hoiss
System Adaptation \-ONntro!
Adaptation| SYMPtoms| Agaptation Controller Input Target
Monitor Analyzer | [Planner |[Executor System
PreProcessed \ Error Measured Control

(R) T

System Output System Control Output Output
L PreProcessing
Context © Adapt.ation ©)
Symptoms Noise
Control Control

‘Context Adaptation
Controller

Context
Manager

Error
> Context Context —>
Reference[Monitor | Control AnalyzerJ— Executor
Context 'Symptoms
M-FL Input A Measured Control
PreProcessed Internal Output
| and External Context Context Control Output]
PreProcessing
| (B) Sensed Internal
| Context
_________________________ -
Sensed External
Context (environment)
Figure 2. Our DYNAMICO reference model with a detailed view of the

controllers for the three abstract levels of dynamics presented in Fig. 1 [3].

our case study, the existing performance SLA is renegotiated
by adding capacity as a new quality factor. Therefore, the
context monitor must keep track of two new context vari-
ables, upload and download bandwidth. Both throughput and
capacity are managed explicitly as the control objectives for
the adaptive system. Thus, both reference inputs, the A-FL
reference control input and the M-FL reference context input,
are derived automatically from control objectives and fed into
the corresponding feedback loops, as illustrated by interaction
(A) in Fig. 2.

B. The Adaptation Feedback Loop (A-FL)

The A-FL, the second level of dynamics, regulates the target
system requirements satisfaction and the preservation of the
adaptation properties. Recalling our self-adaptation scenario
(cf. Sect. II), the throughput and capacity quality factors
represent system requirements. Due to changing SLAs, the
satisfaction of these requirements depends on the adaptive
capabilities of the news system platform. For example, under
the first version of the SLA, the system reconfigures itself
to increase/decrease its server thread pool capacity according
to the demand. After renegotiating the SLA, the capacity of
the client connection becomes a new context variable to be
monitored. Thus, according to the available bandwidth, the
A-FL will trigger the adaptation of the system by changing
the format of the delivered contents from multimedia to text.
For this, the A-FL gathers symptoms from the target system
through context monitors provided by the M-FL (cf. Label (C)
in Fig. 2).

C. The Context Monitoring Feedback Loop (M-FL)

The M-FL in Fig. 2 represents a dynamic context manager,
the third level of dynamics specified by DYNAMICO. The ref-

erence context inputs correspond to the context monitoring re-
quirements and are derived from the CO-FL reference control
objectives. In our case study the reference control objectives
are defined as contracted quality of service (QoS) conditions,
also called service level objectives (SLOs) in the performance
SLA. Thus, the context monitoring requirements are derived
from the metrics defined in this SLA. The context analyzer
decides about the adaptation of the monitoring strategy. The
context adaptation controller is responsible for defining and
triggering the execution of the adaptation plan to adjust the
context manager (i.e., the target system of the M-FL).

Referred to our case study, the addition of the new band-
width monitoring requirements, caused by the renegotiation of
the performance SLA, implies the architectural reconfiguration
of the monitoring infrastructure. This reconfiguration consists
of deploying two new context gathering components to sense
upload and download bandwidth connections, and two new
context monitors that implement the monitoring logic associ-
ated with these context variables.

IV. APPLICABILITY OF DYNAMICO

This section explains how we derived, from our DYNAMICO
reference model, a self-adaptation implementation that governs
the accomplishment of SLAs for the Znn.com news system.
This implementation realizes the three levels of dynamics of
DyNaMIcO: The CO-FL to keep track of SLA negotiations,
the A-FL to adapt the target system Znn.com, and the M-
FL to support dynamic context monitoring. As a reference
model, DYNAMICO is independent of the technologies, mid-
dleware and frameworks that can be used to realize the
functionalities required by each of its three levels of dy-
namics. The implementation of DYNAMICO presented in this
paper uses SMARTERCONTEXT [6] to realize the M-FL, and
QOS-CARE [7] to support the dynamic reconfiguration of
both the SMARTERCONTEXT monitoring infrastructure and
the Znn.com system. We demonstrate the applicability of
DYNAMICO by implementing the software architectures that
we designed to realize its three levels of dynamics. The archi-
tectures presented in this section follow the service component
architecture (SCA) specification [10], which provides a model
for composing and executing applications based on service-
oriented architecture principles. The following two subsections
introduce SMARTERCONTEXT and QOS-CARE in the context
of the DYNAMICO-based implementation for our case study.
The remaining subsections explain the realization of the three
levels of dynamics specified by the DYNAMICO reference
model.

A. The SMARTERCONTEXT Monitoring Infrastructure

SMARTERCONTEXT, created by Villegas and Miiller, is
a dynamic context monitoring system developed to support
changes in context management requirements at runtime [6].

In the solution described in this paper, SMARTERCON-
TEXT implements the M-FL defined by DYNAMICO and
supports changes in context monitoring strategies dynamically
through the self-reconfiguration of both the architecture of its
monitoring infrastructure (i.e., structural adaptation) and the

business logic of its monitoring conditions (i.e., behavioral
adaptation). These changes may imply the deployment of
new context gatherers, processing and provisioning compo-
nents, or the modification of existing monitoring logic. In our
case study the adaptation of SMARTERCONTEXT is triggered
by the (re)negotiation of SLAs. The reference inputs used
by SMARTERCONTEXT correspond to Resource Description
Framework (RDF) models that specify SLAs as reference con-
trol objectives with explicit monitoring requirements. Control
actions correspond to arithmetic and logic expressions in the
form of parameters that affect the behavior of SMARTERCON-
TEXT, and discrete operations that affect its structure.

B. The QoS-CARE Adaptation Mechanism

QO0S-CARE (QoS Contract-Aware Reconfiguration sys-
tEm), created by Tamura ez al. [11], [7], is the self-adaptation
framework we used to implement the A-FL of DYNAMICO
(i.e., to adapt Znn.com) and to support the dynamic architec-
tural reconfiguration of the SMARTERCONTEXT infrastructure
(i.e., the dynamic monitoring infrastructure). QoS-CARE pro-
vides an SCA layer for dynamic reconfiguration of component-
based and service-oriented architectures that runs on top of
SCA implementations. From the SCA middleware perspective,
QOS-CARE is a complementary layer for SCA platforms
that provides self-reconfiguring capabilities, in particular to
preserve QoS contracts. The version of QOS-CARE we used
for the case study presented in this paper was configured to be
executed on top of the FRASCATI middleware, an open-source
and multi-scale SCA implementation developed by Seinturier
et al. [12]. QO0S-CARE is rooted in extensions of formal
models to guarantee its reliability as an architectural reconfigu-
ration mechanism for service-oriented software systems. In our
implementation of DYNAMICO these extensions are used to
model the component-based structures of the target system and
its reconfiguration rules. In particular, QOS-CARE extends
typed and attributed graph transformation systems for the
specification of these structures and reconfiguration rules, and
finite state machines for the specification of transitions among
the target system states.

C. Realizing the Control Objectives Feedback Loop (CO-FL)

Figure 3 presents the general architecture of SMARTER-
CONTEXT, which implements the CO-FL and M-FL of
the self-adaptive solution for SOA governance in our
case study. SmarterContext is the main composite
of the architecture and includes four general components.
SmarterContextGUI provides an abstraction of the CO-
FL and allows system administrators to modify system
goals (e.g., SLAs) at runtime. MonitoringF-Loop cor-
responds to the M-FL and receives from the CO-FL
(i.e., SmarterContextGUI) the control objectives (COb)
specification (e.g., the performance SLA for Znn.com)
that will drive both the adaptation process and con-
text manager. ContextManager includes components
to update the inventory of monitoring components man-
aged dynamically. This is for introspection purposes.
DynamicMonitoringInfrastructure corresponds to

the adaptive part of the monitoring infrastructure, and is
controlled by the M-FL (cf. MonitoringF-Loop). This
component implements the context gathering, processing and
provisioning tasks, which are distributed on third party pro-
cessing nodes, that is, on the computational infrastructure of
context consumers and providers (e.g., on the Znn.com news
system infrastructure).

pushContext(String):
boolean

Smarter
ContextGUI
(CO-FL)

Context
Provider

registerStrategy
(MonitoringStrategy):void

Context
Manager

i
pullContext(String):
String

(String, String):boolean ~{}

1 provisioningContextPull(String)

:String
[exo [cmm
B)(C Consumer

2 (BX©) B2 (Third Party)

provisioningContext
Push(String):void

Monitoring
F-Loop

executeAdaptation

(InputStream[],String, -
List<string>, List<string>):void Gathering, reasoning, b—

provisioning (distributable on third

party nodes)

Middleware

- Promoted 77 peference D) Service [Property ED—ID Wire OCompos‘\te OCompcnent

interface

Figure 3. The CO-FL orchestrating the interactions among the three levels.

The CO-FL orchestrates the interactions among the three
levels of dynamics of DYNAMICO (cf. labels (A), (B), (C)
and (D) in Fig. 3). Label (A) corresponds to the interaction
between the CO-FL and M-FL that enables the SMARTER-
CONTEXT engine of the M-FL to receive the specifications of
control objectives and their changes at runtime (e.g., SLAs and
their modifications). Labels (B) and (C) represent the interac-
tions that allow SMARTERCONTEXT to notify context moni-
toring facts to the system objectives manager (e.g., a user) and
the adaptation mechanism (e.g., Znn.com). Both the system
objectives manager and adaptation mechanism are abstracted
as context consumers in this architecture (cf. composite
ContextConsumer in Fig. 3). Label (D) represents the in-
teraction through which the monitoring infrastructure (i.e., the
target system controlled by the M-FL) gathers context infor-
mation about the situation of the adaptive system, which acts
as a context provider (cf. composite ContextProvider).
Composite AdaptationMiddleware represents the QOS-
CARE/FRASCATI adaptation middleware and is invoked
by MonitoringF-Loop to trigger the adaptation of the
SMARTERCONTEXT architecture.

D. Realizing the Monitoring Feedback Loop (M-FL)

In our case study, the implementation of the context mon-
itoring feedback loop enables our monitoring infrastructure
with dynamic capabilities to adapt (i) the context monitoring
logic that evaluates gathered context against contracted con-
ditions, and (ii) the architecture of the context gathering and
provisioning infrastructure. Figure 4 illustrates our realization
of the M-FL as the MonitoringFeedbackLoop compos-
ite, highlighted with Label ®, which is the concrete realization

of the MonitoringF-Loop component presented in Fig. 3.
Label @ highlights the MonitoringInfrastructure
composite, which contains the adaptive monitoring infrastruc-
ture (i.e., the “target system” of the M-FL). Finally, Label ®
highlights the AdaptationMiddleware composite, which
contains the QOS-CARE components in charge of adapting
the monitoring infrastructure.

The first component of M-FL is ContextMFLMonitor
(cf. Fig. 4). This component receives the COb specifi-
cation in XML/RDF format from the CO-FL, creates an
RDFSpecification object from the received specifica-
tion, looks for a previous version of this COb specifica-
tion, stores the new version in its knowledge base, and
provides the component ContextMFLAnalyzer with two
RDFSpecification objects that represent the new and
former versions of the COb specification (e.g., when the
performance SLA of Znn.com is renegotiated by adding the
capacity SLO).

The second component of M-FL is
ContextMFLAnalyzer, which analyzes changes between
the new and former versions of COb specifications,
and specifies these changes in an RDF model. After
analyzing these changes, this component invokes
ContextMFLPlanner and provides it with the new
version of the CODb specification and the model that specifies
the changes.

I
/o gatherRDFSpecification | Monitoring Feedback Loop (M—FL)\

(String,String):boolean |
U
ContextMFL L b ContextMFL
Monitor analyzeMonReq Analyzer
(RDFSpecification,
RDFSpecification):void U

planMonitoringStrategy(RDFSpecification,Model)
:void

ContextMFL
Planner

ContextMFL

= =P Executor
executeAdaptation
(InputStream([],String,
List<string>, List<String>):void

U

! I

|
& ﬁ\~ ™M J
registerStrategy 'TI e

(MonitoringStrategy):void !

U
Context
Manager

| executeAdaptation
| (InputStream[],String,
! List<String>, List<String>):void

U
QOS-CARE/
Frascati

AdaptationMiddleware

(target system
of the M-FL)

MonitoringInfrastructure

Dynai

ic Context M Server

Figure 4. Realization of the M-FL

The third component of M-FL is ContextMFLPlanner.
This component synthesizes new monitoring strategies as well
as changes in existing ones. We define monitoring strategies
as an object that contains a set of implementation files (i.e.,
.class files) for the SCA components to be deployed at runtime,
the specification of the corresponding SCA composite (i.e.,
an XML file), and two lists that specify SCA services and
corresponding references. These services and references allow
the connection of third-party sensors and gatherers to the
endpoints of the SMARTERCONTEXT infrastructure.

The last component of composite M-FL is
ContextMFLExecutor, which invokes the adaptation
services of the AdaptationMiddleware composite. The
QO0S-CARE components of this composite adapt the context
monitoring infrastructure by deploying the new context
gatherers and monitors, and binding their services to the
references of the sensors deployed on the target system
infrastructure. To perform this adaptation, the QOS-CARE
instance of the M-FL invokes the corresponding service of
the QOS-CARE instance of the A-FL.

E. Realizing the Adaptation Feedback Loop (A-FL)

Figure 5 presents our realization of the A-FL
for our case study. In this realization, composite
DynamicMonitoringInfrastructure (cf.
Label @) contains the components that are deployed

dynamically by the M-FL to monitor the relevant
context according to the contracted conditions of
the SLA. For instance, within this composite, the
highlighted ContextGatheringAndPreprocessing
and ContextProcessing components are deployed
dynamically to monitor one of the new context variables
(i.e., download bandwidth) that became relevant after

renegotiating the performance SLA in our case study.

Components ContextProcessingThroughput,
ContextProcessingBandwidthDown and
ContextProcessingBandwidthUp (the latter not

depicted in the figure) not only notify the composite
AdaptationMiddleware (cf. Label ®) about the
need for adaptation but also system administrators. In the
AdaptationMiddleware composite, the QOS-CARE
instance implements the adaptation analyzer and adaptation
controller (i.e., planner and executor) of the A-FL. The
executor adapts the Znn.com target system (cf. composite
TargetSystem, Label ®), by modifying the Apache
configuration file or changing the news contents delivery
format.

V. DYNAMIC CHANGES IN CONTROL OBJECTIVES

For the CO-FL to orchestrate the interactions among the
three levels of dynamics, it requires runtime models that
provide an explicit mapping between control objectives (e.g.,
SLAs) and both monitoring requirements and conditions that
trigger self-adaptation. In our implementation, these models
correspond to RDF graphs, named control objectives (COb)
specifications. From these, SMARTERCONTEXT (i) synthe-
sizes monitoring strategies for implementing the context mon-
itoring mechanism required to support the adaptation process,
and (ii) identifies changes in existing monitoring strategies
when existing system control objectives change or new ones
appear. In our case study COb specifications correspond to
SLAs.

Observed
Entity
(ZNN.com)

Bandwidth
Sensor

Throughout
Sensor

! contracted

H Contracted
| sensorType ~MeasureUnit
[] []

SensorType MeasureUnit
O [

! Context

) GatheringAnd
PushContext | Preprocessing

(String):boolean

Context
GatheringAnd

Throughput

: -
DS S xt | BandwidthDown

Rusfeore <<Dynamic>>

(String):boolean
CFr———————m——m e m e —— a

Monitorong symptom context
Logic Event Variables

Context
Processing
Throughput
<<Dynamic>>

processContext Context
(String, String) Lk Processing

:void Provisioning| BandwidthDown
<<Dynamic>>

Provisioning
Context

(String):String processContext|

(String, Stfing)
:void

Provisioning
Context |
(String):String }

(String):String
I Provisioning
| Context
(String):String

1 |
|
i DynamicMonitoringInfrastructure }
| (target system of the M-FL — cf. Label 1 in Fig.5) !
|
|
|

AdaptationMiddleware |

Deployed into
the existing composite
after the modification
of the SLA

QOS-CARE/
Frascati

executel-\daptation
(InputStream[],String,
List<String>,List<String>)
:void

Target System Server (ZNN.com)

Figure 5. Realization of the A-FL

A. Control Objectives Specifications

Figure 6 depicts the control objectives (COb) ontology for
QoS contracts in SMARTERCONTEXT.! This ontology allows
the specification of control objectives (e.g., SLAs in the case
of Znn.com) mapped to elements of both monitoring strategies
and adaptation mechanisms represented by entities derived
from our context monitoring strategy (cms) ontology.> Even
though cardinalities are not usually specified in RDF graph-
based representations, Fig. 6 represents them for explanation
purposes.

The highlighted node, cob: QoSContract, represents the
root type of quality-driven COb specifications. Our ontology
for the specification of QoS contracts, particularly SLAs in
SOA environments, is based on the characterization of SLAs
contributed by SEI researchers [13]. According to them, a
properly specified SLA must include (i) the metrics to be
collected, (ii) the entity that will collect these metrics and how,
and (iii) the actions to be taken when the service does not meet
the contracted conditions. In the COb specifications used in
our case study, these aspects correspond to (i) quality factor
metrics, (ii) monitoring services, and (iii) action guarantees
associated with adaptation events or notifications to system
administrators. Quality-driven CODb specifications must include
at least one quality attribute. Quality attributes are instances

Uhttp://smartercontext.org/vocabularies/cob/v1.0/cob.owl
Zhttp://smartercontext.org/vocabularies/cms/v1.0/cms.owl

cob:ActionGuarantee

cms:hasMeasureUnit cob:hasVariable

1.
cms:hasExpression

cms:hasLabel 1 cob:triggers -
1 1.% Eventgl'?/pe :ms:p;owsmnlng
i R
cob:MetricVariable 1.* Flerence
cms:Provisioning

cms:gathering
Service

1

cms:sensorType Reference

cms:consumedBy cms:hasBinding cms:hasTarget
Reference
Namespaces:

Control objectives ont. - cob: http://smartercontext.org/vocabularies/cob/v1.0/cob.owl#
Context monitoring strategy ont.-> cms:http://...org/vocabularies/cms/v1.0/cms.owl#

1

String

cms:M:

iy

onitorService
cms:hasTarge tms:hasBinding

Figure 6. The control objectives (COb) ontology

of type cob:QualityAttribute and represent measur-
able qualities that can be observed automatically through a
sensing interface (e.g., performance). Each quality attribute
is composed of at least one quality factor (e.g., throughput).
Quality factors are instances of type cob:QualityFactor
and correspond to quality properties that allow the mea-
surement of quality attributes. Each quality factor must be
associated with at least one metric. Metrics are instances of
type cob:QualityFactorMetric and define the vari-
ables (cob:MetricVarible), the evaluation expression
(String), the measure unit (cms :MeasureUnit), and the
action guarantees (cob:ActionGuarantee) required to
control the preservation of the contracted quality attributes.
A metric must be associated with one and only one evaluation
expression, and one unit of measurement. Action guarantees
are instances of type cob:ActionGuarantee and specify
the event types (String), with corresponding endpoints
(cms:ProvisioningReference), to be triggered when
the contracted conditions are violated (e.g., to adapt the
Znn.com system).

The mapping between control objectives and moni-
toring requirements is realized by associating elements
of type cob:MetricVariable with instances of type
cms :MonitorService. These instances provide the mech-
anisms to collect the metrics required to assess the con-
tracted qualities. Each metric is associated with at least
one metric variable, and a metric variable with one and
only one sensor type and one monitoring service. The type
cms :MonitorService allows the specification of the URI
of the reference that will consume the monitoring interface
when the gathering is based on a pushing mechanism (i.e., the
source sends the sensed data to the SMARTERCONTEXT in-
frastructure). Similarly, cms:MonitorService allows the
specification of the URI of the target reference or binding
when the gathering mechanism is realized through a pulling
mechanism (i.e., the SMARTERCONTEXT infrastructure pulls
the sensed data from the source).

The mapping between control objectives and self-adaptation
conditions is realized through the specification of action

guarantees. Each object of type cob:ActionGuarantee is
associated with an event type that corresponds to the symptom
used by the analyzer of the A-FL to decide about adaptation
actions to be taken. Action guarantees also specify an object
of type cms:ProvisioningReference that defines the
binding or target URI to be consumed. Besides adaptation
actions, action guarantees can imply notifications to system
administrators.

Figure 7 partially represents a COb specification for the
performance SLA that resulted from the first negotiation in
our case study.® Namespace ga: corresponds to the vocab-
ulary that characterizes quality attributes mapped to qual-
ity factors. This version of the performance SLA defines
a throughput quality factor, measured through a through-
put metric (ga:ThroughputMetric) that is composed
of a single variable (ga:processingTime). This variable
is involved in the metric expression 7processingTime <
2000, measured in terms of ms/request (as defined
by the element ga:ThroughputMeasureUnit) and
associated with a cms:MonitorServiceType iden-
tified as sla.rdf#gatheringServiceThroughput.
The action guarantee defined for the throughput met-
ric (sla.rdf#ActionGuaranteeThroughput) is as-
sociated with two provisioning references. The first one,
sla.rdf#adaptTargetSystem is to invoke the service
in charge of activating the adaptation process. The second one,
sla.rdf#notifyAdministrator, is to inform business
administrators about the violation of the contracted throughput
conditions.

cob:definesQA
sla.rdf#SLA001 qa:Performance)~
cob:definedByQF
qga:Throughput

cob:measuredThrough

cms:hasMeasure
Unit

ga:Throughpu:

MeasureUnit qa:ThroughputMetric

cob:hasGuarantee

cob:hasVariable cmg:hasExpression

cms:hasMeasureUnit

sla.rdf#ActionGurant
eeThroughput

?processingTime
<=2000

cms:provisioning
Reference

qa:processingTime
cob:triggers

cms:hasLabel
. EventType
cms:gathering

Service

Throughput
Event
sla.rdf#gathering
ServiceThroughput sla.rdf#notify
Administrator
cms:consumedByReference

cms:hasTarget
\‘ cms:hasBinding

QoSCare/
v adapttargetsystem
http:SOAGovApp:8080/
AdminGUI

Quality attributes vocabulary - qa: http://smartercontext.org/vocabularies/rdf/qa.rdf
COb spec example > http:/...org/lexamples/seams2013/sla-performance-SOACaseStudy-V1.rdf

cms:sensorType

throughput

Sla.rdf#fadaptTarge
System

ApacheSensorThroughput/
gatheringServiceThroughput

Figure 7. A COb specification example for the throughput quality attribute
defined in the first negotiation of the performance SLA in our case study.

B. Synthesizing Monitoring Strategies at Runtime

SMARTERCONTEXT synthesizes and implements
monitoring strategies dynamically from COb specifications

3http://smartercontext.org/examples/seams2013/sla-performance-
SOACaseStudy-V1.rdf

such as the one depicted in Fig. 7. A monitoring strategy is im-
plemented as a DynamicMonitoringInfrastructure
composite (cf. Fig. 5) that specifies components for context
gathering, pre-processing, monitoring, and provisioning.
These components include their corresponding service
interfaces, references, and properties. In particular, each
cob:QualityFactorMetric element generates a
ContextProcessing component whose monitoring logic
corresponds to the value of the cms:hasExpression
property; each cob:MetricVariable produces a
ContextGatheringAndPreprocessing component
that gathers one and only one context value from
the corresponding sensor type (i.e., the value of the
cms:sensorType property) deployed at the context
provider party; and each cob:ActionGuarantee element
generates a ContextProvisioning component whose
symptomEvent property corresponds to the value of the
cob:triggersEventType of the COb specification.

Upon the renegotiation of SLAs, the M-FL analyzer cal-
culates changes in monitoring requirements by comparing a
new COb specification (e.g., the renegotiated performance
SLA*) with its previous version. Then, the planner element of
the M-FL generates the adaptation plan that will modify the
monitoring infrastructure by deploying new context gathering,
processing and provisioning components, or modifying exist-
ing monitoring logic. If the CODb specification has no previous
version (e.g., it is a new SLA), the planner generates the new
strategy from scratch. Finally, the M-FL executor performs the
adaptation of the monitoring infrastructure.

VI. EVALUATION

In this section we assess and compare the implementations
of CMU’s Rainbow and our DYNAMICO reference model.
As mentioned above, Cheng ef. al introduced the Znn.com
system as a candidate target system exemplar to benchmark
self-adaptation mechanisms comparatively to evaluate the ef-
fectiveness of Rainbow. To be able to compare Rainbow and
DyNAMICO, we use the Znn.com exemplar as our target
system and apply the same criteria introduced by Cheng et. al
in [8] and [9]. However, it is worth noting that in [8] Rainbow
was not applied to Znn.com, but to a videoconference target
system.

A. Evaluation Criteria

Cheng et. al used the following three factors for evaluating
the effectiveness of Rainbow to adapt Znn.com: (i) perfor-
mance, measured in terms of the time required to perform the
adaptation (i.e., called settling time in control theory [14]),
and the runtime overhead caused by executing Rainbow with
Znn.com as the adaptation mechanism; (ii) the engineering
effort required to use Rainbow to add self-adaptive capabilities
to Znn.com; and (iii) the capability of Rainbow to maintain

“http://smartercontext.org/examples/seams2013/sla-performance-
SOACaseStudy-V2.rdf

system quality attributes under changing conditions of execu-
tion. The following sections present the results of our case
study evaluation using these factors.

B. Performance

To evaluate the performance of our DYNAMICO implemen-
tation we realized the adaptation scenario described in Sect. II
with several platform configurations. The different hardware
and software configurations were based on Intel i3@2.4Ghz
processors with 4 GB of RAM running GNU/Linux Fedora
16 with non-relevant services and applications shut down. For
the context monitoring infrastructure we used SMARTERCON-
TEXT v1.5,° whereas for the SCA platform with autonomous
reconfiguration capabilities we used QOS-CARE v1.3% and
FRASCATI v1.47 with Java 1.6.0_23 with 128 MB of RAM.

We measured the performance of the DYNAMICO imple-
mentation in terms of (i) the settling time of both the adapta-
tion of the target system and the adaptation of the monitoring
infrastructure, and (ii) the overhead caused by adding our
DYNAMICO implementation in the execution of Znn.com. To
obtain these measurements we configured an environment as
an SCA architecture (except for Znn.com, which is a PHP
application) with the following four servers:

1) Target system, adaptation infrastructure (A-FL) and
monitoring infrastructure of the M-FL: this server executes
Znn.com with Apache, its execution platform, the SMARTER-
CONTEXT gathering and processing components, and QOS-
CARE/FRASCATI as the monitoring infrastructure’s and tar-
get system’s adaptation mechanism (cf. Fig. 5). To enable
the monitoring of the variables of interest on Znn.com (i.e.,
throughput in terms of ms/request and bandwidth in terms
bytes transfer rate), we developed the required sensors and
corresponding interfaces.

2) Control objectives management (CO-FL): executes a
GUI to change the control objectives, that is, the SLAs to
be satisfied by the target system according to the scenario
specified in our case study.

3) Dynamic context management (M-FL): executes
SMARTERCONTEXT and QOS-CARE/FRASCATI as the
adaptation mechanism of the monitoring infrastructure
(cf. Fig. 4).

4) Client testers: to automate the execution of our exper-
iments and measure settling times as well as overhead we
designed two client testers to be executed in multiple machines
to (i) modify the control objectives of the target system (i.e.,
to simulate the renegotiation of the SLA and thus force the
adaptation of the monitoring infrastructure), and (ii) change the
execution conditions of Znn.com (i.e., to force its adaptation).

On the one hand, from the execution of the client tester
that changes the SLA in the CO-FL, we obtained the settling
time and overhead measurements for the adaptation of the
monitoring infrastructure (cf. Table I). The first row in this
table indicates that the CO-FL, which keeps track of changes

3 Available from http://gforge.icesi.edu.co/svn/smartercontext
6 Available from https://scm.gforge.inria.fr/svn/scesame/qos-care
7 Available from svn://svn.forge.objectweb.org/svnroot/frascati

in control objectives and sends CODb specifications to the M-
FL, takes 698 ms for the first scenario (i.e., SLA-v1 requiring
one throughput gatherer and one throughput processor) and
732 ms for the second (i.e., SLA-v2 requiring the addition
of two bandwidth gatherers and two bandwidth monitors—for
monitoring upload and download capacity). The second row
depicts the timings for the M-FL execution, which analyzes
and synthesizes the adaptation plan of the monitoring infras-
tructure. The third row indicates the timings for instrument-
ing the synthesized monitoring infrastructure (i.e., deploying
and binding the context processors and gatherers). The total
settling times, and the measured overhead of DYNAMICO,
which is practically negligible in both scenarios, represent an
acceptable cost for having these two additional feedback loops
for adapting the monitoring infrastructure.

Table 1
AVERAGE SETTLING TIME AND OVERHEAD (MS)

SLA-vl[ms] SLA-v2[ms]
CO-FL 698 732
M-FL 21 29
Adaptation . 1.131 1.579
Instrumentation
Total settling time 1,850 2,340
Overhead 3 3

It is worth noting that Rainbow has no support for adapting
the monitoring infrastructure of the adaptation mechanism.
Thus, Rainbow and DYNAMICO cannot be compared in this
regard. However, throughout this paper we have demonstrated
that the CO-FL and M-FL, the two additional feedback loops
specified by DYNAMICO, improve the context awareness of
our adaptation mechanism.

On the other hand, from the execution of the client tester
that changes the Znn.com execution conditions to induce its
adaptation, we obtained an average settling time of 84 ms and
an overhead of 2 ms. Nonetheless, the comparative analysis of
this settling time presented several difficulties. First, it makes
no sense to disaggregate this measurement, given that we used
the same strategy as Rainbow to adapt Znn.com. That is, by
modifying parameters of the configuration file of Apache, for
example to vary the number of server thread pool. Even though
this kind of adaptation is argued to be architectural, because
it makes Apache to configure internally a different number
of server threads (i.e., software components in its internal
architecture), it can be argued that it is parametric. This
is because the adaptation mechanism modifies a parameter
(a single value) that affects the target system behavior, not
its actual software structure. Of course, as Znn.com is a
PHP monolithic application without introspection capabilities,
modifying its software structure is impractical. Second, the
settling time of Rainbow to perform a target system adaptation
was measured for a videoconference system in a different

paper (i.e., [8]) than the one that used Znn.com. In [8],
the reported measurement on the adaptation settling time is
2,100 ms and 2,700 ms for two different scenarios. Despite
of the aforementioned difficulties to perform a comparative
analysis, the obtained results demonstrate the feasibility of
implementing our reference model, considering the complexity
of combining three different types of feedback loops in the
adaptation mechanism.

C. Engineering Effort

Measuring the engineering effort to develop a software sys-
tem, on an absolute scale and independently of human factors,
is well known to be a challenging task. This often means that
engineering efforts of different development teams cannot be
compared. To evaluate the effort of enabling DYNAMICO to
adapt Znn.com with that of Rainbow, we considered the tasks
to be developed in similar conditions. These tasks are (i) devel-
opment and testing of three types of required sensors (12 h in
DYNAMICO vs. 49 h in Rainbow), (ii) development and testing
of adaptation scripts (8h vs. 21h), and (iii) architecture (target
system-adaptation mechanism) deployment configuration (11
h vs. 24 h), for a total of 31 h vs. 94 h.® The ratio of the
development effort DYNAMICO/Rainbow is around 1/3 and is
observed in all of the evaluated factors, approximately. Given
the available information, we found two possible explanations
for this difference. The first is the degree of separation
of concerns between the target system and the adaptation
mechanism. DYNAMICO provides our implementation not only
with a well defined structure of subsystems, each addressing
different levels of dynamics, but also with the characterization
of the interactions among them. Having clear these two aspects
is fundamental to maintain separated the addressed concerns
and functionalities of each subsystem. As a consequence, the
visibility of the different feedback loops is maintained from
architecture design to code, which favors the maintainability
and reusability of our adaptation mechanism. The second is
the chosen model for the system architecture, which is SCA in
our DYNAMICO implementation, and ACME in Rainbow. Our
implementation uses SCA interfaces as the communication
means among all of the system components, which helps to
maintain well defined limits among the subsystems. In any
case, the obtained measurements show that the effort required
to tailor our DYNAMICO implementation to adapt Znn.com is
significantly lower than tailoring Rainbow for the same goal,
and definitely lower than developing self-adaptive capabilities
in Znn.com from scratch.

D. Maintaining System Quality Attributes

Znn.com is a small PHP monolithic application, executed
in Apache. This fact has an unfortunate implication for the
evaluation of the capability of any adaptation mechanism to
maintain Znn.com’s quality attributes. Indeed, the possibilities
for adapting Znn.com/Apache are restricted to the strategy
implemented by Rainbow, that is, by changing some pa-
rameters of the Apache configuration file and restarting it.

8The Rainbow adaptation effort data are based on [8].

Therefore, any adaptation mechanism required to maintain the
same quality attributes maintained by Rainbow in Znn.com
would necessarily use this strategy. As a consequence, and
given that our DYNAMICO implementation adapts Znn.com
using exactly the described strategy, it would obtain the same
evaluation than Rainbow regarding this factor. Nonetheless,
by virtue of the improved context awareness obtained by the
two extra feedback loops specified in DYNAMICO, CO-FL and
M-FL, our adaptation mechanism is able to maintain quality
attributes that depend on context information not sensed by
the current monitoring infrastructure. Thus, the reliability of
the decision-making process for the preservation of quality
attributes is also improved.

VII. RELATED WORK AND DISCUSSION

Raising the visibility of feedback loops is crucial for the
engineering of adaptation mechanisms for systems that must
cope with changing requirements dynamically. This is espe-
cially important for managing changes in adaptation goals,
and based on these changes, adjusting monitoring strategies
with the goal of preserving context-awareness. Other reference
models have been proposed to contribute to the engineering
of SAS systems. In particular, ACRA [15] and Kramer and
Magee’s [16], which follow multi-layer architectures that
expose multiple feedback loops. Nevertheless, even though
these models specify several feedback loops, in general they
assume closed and controlled context environments where
system and monitoring requirements are specified at design
time, remaining immutable at runtime. In DYNAMICO the
separation of concerns goes beyond the decoupling of adapta-
tion mechanisms from managed systems, and the hierarchical
organization of their interactions. Distinguishing features of
DyNAMICO are its CO-FL that, according to changes in
adaptation goals, governs both the A-FL and the M-FL; and
its M-FL that, through its interactions with the CO-FL and
the A-FL, improves not only context-awareness but also the
accomplishment of changing adaptation goals (e.g., quality
attributes). Similarly to other reference models for SAS sys-
tems, DYNAMICO relies on the MAPE-K loop to characterize
the components that define control objectives, adaptation and
dynamic monitoring feedback loops. However, DYNAMICO is
independent of the particular strategies and technologies used
for implementing self-adaptation [3].

Concerning dynamic monitoring to support self-adaptation
under changing adaptation goals, previously we analyzed
an important number of representative SAS systems and
found that none of them supports dynamic monitoring under
changing control objectives [1]. Moreover, many of these
approaches simulate their monitoring mechanisms. In contrast,
the DYNAMICO implementation presented in this paper is a
self-adaptation solution where the monitoring infrastructure
adapts itself to address changes in monitoring requirements.
With this, we guarantee that the adaptation mechanism is fed
with symptoms relevant to the actual adaptation goals, which
also change continuously. We conducted several experiments
to compare our DYNAMICO implementation with Rainbow.

From these experiments we obtained useful results. First,
we were able to confirm that implementations based on our
DYNAMICO reference model are not only viable, but also can
improve the context-awareness of self-adaptation. Second, we
found that the SEAMS community still lacks suitable target
system exemplars and tools for benchmarking self-adaptation
solutions. Znn.com is a good baseline but it is not versatile
enough in supporting different adaptation strategies. Based on
the Rainbow/Znn.com’s publicly available implementation and
documentation, we conclude that Znn.com could be further
developed to support the validation of structural and behavioral
adaptation mechanisms better. SAS systems research requires
exemplars that support the wide range of control actions (i.e.,
adaptation effectors) and sensors required by self-adaptation
approaches, and that implement standard interfaces to inter-
act with them. For example, using the current version of
Znn.com it is impractical to assess the adaptation effective-
ness of approaches that rely on architectural reconfiguration
of component-based or service-oriented systems. Moreover,
adaptation mechanisms to be evaluated by adapting Znn.com
must be based on parametric changes applied to the properties
of the Apache server configuration file (i.e., the server thread
pool size), or application variables such as the delivery format
of news contents (i.e., text and multimedia). To advance in the
evaluation of SAS systems, we should extend Znn.com and
propose new benchmark target systems. Equally important for
the assessment of SAS systems is for the SEAMS community
to agree on a set of standardized properties [1].

VIII. CONCLUSIONS

In this paper we demonstrated the effectiveness and feasibil-
ity of our DYNAMICO reference model through the evaluation
of its implementation and application in an experimental
case study. This evaluation showed that DYNAMICO is es-
pecially effective for building context-aware self-adaptation
mechanisms where the monitoring infrastructure must be self-
adaptive to address changing requirements. To realize dynamic
context monitoring in our DYNAMICO implementation (i.e.,
with the CO-FL and M-FL acting in coordination), we used the
SMARTERCONTEXT monitoring infrastructure with the QOS-
CARE/FRASCATI middleware as its adaptation mechanism.
To compare our DYNAMICO implementation with that of the
Rainbow/Znn.com system, we used the Znn.com exemplar
as target system. This allowed us to analyze the suitability
of Znn.com as a benchmark system for self-adaptation ap-
proaches. Our experimental results demonstrate, in terms of
performance, the feasibility of instrumenting adaptation mech-
anisms with the two extra levels of dynamics of DYNAMICO.
This is to support dynamic monitoring according to changes
in requirements and thus favoring context awareness. We also
analyzed the engineering effort of building DYNAMICO-based
implementations, and their suitability to preserve system qual-
ity attributes. The obtained results support the effectiveness
of our reference model for engineering context-aware SAS
systems.

ACKNOWLEDGMENTS

This work was funded in part by University of Victoria
(Canada), the National Sciences and Engineering Research
Council (NSERC) of Canada, IBM Corporation, Icesi Uni-
versity (Colombia), and Ministry of Higher Education and
Research of Nord-Pas de Calais Regional Council and FEDER
under Contrat de Projets Etat Region (CPER) 2007-2013.

REFERENCES

[1] N. M. Villegas, H. A. Miiller, G. Tamura, L. Duchien, and R. Casallas,
“A Framework for Evaluating Quality-driven Self-Adaptive Software
Systems,” in Proceedings 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2011).
New York, NY, USA: ACM, 2011, pp. 80-89.

[2] R. de Lemos, H. Giese, H. A. Miiller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel, D. Weyns, L. Baresi,
B. Becker, N. Bencomo, Y. Brun, B. Cikic, R. Desmarais, S. Dustdar,
G. Engels, K. Geihs, K. M. Goschka, A. Gorla, V. Grassi, P. Inverardi,
G. Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii,
R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezze, C. Prehofer,
W. Schifer, R. Schlichting, D. B. Smith, J. P. Sousa, L. Tahvildari,
K. Wong, and J. Wuttke, Software Engineering for Self-Adaptive Sys-
tems: A second Research Roadmap. Springer, 2013, vol. 7475, pp.
1-32.

[3] N. M. Villegas, G. Tamura, H. A. Miiller, L. Duchien, and R. Casallas,
DYNAMICO: A Reference Model for Governing Control Objectives
and Context Relevance in Self-Adaptive Software Systems, ser. LNCS.
Springer, 2013, vol. 7475, pp. 265-293.

[4] H. Miiller, M. Pezze, and M. Shaw, “Visibility of Control in Adaptive
Systems,” in Proceedings 2nd International Workshop on Ultra-Large-
Scale Software-Intensive Systems (ULSSIS 2008), 2008, pp. 23-26.

[5] Y. Brun, G. D. M. Serugendo, C. Gacek, H. M. Giese, H. Kienle,
M. Litoiu, H. A. Miiller, M. Pezze, and M. Shaw, Engineering Self-
Adaptive Systems through Feedback Loops, ser. Lecture Notes in Com-
puter Science. Springer-Verlag, 2009, vol. 5525, pp. 48-70.

[6] N. M. Villegas, “Context Management and Self-Adaptivity for Situation-
Aware Smart Software Systems,” Ph.D. dissertation, University of Vic-
toria, Canada, February 2013.

[71 G. Tamura, “QoS-CARE: A Reliable System for Preserving QoS Con-
tracts through Dynamic Reconfiguration,” Ph.D. dissertation, University
of Lille 1 - Science and Technology, and Universidad de Los Andes,
2012.

[8] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-Based Self-Adaptation with Reusable Infras-
tructure,” IEEE Computer, vol. 37, pp. 46-54, 2004.

[9] S.-W. Cheng, D. Garlan, and B. Schmerl, “Evaluating the Effectiveness

of the Rainbow Self-Adaptive System,” in Proceedings 2009 Software

Engineering for Adaptive and Self-Managing Systems (SEAMS 2009)

ICSE Workshop, may 2009, pp. 132-141.

OSOA, “SCA Assembly Model version 1.0,” http://www.osoa.org, 2007.

G. Tamura, R. Casallas, A. Cleve, and L. Duchien, “QoS Contract-

Aware Reconfiguration of Component Architectures Using E-Graphs,” in

Formal Aspects of Component Software, ser. LNCS, vol. 6921. Springer,

2012, pp. 34-52.

L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, and J.-B.

Stefani, “A Component-based Middleware Platform for Reconfigurable

Service-Oriented Architectures,” Software: Practice and Experience,

vol. 42, no. 5, pp. 559-583, 2012.

P. Bianco, G. Lewis, and P. Merson, “Service Level Agreements

in Service-Oriented Architecture Environments,” Carnegie Mellon

University Software Engineering Institute, Tech. Rep. CMU/SEI-2008-

TN-021, 2008. [Online]. Available: http://www.sei.cmu.edu/library/

abstracts/reports/08tn021.cfm

[14] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback

Control of Computing Systems. John Wiley & Sons, 2004.

IBM Corporation, “An Architectural Blueprint for Autonomic Comput-

ing,” IBM Corporation, Tech. Rep., 2006. [Online]. Available: http://

www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf

[16] J. Kramer and J. Magee, “Self-Managed Systems: an Architectural

Challenge,” in Proceedings 2007 workshop on the Future of Software
Engineering (FOSE 2007). IEEE Computer Society, 2007, pp. 259-268.

[10]
(11]

[12]

[13]

[15]

