
HAL Id: hal-00796555
https://inria.hal.science/hal-00796555

Submitted on 8 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Anatomy of a Sales Configurator: An Empirical
Study of 111 Cases

Ebrahim Khalil Abbasi, Arnaud Hubaux, Mathieu Acher, Quentin Boucher,
Patrick Heymans

To cite this version:
Ebrahim Khalil Abbasi, Arnaud Hubaux, Mathieu Acher, Quentin Boucher, Patrick Heymans. The
Anatomy of a Sales Configurator: An Empirical Study of 111 Cases. CAiSE’13 - 25th International
Conference on Advanced Information Systems Engineering - 2013, Jun 2013, Valencia, Spain. pp.162-
177. �hal-00796555�

https://inria.hal.science/hal-00796555
https://hal.archives-ouvertes.fr

The Anatomy of a Sales Configurator:
An Empirical Study of 111 Cases

Ebrahim Khalil Abbasi1, Arnaud Hubaux1, Mathieu Acher2,
Quentin Boucher1, and Patrick Heymans1

1 PReCISE, University of Namur, Belgium
{eab,ahu,qbo,phe}@info.fundp.ac.be

2 University of Rennes 1, Irisa, Inria France
mathieu.acher@irisa.fr

Abstract. Nowadays, mass customization has been embraced by a large
portion of the industry. As a result, the web abounds with sales config-
urators that help customers tailor all kinds of goods and services to
their specific needs. In many cases, configurators have become the sin-
gle entry point for placing customer orders. As such, they are strategic
components of companies’ information systems and must meet stringent
reliability, usability and evolvability requirements. However, the state of
the art lacks guidelines and tools for efficiently engineering web sales
configurators. To tackle this problem, empirical data on current practice
is required. The first part of this paper reports on a systematic study of
111 web sales configurators along three essential dimensions: rendering
of configuration options, constraint handling, and configuration process
support. Based on this, the second part highlights good and bad prac-
tices in engineering web sales configurator. The reported quantitative
and qualitative results open avenues for the elaboration of methodolo-
gies to (re-)engineer web sales configurators.

Keywords: Configuration, Web, Variability, Reverse Engineering, Em-
pirical Study, Survey

1 Introduction

In many markets, being competitive echoes with the ability to propose cus-
tomised products at the same cost and delivery rate as standard ones. These
customised products are often characterised by hundreds of configuration op-
tions. For many customers, this repertoire of inter-related options can be dis-
concerting. To assist them during decision making, sales configurators (SCs)
were developed. As an example, Figure 1 shows a snapshot of a typical car con-
figurator (the circled letters and legend can be ignored for now). A SC provides
an interactive graphical user interface (GUIs) that guides the users through the
configuration process, verifies constraints between options, propagates user de-
cisions, and handles conflictual decisions [1–3].

SCs represent a significant portion of the configurators used in modern in-
formation systems. Configurators are used in many B2B and B2C applications

2 The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases

Fig. 1. Audi web SC (http://configurator.audi.co.uk/, Oct. 18, 2012)

to personalize products and services. They are used in installation wizards and
preference managers. They are also extensively used in software product lines
(SPLs) where multiple information system variants are derived from a base of
reusable artefacts according to the specific characteristics of the targeted cus-
tomer or market segment [4–7]. As privileged channels for identifying customer
needs and placing orders, configurators are key assets for companies. In this
paper, we focus on web configurators supporting online sales.

A significant share of existing SCs is web-based, irrespective of the market.
The configurator database maintained by Cyledge is a striking evidence [8]. Since
2007, Cyledge collected more than 800 web SCs coming from 29 different industry
sectors, including automotive, apparel, sport, and art. These configurators vary
significantly. They each have their own characteristics, spanning visual aspects
(GUI elements) to constraint management. The web SC of Audi appearing in
Figure 1 is thus only one example. It displays different options through specific
widgets (radio buttons and check boxes – A and B , respectively). These options
can be in different states such as activated (e.g., “Privacy glass” is flagged with
X) or unavailable (e.g., “Twin-pane UV and heat-insulating glass” is greyed out).
Additionally, these options are organised in different tabs (e.g., “Equipment”)
and sub-tabs (e.g., “Equipment packages”) which denote a series of steps (C) in
the configuration process (e.g., “1. Model” is followed by “2. Engine”– D). A SC
can also implement cross-cutting3 constraints between options (E). These are
usually hidden to the user but they determine valid combinations of options.
For instance, the selection of “Privacy glass” implies the deselection of “Twin-pane

UV and heat-insulating glass”, meaning that the user cannot select the latter if the
former is selected. Moreover, descriptive information (F) is sometimes associated
to an option (e.g., its price).

3 We call these constraints cross-cutting because they are often orthogonal to the
hierarchy of options, sub-options, etc. supported by the configurator.

The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases 3

Despite the abundance of SCs, a consistent body of knowledge dedicated
to their engineering is still missing. This absence of standard guidelines often
translates into correctness or runtime efficiency issues, mismatches between the
constraints exposed to the user and those actually implemented, and an unclear
separation of concerns between the GUI and business logic. These issues in turn
lead to expensive development and maintenance. Some of our industry partners
face similar problems and are now trying to migrate their legacy SCs to more
reliable, efficient, and maintainable solutions [9]. Our long-term objective is to
develop a set of methods, guidelines, languages, and tools to systematically (re-
)engineer SCs. This encompasses three activities: (a) reverse engineering legacy
SCs, (b) encoding the extracted data into dedicated formalisms, and (c) forward
engineering new improved SCs [9].

However, to realize this vision, we first need to understand the intrinsic char-
acteristics of SCs. We conduct an empirical study of 111 web SCs from 21 dif-
ferent industry sectors (Section 2). We analyze the client-side code of these SCs
with semi-automated code inspection tools. We classify and analyse the results
along three dimensions: configuration options, constraints, and configuration pro-
cess (Section 3). For each dimension, we present quantitative empirical results
and report on good and bad practices we observed (Section 4). We also describe
the reverse engineering issues we faced (Section 5). We discuss the threats to va-
lidity (Section 6) and related work (Section 7). Finally, we summarize the results
and propose a research agenda for the (re-)engineering of SCs (Section 8).

2 Problem Statement and Method

(Re-)engineering web SCs requires a deep understanding of how they are cur-
rently implemented. We choose to start this journey by analysing the visible part
of SCs: the web client. We analyse client-side code because (1) it is the entry
point for customer orders, (2) the techniques used to implement web clients and
web servers differ significantly, and (3) large portions of that code are publicly
available. We leave for future work the study of server-side code and the inte-
gration of client- and server-side analyses. In this paper, we set out to answer
three research questions:

RQ1 How are configuration options visually represented and what are their se-
mantics? By nature, SCs rely on GUIs to display configuration options.
In order to re-engineer configurators, we first need to identify the types of
widgets, their frequency of use, and their semantics (e.g., optionality, alter-
natives, multiple choices, descriptive information, cloning, and grouping).

RQ2 What kinds of constraints are supported by the SCs, and how are they en-
forced? The selection of options is governed by constraints. These constraints
are often deemed complex and non-trivial to implement. We want to grasp
their actual complexity.

RQ3 How is the configuration process enforced by the configurators? The con-
figuration process is the interactive activity during which users indicate the

4 The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases

options to be included and excluded in the final product. It can, for instance,
either be single-step (all the available options are presented together to the
user) or multi-step (the process is divided into several steps, each containing
a subset of options). Another criteria is navigation flexibility.

2.1 Configurator selection

To collect a representative sample of web SCs, we used Cyledge’s configurator
database, which contains 800+ entries from a wide variety of domains. The first
step of our configurator selection process consisted in filtering out non-English
configurators. For simplicity, we only kept configurators registered in one of
these countries: Australia, Britain, Canada, Ireland, New Zealand, and USA.
This returned 388 configurators and discarded four industry sectors. Secondly,
we excluded 26 configurators that are no longer available. We considered a site
unavailable either when it is not online anymore or requires credentials we do
not have. Thirdly, we randomly selected 25% of the configurators in each sec-
tor. We then checked each selected configurator with Firebug4 to ensure that
configuration options, constraints, and constraint handling procedures do not
use Flash. We excluded configurators using Flash because the Firebug extension
we implemented (see next section) does not support that technology. We also
excluded “false configurators”. By this we mean 3D design websites that allow
to build physical objects by piecing graphical elements together, sites that just
allow to fill simple forms with personal information, and sites that only describe
products in natural language. The end result is a sample set of 93 configurators
from 21 industry sectors. Finally, we added 18 configurators that we already
knew for having used them in preliminary stages of this study. We used them to
become familiar with web SCs and test/improve our reverse engineering tools,
as discussed below. This raised the total number of web SCs to 111.

2.2 Data extraction process

To answer the first two research questions, we need to extract the types of
widgets used to represent options (RQ1), the types of constraints and their
implementation strategies (RQ2). To extract all this information, we developed
a Firebug extension (3 KLOC, 1 person-month) that implements (a) a supervised
learning-based data extraction approach [10], (b) support for advanced searches,
and (c) DOM5 traversing.

Our approach relies on a training session during which we inspect the source
code of the web page to identify which code patterns are used to implement
configuration options and their graphical widgets. These patterns vary from
simple (e.g., tag[attribute:value]) to complex cases (e.g., a sequence of HTML
tags). We then feed these patterns to our Firebug extension to extract all options.
In essence, our extension offers a search engine able to (a) search given code

4 http://getfirebug.com/
5 Document Object Model: a standard representation of the objects in an HTML page.

The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases 5

patterns, and (b) simulate user actions. It uses jQuery selectors and code clone
detection to search matching elements, extract an option name, its widget type,
place of occurrence, and discover constraints between options (RQ3). Practically,
the simulator selects/deselects each option and logs the existence of possible
constraints based on the previous state of the page.

3 Quantitative Results

This section summarises the results of our empirical study6. Table 1 highlights
our key findings. Each subsection answers the questions posed in Section 2.

3.1 Configuration options (RQ1)

Option Representation. The diversity of representations for an option is one
of the most striking results, as shown in Figure 2. In decreasing order, the most
popular widgets are: combo box item, image7, radio button, check box and text
box. We also observed that some widgets were combined with images, namely,
check box, radio button, and combo box item. Option selection is performed by
either choosing the image or using the widget. The Other category contains
various less frequent widgets like slider, label, file chooser, date picker, colour
picker, image needle, and grid.

Grouping. Grouping is a way to organise related options together. For
instance, a group can contain a set of colours or the options for an engine. Three
different semantic constraints can apply to a group. For alternative groups, one
and only one option must be selected (e.g., the Models in Figure 1 – G), and
for multiple choice groups, at least one option must be selected (e.g., stone and
band to put on a ring). In an interval group (a.k.a. cardinality [11]), the specific
lower and upper bounds on the number of selectable options is determined (e.g.,
flavours in a milkshake). The Semantic Constructs row in Table 1 shows that
alternative groups are the most frequent with 97% of SCs implementing them.
We also observed multiple choice questions and interval groups in 8% and 4% of
configurators, respectively.

“Mandatory Options” and “Optional Options”. Non-grouped options
can be either mandatory (the user has to enter a value) or optional (the user
does not have to enter a value). By definition, configurators must ensure that all
mandatory options are properly set before finishing the configuration process.
We identified three patterns for dealing with mandatory options:

– Default Configuration (46%): When the configuration environment is loaded,
(some or all) mandatory options are selected or assigned a default value.

– Notification (47%): Constraints are checked at the end of the configuration
process and mandatory options left undecided are notified to the user. This
approach can be mixed with default values.

6 The complete set of data is available at http://info.fundp.ac.be/~eab/result.html.
7 A colour to choose from a palette is also considered an image.

6 The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases

Table 1. Result summary

CONFIGURATION OPTIONS

Semantic Constructs
Alternative group 97%
Multiple choice group 8%
Interval 4%

Mandatory Options
Default 46%
Notification 47%
Transition Checking 13%
No checking 4%

Multiple instantiation Cloning 5%

CONSTRAINTS

Constraint Type
Formatting 59%
Group 99%
Cross-cutting 55%

Cross-cutting Constraint (61) Visibility 89%

Formatting Constraint (66)
Prevention 62%
Verification 41%
No checking 26%

Constraint Description (61) Explanation 11%

Decision Propagation (61)
Automatic 97%
Controlled 8%
Guided 3%

Consistency Checking (83)
Interactive 76%
Batch 59%

Configuration Operation Undo 11%

CONFIGURATION PROCESS

Process
Single-step 48%
Basic Multi-step 45%
Hierarchical Multi-step 7%

Activation (58)
Step-by-step 59%
Full-step 41%

Backward Navigation (58)
Stateful arbitrary 69%
Stateless arbitrary 14%
Not supported 17%

– Transition Checking (13%): The user is not allowed to move to the next
step until all mandatory options have been selected. The difference with the
previous pattern is that no warning is shown to the user.

We noticed that 4% of the configurators either lack interactive strategies for
handling mandatory options or have only optional options.

Mandatory options can be distinguished from optional ones through high-
lighting. For that, SCs use symbolic annotations (e.g., * usually for mandatory
options), textual keywords (e.g., required, not required, or optional), or special

The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases 7

text formatting (e.g., boldfaced, coloured text). We observed that only 14% of
the SCs highlight mandatory or optional options, while 70% of the SCs have
optional options in their configuration environments.

Cloning. Cloning means that the user determines how many instances of
an option are included in the final product [12] (e.g., a text element to be printed
on a t-shirt can be instantiated multiple times and configured differently). We
observed cloning mechanisms in only 5% of the configurators.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

!"
#$%
&'
#%

()
*"%
+,
-.'
%&)
/'
0%

()
*"%
.1
,2
"%

()
*"%
3'
1&
'%&
'#
%.$"
14
%

()
*"%
35
"6
7%&
'#
%

8$
5"
*4%

91
,2
":+
,-
.'%
&)
/'
0%

91
,2
":9
$"1

%

91
,2
":3
'1
&'
%&'
#%

91
,2
":3
5"
67%
&'
#%

3'
1&
'%&
'#
%

Fig. 2. Widget types in all the configurators

3.2 Constraints (RQ2)

Formatting Constraint. A formatting constraint ensures that the value set
by the user is valid. Examples are: (1) type correctness (strongly typed, e.g.
String, Integer, and Real), (2) range control (e.g., upper and lower bounds,
slider domain, and valid characters), (3) formatted values (e.g., date, email, and
file extension), and (4) case-sensitive values.

We observed that configurators provide two different patterns for checking
constraint violation. The first is to prevent illegal values. For example, stop
accepting input characters if the maximum number is reached, define a slider
domain, use a date picker, disable illegal options, etc. The second is to verify
the values entered by the user a posteriori, and, for example, highlight, remove
or correct illegal values. These patterns are not mutually exclusive, and configu-
rators can use them for different subsets of options. Among the 66 configurators
supporting formatting constraints, 62% implement prevention and 41% imple-
ment verification patterns. We also noticed that 26% of the configurators do not
check constraints during the configuration session even if they are described in
the interface. In some rare cases, the validation of the configuration was per-
formed off-line, and feedback later sent back to the user.

8 The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases

Group Constraint. A group constraint defines the number of options
that can be selected from a group of options. In essence, constraints implied by
multiple choice-, alternative- and interval-groups are group constraints. Widget
types used to implement these groups directly handle those constraints. For
instance, radio buttons and single-selection combo boxes are commonly used
to implement alternative groups. We identified group constraints in 99% of the
analysed configurators.

Cross-cutting Constraint. A cross-cutting constraint is defined over two
or more options regardless of their inclusion in a group. Require (selecting A
implies selecting B) and Exclude (selecting A prevents selecting B and vice-
versa) constraints are the most common. More complex constraints exist too.
Cross-cutting constraints were observed in 61 configurators (55%) and are either
coded in the client side (e.g., using JavaScript) or in the server side (e.g., using
PHP). Irrespective of the implementation technique, we noticed that only 11%
of the configurators describe them in the GUI with a textual explanation.

Visibility Constraint. Some constraints determine when options are shown
or hidden in the GUI. They are called visibility constraint [13]. Automatically
adding options to a combo box upon modification of another option also falls
in this constraint category. From the 61 configurators with cross-cutting con-
straints, 89% implement visibility constraints.

We now focus on the capabilities of the reasoning procedures, namely decision
propagation, consistency checking and undo.

Decision Propagation. In some configurators, when an option is given a
new value and one or more constraints apply, the reasoning procedure automat-
ically propagates the required changes to all the impacted options. We call it
automatic propagation (97%). In other cases, the reasoning procedure asks to
confirm or discard a decision before altering other options. We call this controlled
propagation (8%). Finally, we also observed some cases of guided propagation
(3%). For example, if option A requires to select option B or C, the reasoning
procedure cannot decide whether B or C should be selected knowing A. In this
case, the configurator proposes a choice to the user. Some of the configurators
implement multiple patterns.

Consistency Checking. An important issue in handling formatting and
cross-cutting constraints is when the reasoning procedure instantiates the con-
straints and checks the consistency. In an interactive setting, the reasoning pro-
cedure interactively checks that the configuration is still consistent as soon as a
decision is made by the user. For example, the permanent control of the num-
ber of letters in a text field with a maximum length constraint is considered
interactive. In some cases, the reasoning procedure checks the consistency of
the configuration upon request, for instance, when the user moves to the next
configuration step. We call this batch consistency checking. Among the 83 con-
figurators supporting both formatting and cross-cutting constraints, 76% imple-
ment interactive and 59% implement batch consistency checking patterns. Some
configurators implement both mechanisms, depending on the constraint type.

The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases 9

Undo. This operation allows users to roll back on their last decision(s).
Among all configurators in the survey, only 11% support undo.

3.3 Configuration process (RQ3)

Process pattern. A configuration process is divided into a sequence of steps,
each of which includes a subset of options. Each step is also visually identified in
the GUI with containers such as navigation tabs, menus, etc. Users follow these
steps to complete the configuration. We identified three different configuration
process patterns:

– Single-step (48%): All the options are displayed to the user in a single graph-
ical container.

– Basic Multi-step (45%): The configurator presents the options either across
several graphical containers that are displayed one at a time, or in a single
container that is divided into several observable steps.

– Hierarchical Multi-step (7%): It is the same as a multi-step except that a
step can contain inner steps.

Activation. Among the 58 multi-step configurators, we noticed two exclu-
sive step activation strategies. In step-by-step activation (59%), only the first
step is available and the other steps become available as soon as all the options
in the previous step have been configured. Alternatively, in a full-step activation
(41%) strategy, all steps are available to the user from the beginning.

Backward navigation. Another important parameter in multi-step con-
figuration processes is the ability to navigate back to a previous step. In some
configurators, the user can go back to any previous step and all configuration
choices are saved. We call it the stateful arbitrary pattern (69%). In other cases,
the user can go back to any previous step but all configuration choices made
in steps following the one reached are discarded. We call it stateless arbitrary
pattern (14%). We observed that all full-step activation configurators follow the
stateful arbitrary navigation pattern. We also noticed that 17% of multi-step
configurators do not support backward navigation.

4 Qualitative Results

The previous section focused on technical characteristics of SCs. We now take a
step back from the code to look at the results from the qualitative and functional
angles. We discuss below the bad and good practices we observed. This classifi-
cation reflects our practical experience with configurators and general knowledge
reported in the literature [1–3, 14, 15]. Note that the impact of marketing or sales
decisions on the behaviour of SCs falls outside our scope of investigation. We
focus here on their perception by end-customers that are likely to influence the
way SCs are implemented.

10 The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases

4.1 Bad practices

– Absence of propagation notification: In many cases, options are automatically
enabled/disabled or appear/disappear without notice. This makes configu-
ration confusing especially for large multi-step models as the impact of a
decision becomes impossible to predict and visualise. 97% of the configura-
tors automatically propagate decisions but rarely inform users of the impact
of their decisions.

– Incomplete reasoning: Reasoning procedures are not always complete. Some
configurators do not check that mandatory options are indeed selected, or
do not verify formatting constraints. 26% of the configurators do not check
formatting constraints during the configuration session.

– Counter-intuitive representation: The visual discrepancies between option
representations are striking. This is not a problem per se. The issue lies in
the improper characterisation of the semantics of the widgets. For instance,
some exclusive options are implemented by (non exclusive) check boxes. Con-
sequently, users only discover the grouping constraint by experimenting with
the SC, which causes confusion and misunderstanding. It also increases the
risk of inconsistency between the intended and implemented behaviour.

– Stateless backward navigation: Stateless configurators lose all decisions when
navigating backward. This is a severe defect since users are extremely likely
to make mistakes or change their mind on some decisions. 31% of the con-
figurators do not support backward navigation or are stateless.

– Automatic step transition: The user is guided to the next step once all options
are configured. Although this is a way to help users [1], it also reduces control
over configuration and hinders decision review.

– Visibility Constraints: When a visibility constraint applies, options are hid-
den and/or deactivated. This reduces the solution space [14] and avoids
conflictual decisions. However, the downside is that to access hidden/deac-
tivated options, the user has to first undo decisions that instantiated the
visibility constraint. These are known problems in configuration [15] that
should be avoided to ensure a satisfying user experience. 89% of the SCs
with cross-cutting constraints support visibility constraints.

– Decision revision: In a few cases, configurators neither provide an undo op-
eration nor allow users to revise their decisions. In these cases, users have to
start from scratch each time they want to alter their configuration.

4.2 Good practices

– Guided Consistency Checking : 3% of the SCs assist users during the config-
uration process by, for instance, identifying conflictual decisions, providing
explanations, and proposing solutions to resolve them. These are key opera-
tions of explanatory systems [14], which are known to improve usability [1].

– Auto-completion allows users to configure some desired options and then
let the SC complete undecided options [16]. Auto-completion is typically

The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases 11

useful when only few options are of interest for the user. Common auto-
completion mechanisms include default values. Web SCs usually support
auto-completion by providing default configuration for mandatory options.

– Self-explanatory process: A configurator should provide clear guidance during
the configuration process [1, 2, 14]. The multi-step configurators we observed
use various mechanisms such as numbered steps, “previous” and “next” but-
tons, the permanent display of already selected options, a list of complete/in-
complete steps, etc. Configurators should also be able to explain constraints
“on the fly” to the users. This is only available in 11% of the configurators.

– Self-explanatory widgets: Whenever possible, configurators should use stan-
dard widget types, explicit bounds on intervals, optional/mandatory option
differentiation, item list sorting and grouping in combo boxes, option selec-
tion/deselection mechanisms, filtering or searching mechanisms, price live
update, spell checker, default values, constraints described in natural lan-
guage, and examples of valid user input.

– Stateful backward navigation and undo: These are must-have functionalities
to allow users to revise their decisions. Yet, only 69% and 11%, respectively,
of the web SCs do support them.

5 Reverse Engineering Challenges

Our long-term objective, viz. developing methods to systematically re-engineer
web SCs, requires accurate data extraction techniques. For the purpose of this
study, we implemented a semi-automated tool to retrieve options, constraints
and configuration processes (see Section 2.2). This tool can serve as a basis for
the reverse-engineering part of the future re-engineering toolset. This section
outlines the main technical challenges we faced and how we overcame them. The
impact of our design decisions on our results are explored in the next section.
The envisaged future developments are sketched in the conclusion.

Discarding irrelevant data. To produce accurate data, we need to sort out
relevant from irrelevant data. For instance, some widgets represent configuration
while others contain product shipment information, agreement check boxes, etc.
A more subtle example is the inclusion of false options such as blank (rep-
resenting “no option selected”), none or select an item values in combo boxes.
Although obviously invalid, values such as none indicate optionality, which must
be documented. To filter out false positive widgets, we either delimited a search
region in the GUI, or forced the search engine to ignore some widgets (e.g.,
widgets with a given [attribute:value] pair).

Unconventional widget implementations. Some standard widgets, like
radio buttons and check boxes, had unconventional implementations. Some were,
for instance, implemented with images representing their status (selected, re-
jected, undecided, etc.). This forced us to use image-based search parameters to
extract the option types and interpret their semantics. To identify those param-
eters, we had to manually browse the source of the web page to map peculiar
implementations to standard widget types.

12 The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases

Detecting constraints. To detect cross-cutting constraints, we simulate
click events of the user, i.e., selecting/deselecting options. When an event is trig-
gered, we monitor changes in the states of the options to track the presence of
a constraint. We had to take the cascading effect of variable changes into ac-
count in order to identify constraints individually rather than as a monolithic
block. Once detected, the constraint is extracted. Once again, the differences
in nature (e.g., natural language descriptions of options, requires/excludes at-
tributes, on-the-fly injection of new content. . .), technology and implementation
tactics further complicated our task. We thus had to define heuristics to extract
valuable data from these different contents as well as from the DOM tree.

Discriminating between option groups and configuration steps. An
option group and a configuration step are both option containers. But while
the former describes logical dependencies between options, the latter denotes
a process. To classify those containers, we defined four criteria: (1) a step is a
coarse-grained container, meaning that a step might include several groups; (2)
steps might be numbered; (3) the term ‘step’ or its synonyms are used in labels;
and (4) a step might capture constraints between options. If these criteria did
not determine whether it was a step or a group, we considered it a group.

The above issues give a sense of the challenges that we had to face for extract-
ing relevant data from the SCs. They are the basic data extraction heuristics
that a SC reverse-engineering tool should follow, and hence represent a major
step towards our long-term goal.

6 Threats to Validity

The main external threat to validity is our web SC selection process. Although
we tried to collect a representative total of 111 configurators from 21 industry
sectors, we depend on the representativeness of the sample source, i.e. Cyledge’s
database.

The main internal threat to validity is that our approach is semi-automated.
First, the reliability of the developed reverse engineering techniques might have
biased the results. Our tool extracts options and detects cross-cutting constraints
by using jQuery selectors, a code clone detector, and a simulator. For instance,
to detect all cross-cutting constraints, all possible option combinations must be
investigated but combinatorial blowup precludes it. The impact this has on the
completeness of our results is hard to predict. This, however, does not affect
our observations related to the absence of verification of constraints textually
documented in the web pages.

Second, arbitrary manual decisions had to be made when analysing con-
figurators. For example, some configurators allow to customise several product
categories. In such cases, we randomly selected and analysed one of them. If an-
other had been chosen, the number of options and constraints could have been
different. We also had to manually select some options to load invisible options
in the source code. We have probably missed some.

The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases 13

The manual part of the study was conducted by the first author. His choices,
interpretations and possible errors influenced the results. To mitigate this threat,
the authors of the paper interacted frequently to refine the process, agree on the
terminology, and discuss issues, which eventually led to redoing some analyses.
The collected data was regularly checked and heavily discussed. Yet, a replication
study could further increase the robustness of the conclusions.

7 Related Work

Variability. Valid combinations of configuration options are often referred to
as variability in the academic community. Over the years, academic research has
defined and studied many variability modelling languages such as feature models
and decision models [17]. Yet, thorough evaluations of the adequacy and impact
of such languages in practice are still missing [18], specifically for configurators.
A notable exception is Berger et al. [13] who study two variability modelling lan-
guages used in the operating system domain. The authors compared the syntax,
semantics, usage and GUI-based configuration tools of the two languages. They
focus on one domain and two configurators while we study how variability con-
cepts are implemented in a wide range of web SCs. Several authors have already
addressed the (semi-automatic) reverse engineering of variability models from
existing artefacts [19–26]. Sources include user documentation, natural language
requirements, formal requirements, product descriptions, dependencies, source
code, architecture, etc. To the best of our knowledge, none of existing reverse-
engineering approaches tackles the extraction of variability patterns from SCs.

GUIs and Web. Approaches have been proposed to reverse engineer GUIs
and web pages. Memon et al. proposed “GUI ripping” to extract models of the
GUI’s structure and behaviour for testing [27]. Staiger presents an approach
to detect GUI widgets and their hierarchy [28]. With VAQUISTA [29], Van-
derdonckt et al. reverse engineered the presentation model of a web page. The
WARE approach seeks to understand, maintain and evolve undocumented web
applications by reverse engineering them to UML diagrams [30]. None of these
approaches considers configuration aspects (e.g., configuration semantics of wid-
gets) nor specific properties of web SCs.

Studies of Configurators. Rogoll et al. [1] performed a qualitative study
of 10+ web SCs. The authors reported on usability and how visual techniques as-
sist customers in configuring products. Our study is larger (100+ configurators),
and our goal and methodology differ significantly. We aim at understanding how
the underlying concepts of web SCs are represented, managed and implemented,
without studying specifically the usability of web SCs. Yet, the quantitative and
qualitative insights of our study can be used for this purpose. Streichsbier et
al. [2] analysed 126 web SCs among those in [8]. The authors question the ex-
istence of standards for GUI (frequency of product images, back- and forward-
buttons, selection boxes, etc.) in three industries. Our study is more ambitious
and also includes non-visual aspects of web SCs. Interestingly, our findings can
help identify and validate existing standards in web SCs. For example, our study

14 The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases

reveals that in more than half of the SCs the selected product components are
summarised at the end of the process, which is in line with [2]. Trentin et al. [3]
conducted a user study of 630 web SCs to validate five capabilities: focused nav-
igation, flexible navigation, easy comparison, benefit-cost communication, and
user-friendly product-space description. We adopted a more technical point of
view. Moreover, their observations are purely qualitative and no automated re-
verse engineering procedure is applied to produce quantitative observations.

8 Conclusion

In this paper, we presented an empirical study of 111 web SCs along three
dimensions: configuration options, constraints and configuration process.

Quantitative insights. We quantified numerous properties of SCs using
code inspection tools. Among a diversity of widgets used to represent config-
uration options, combo box items and images are the most common. We also
observed that in many cases configuration options, though not visually grouped
together, logically dependent on one another: more than half of the configurators
have cross-cutting constraints, which are implemented in many different ways.
As for the configuration process, half of the configurators propose multi-step
configuration, two thirds of which enable stateful backward navigation.

Qualitative insights. The empirical analysis of web SCs reveals reliability
issues when handling constraints. These problems come from the configurators’
lack of convincing support for consistency checking and decision propagation.
For instance, although verifying mandatory options and constraints are basic
operations for configurators, our observations show that they are not completely
implemented. Moreover, the investigation of client-side code implementation ver-
ifies, in part, that no systematic method (e.g., solver-based) is applied to imple-
ment reasoning operations. We also noticed that usability is rather weak in many
cases (e.g., counter-intuitive representations, lack of guidance).

Future work. We provided empirical evidence that SCs are complex infor-
mation systems for which qualities like usability and correctness are not always
satisfied. The contribution of this paper is a first step toward their understanding,
and a foundation for devising effective (re-)engineering solutions. Our ongoing
work is to extend the search engine with advanced data extraction procedures
so as to obtain all other necessary information (e.g., option hierarchy, descrip-
tive information, CSS data). Moreover, at the moment, constraints are detected
either by manual inspection or by simulating simple scenarios, which only cov-
ers a subset of the possible constraints. To increase completeness, we are now
integrating web crawling and “hidden web” techniques [31] in our simulator and
search engine. Furthermore, we believe that the use of variability models to for-
mally capture configuration options and constraints, and solvers used in more
academic configuration tools (e.g., SAT and SMT) to reason about these models,
would provide more effective and reliable bases. Yet a lot more effort is needed
for providing a systematic and comprehensive solution to practitioners.

The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases 15

Acknowledgements This work was supported by the University of Namur
(FSR programme) and by the Walloon Region under the NAPLES project.

References

1. T. Rogoll and F. Piller, “Product configuration from the customer’s perspective: A
comparison of configuration systems in the apparel industry,” in PETO’04, 2004.

2. C. Streichsbier, P. Blazek, F. Faltin, and W. Frühwirt, “Are de facto Standards a
Useful Guide for Designing Human-Computer Interaction Processes? The Case of
User Interface Design for Web-based B2C Product Configurators,” in HICSS’09.
IEEE, 2009, pp. 1–7.

3. A. Trentin, E. Perin, and C. Forza, “Sales configurator capabilities to prevent
product variety from backfiring,” in Workshop on Configuration (ConfWS), 2012.

4. K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., 2005.

5. M. Schäler, T. Leich, M. Rosenmüller, and G. Saake, “Building information system
variants with tailored database schemas using features,” in CAiSE’12. Springer-
Verlag, 2012, pp. 597–612.

6. F. Gottschalk, T. A. C. Wagemakers, M. H. Jansen-Vullers, W. M. P. van der Aalst,
and M. L. Rosa, “Configurable process models: Experiences from a municipality
case study,” in CAiSE, 2009, pp. 486–500.

7. M. L. Rosa, W. M. van der Aalst, M. Dumas, and A. H. ter Hofstede,
“Questionnaire-based variability modeling for system configuration,” Software and
Systems Modeling, vol. 8, no. 2, pp. 251–274, 2008.

8. http://www.configurator-database.com, 2011.
9. Q. Boucher, E. K. Abbasi, A. Hubaux, G. Perrouin, M. Acher, and P. Hey-

mans, “Towards more reliable configurators: A re-engineering perspective,” in
PLEASE’12, co-located with ICSE’12, 2012.

10. E. Ferrara, P. D. Meo, G. Fiumara, and R. Baumgartner, “Web data extraction,
applications and techniques: A survey,” CoRR, vol. abs/1207.0246, 2012.

11. K. Czarnecki and C. H. P. Kim, “Cardinality-based feature modeling and con-
straints: A progress report,” in OOPSLA’05, 2005.

12. R. Michel, A. Classen, A. Hubaux, and Q. Boucher, “A formal semantics for feature
cardinalities in feature diagrams,” in VaMoS’11. ACM, 2011, pp. 82–89.

13. T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “Variability modeling
in the real: a perspective from the operating systems domain,” in ASE’10. ACM,
2010, pp. 73–82.

14. L. Hvam, N. H. Mortensen, and J. Riis, Product Customization. Springer-Verlag
Berlin Heidelberg, 2008.

15. A. Hubaux, Y. Xiong, and K. Czarnecki, “A survey of configuration challenges in
linux and ecos,” in VaMoS’12. ACM Press, 2012, pp. 149–155.

16. M. Janota, G. Botterweck, R. Grigore, and J. Marques-Silva, “How to complete
an interactive configuration process?” CoRR, vol. abs/0910.3913, 2009.

17. K. Schmid, R. Rabiser, and P. Grünbacher, “A comparison of decision modeling
approaches in product lines,” in VaMoS’11. ACM, 2011, pp. 119–126.

18. A. Hubaux, A. Classen, M. Mendonça, and P. Heymans, “A preliminary review on
the application of feature diagrams in practice,” in VaMoS’10, 2010, pp. 53–59.

19. N. Weston, R. Chitchyan, and A. Rashid, “A framework for constructing semanti-
cally composable feature models from natural language requirements,” in SPLC’09.
ACM, 2009, pp. 211–220.

16 The Anatomy of a Sales Configurator: An Empirical Study of 111 Cases

20. I. John, “Capturing product line information from legacy user documentation,” in
Software Product Lines. Springer, 2006, pp. 127–159.

21. M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire, “Reverse
Engineering Architectural Feature Models,” in ECSA’11. Springer, 2011, pp.
220–235.

22. S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Reverse engineering
feature models,” in ICSE’11. ACM, 2011, pp. 461–470.

23. M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet, and
P. Lahire, “On extracting feature models from product descriptions,” in VaMoS’12.
ACM, 2012, pp. 45–54.

24. M. Acher, B. Baudry, P. Heymans, A. Cleve, and J.-L. Hainaut, “Support for
reverse engineering and maintaining feature models,” in VaMoS’13. ACM, 2013,
pp. 1–8.

25. A. Lora-Michiels, C. Salinesi, and R. Mazo, “A method based on association rules
to construct product line models,” in VaMoS’10, 2010, pp. 147–150.

26. V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer, P. Rayson, C. Pohl,
and A. Rummler, “An exploratory study of information retrieval techniques in
domain analysis,” in SPLC’08. IEEE, 2008, pp. 67–76.

27. A. M. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse engineering
of graphical user interfaces for testing,” in RE’03. IEEE, 2003, pp. 260–269.

28. S. Staiger, “Static analysis of programs with graphical user interface,” in CSMR’07.
IEEE, 2007, pp. 252–264.

29. J. Vanderdonckt, L. Bouillon, and N. Souchon, “Flexible reverse engineering of
web pages with vaquista,” in WCRE’01. IEEE, 2001, pp. 241–248.

30. G. A. Di Lucca, A. R. Fasolino, and P. Tramontana, “Reverse engineering web
applications: the WARE approach,” J. Softw. Maint. Evol., vol. 16, no. 1-2, pp.
71–101, Jan. 2004.

31. A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based web applica-
tions through dynamic analysis of user interface state changes,” ACM Trans. Web,
vol. 6, no. 1, pp. 3:1–3:30, Mar. 2012.

