N. Smith, euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling, Interface Focus, vol.41, issue.10, 2011.
DOI : 10.1016/j.jbiomech.2008.04.035

URL : https://hal.archives-ouvertes.fr/inria-00616189

M. Sermesant, 2012 Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation, Med. Image Anal, vol.16

K. Ten-tusscher, D. Noble, P. Noble, and A. Panfilov, A model for human ventricular tissue, AJP: Heart and Circulatory Physiology, vol.286, issue.4, pp.1573-1589, 2003.
DOI : 10.1152/ajpheart.00794.2003

R. Aliev and A. Panfilov, A simple two-variable model of cardiac excitation, Chaos, Solitons & Fractals, vol.7, issue.3, pp.293-301
DOI : 10.1016/0960-0779(95)00089-5

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-466, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

A. Bueno-orovio, E. Cherry, and F. Fenton, Minimal model for human ventricular action potentials in tissue, Journal of Theoretical Biology, vol.253, issue.3, pp.544-560, 2008.
DOI : 10.1016/j.jtbi.2008.03.029

C. Mitchell and D. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, pp.767-793
DOI : 10.1016/S0092-8240(03)00041-7

J. Keener, An eikonal-curvature equation for action potential propagation in myocardium, Journal of Mathematical Biology, vol.30, issue.7, 1991.
DOI : 10.1007/BF00163916

J. Humphrey and R. Strumpf, Determination of a constitutive relation for passive myocardium. I. A new functional form, J. Biomech. Eng, vol.112, pp.333-339, 1990.

P. Hunter, M. Nash, G. Sands, P. Av-panfilov, and . Holden, 1997 Computational electromechanics of the heart, Computational biology of the heart, pp.345-407

M. Nash, Mechanics and material properties of the heart using an anatomically accurate mathematical model, 1998.

J. Bestel, F. Clément, and M. Sorine, A Biomechanical Model of Muscle Contraction, Lecture Notes in Computer Science, vol.2208, pp.1159-1161, 2001.
DOI : 10.1007/3-540-45468-3_143

F. Sachse, Computational cardiology: modeling of anatomy, electrophysiology, and mechanics, 2004.
DOI : 10.1007/b96841

S. Marchesseau, H. Delingette, M. Sermesant, and N. Ayache, 2012 Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform, Biomech. Model. Mechanobiol

F. Faure, SOFA: A Multi-Model Framework for Interactive Physical Simulation
DOI : 10.1007/8415_2012_125

URL : https://hal.archives-ouvertes.fr/hal-00681539

F. Fenton and K. A. , Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.8, issue.1, pp.20-47
DOI : 10.1063/1.166311

M. Chhay, Y. Coudière, and R. Turpault, 2012 How to compute the extracellular potential in electrocardiology from an extended monodomain model? Research Report no. RR-7916

S. Rapaka, T. Mansi, B. Georgescu, M. Pop, G. Wright et al., LBM-EP: Lattice-Boltzmann Method for Fast Cardiac Electrophysiology Simulation from 3D Images, Medical image computing and computer-assisted intervention (MICCAI 2012), pp.33-40
DOI : 10.1007/978-3-642-33418-4_5

M. Ethier and Y. Bourgault, Semi-implicit timediscretization schemes for the bidomain model, 2008.

P. Pathmanathan, G. Mirams, J. Southern, and J. Whiteley, The significant effect of the choice of ionic current integration method in cardiac electro-physiological simulations, International Journal for Numerical Methods in Biomedical Engineering, vol.117, issue.1, pp.1751-1770, 2011.
DOI : 10.1002/cnm.1438

Y. Coudière and C. Pierre, Stability and convergence of a finite volume method for two systems of reaction-diffusion equations in electro-cardiology, Nonlinear Analysis: Real World Applications, vol.7, issue.4, pp.916-935, 2006.
DOI : 10.1016/j.nonrwa.2005.02.006

J. Relan, M. Sermesant, H. Delingette, M. Pop, G. Wright et al., Quantitative comparison of two cardiac electrophysiology models using personalisation to optical and MR data, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1027-1030, 2009.
DOI : 10.1109/ISBI.2009.5193230

URL : https://hal.archives-ouvertes.fr/inria-00616130

E. Bartocci, E. Cherry, J. Glimm, R. Grosu, S. Smolka et al., Toward real-time simulation of cardiac dynamics, Proceedings of the 9th International Conference on Computational Methods in Systems Biology, CMSB '11, pp.21-23, 2011.
DOI : 10.1145/2037509.2037525

J. Allard, H. Courtecuisse, and F. Faure, 2011 Implicit FEM solver on GPU for interactive deformation simulation, GPU computing gems, pp.281-294

J. Sainte-marie, D. Chapelle, R. Cimrman, and M. Sorine, Modeling and estimation of the cardiac electromechanical activity, Computers & Structures, vol.84, issue.28, pp.1743-1759, 2006.
DOI : 10.1016/j.compstruc.2006.05.003

URL : https://hal.archives-ouvertes.fr/hal-00839206

D. Chapelle, L. Tallec, P. Moireau, P. Sorine, and M. , ENERGY-PRESERVING MUSCLE TISSUE MODEL: FORMULATION AND COMPATIBLE DISCRETIZATIONS, International Journal for Multiscale Computational Engineering, vol.10, issue.2, pp.189-211, 2011002360.
DOI : 10.1615/IntJMultCompEng.2011002360

URL : https://hal.archives-ouvertes.fr/hal-00678772

S. Marchesseau, T. Heimann, S. Chatelin, R. Willinger, and H. Delingette, 2010 Multiplicative Jacobian energy decomposition method for fast porous viscohyperelastic soft tissue model, Med. Image Comput. Comput. Assist. Interv, vol.13, pp.235-242

A. Huxley, Muscle structure and theories of contraction, Prog. Biophys. Biophys. Chem, vol.7, pp.255-318, 1957.

T. Mansi, X. Pennec, M. Sermesant, H. Delingette, and N. Ayache, iLogDemons: A Demons-Based Registration Algorithm for??Tracking Incompressible Elastic Biological Tissues, International Journal of Computer Vision, vol.28, issue.12, pp.92-111, 2011.
DOI : 10.1007/s11263-010-0405-z

URL : https://hal.archives-ouvertes.fr/inria-00616187

S. Marchesseau, H. Delingette, M. Sermesant, M. Sorine, K. Rhode et al., In press. Preliminary specificity study of the Bestel?Clement ?Sorine electromechanical model of the heart using parameter calibration from medical images, J. Mech. Behav. Biomed. Mater

J. Lumens, T. Delhaas, B. Kirn, and T. Arts, Three-Wall Segment (TriSeg) Model Describing Mechanics and Hemodynamics of Ventricular Interaction, Annals of Biomedical Engineering, vol.93, issue.11, pp.2234-2255, 2009.
DOI : 10.1007/s10439-009-9774-2