W. Cai and S. Deng, An upwinding embedded boundary method for Maxwell???s equations in media with material interfaces: 2D case, Journal of Computational Physics, vol.190, issue.1, pp.159-183, 2003.
DOI : 10.1016/S0021-9991(03)00269-9

P. Ciarlet, The Finite Element Method for Elliptic Problems, 1978.

G. Cohen, X. Ferriéres, and S. Pernet, A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell???s equations in time domain, Journal of Computational Physics, vol.217, issue.2, pp.340-363, 2006.
DOI : 10.1016/j.jcp.2006.01.004

R. W. Davies, K. Morgan, and O. Hassan, A high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain, Computational Mechanics, vol.14, issue.3, pp.321-331, 2009.
DOI : 10.1007/s00466-009-0377-4

S. Dosopoulos and J. F. Lee, Interior Penalty Discontinuous Galerkin Finite Element Method for the Time-Dependent First Order Maxwell's Equations, IEEE Transactions on Antennas and Propagation, vol.58, issue.12, pp.4085-4090, 2010.
DOI : 10.1109/TAP.2010.2078445

H. Fahs, Development of a hp-like discontinuous Galerkin time-domain method on nonconforming simplicial meshes for electromagnetic wave propagation, Int. J. Numer. Anal. Mod, vol.6, pp.193-216, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00600469

H. Fahs and S. Lanteri, A high-order non-conforming discontinuous Galerkin method for time-domain electromagnetics, Journal of Computational and Applied Mathematics, vol.234, issue.4, pp.1088-1096, 2010.
DOI : 10.1016/j.cam.2009.05.015

URL : https://hal.archives-ouvertes.fr/hal-00600468

X. Ferrieres, J. Parmantier, S. Bertuol, and A. R. Ruddle, Application of a Hybrid FiniteDifference/Finite Volume Method to Solve an Automotive EMC Problem, IEEE Transactions on Electromagnetic Compatibility, vol.46, issue.4, pp.624-634, 2004.
DOI : 10.1109/TEMC.2004.837837

L. Fezoui, S. Lanteri, S. Lohrengel, and S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.6, pp.1149-1176, 2005.
DOI : 10.1051/m2an:2005049

URL : https://hal.archives-ouvertes.fr/hal-00210500

S. G. Garcia, M. F. Pantoja, C. M. De-jong-van-coevorden, A. R. Bretones, and R. G. Martin, Hybridizing DGTD and FDTD, 2007 International Conference on Electromagnetics in Advanced Applications, pp.364-366, 2007.
DOI : 10.1109/ICEAA.2007.4387313

S. G. Garcia, M. F. Pantoja, C. M. De-jong-van-coevorden, A. R. Bretones, and R. G. Martin, A New Hybrid DGTD/FDTD Method in 2-D, IEEE Microwave and Wireless Components Letters, vol.18, issue.12, pp.764-766, 2008.
DOI : 10.1109/LMWC.2008.2007688

V. Hermann, M. Käser, and C. E. Castro, Non-conforming hybrid meshes for efficient 2-D wave propagation using the Discontinuous Galerkin Method, Geophysical Journal International, vol.184, issue.2, pp.746-758, 2011.
DOI : 10.1111/j.1365-246X.2010.04858.x

J. S. Hesthaven and T. Warburton, Nodal High-Order Methods on Unstructured Grids, Journal of Computational Physics, vol.181, issue.1, pp.186-221, 2002.
DOI : 10.1006/jcph.2002.7118

M. König, K. Busch, and J. Niegemann, The discontinuous Galerkin time-domain method for Maxwell's equations with anisotropic materials. Photonics and Nanostructures -Fundamentals and Applications, pp.303-309, 2010.

]. R. Léger, C. Durochat, and S. Lanteri, A high-order 3D multi-element Discontinuous Galerkin method for the time-domain Maxwell equations, 9th International Symposium on Electric and Magnetic Fields, 2013.

E. Montseny, S. Pernet, X. Ferriéres, and G. Cohen, Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell???s equations, Journal of Computational Physics, vol.227, issue.14, pp.6795-6820, 2008.
DOI : 10.1016/j.jcp.2008.03.032

J. Niegemann, M. König, K. Stannigel, and K. Busch, Higher-order time-domain methods for the analysis of nano-photonic systems, Photonics and Nanostructures - Fundamentals and Applications, vol.7, issue.1, pp.2-11, 2009.
DOI : 10.1016/j.photonics.2008.08.006

S. Pernet and X. Ferrieres, HP a-priori error estimates for a non-dissipative spectral discontinuous Galerkin method to solve the Maxwell equations in the time domain, Mathematics of Computation, vol.76, issue.260, pp.1801-1832, 2007.
DOI : 10.1090/S0025-5718-07-01991-6

B. Zhao, S. Dosopoulos, and J. F. Lee, Non-conformal and parallel discontinuous Galerkin time domain method for Maxwell's equations: EM analysis of IC packages, J. Comput. Phys, vol.238, issue.1, pp.48-70, 2013.

C. Scheid and S. Lanteri, Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media, IMA J. Numer. Anal, 2012.

S. Schnepp, E. Gjonaj, and T. Weiland, A hybrid Finite Integration???Finite Volume Scheme, Journal of Computational Physics, vol.229, issue.11, pp.4075-4096, 2010.
DOI : 10.1016/j.jcp.2010.01.041

H. Songoro, M. Vogel, and Z. Cendes, Keeping Time with Maxwell's Equations, IEEE Microwave Magazine, vol.11, issue.2, pp.42-49, 2010.
DOI : 10.1109/MMM.2010.935779

K. Stannigel, M. König, J. Niegemann, and K. Busch, Discontinuous Galerkin time-domain computations of metallic nanostructures, Optics Express, vol.17, issue.17, pp.14934-14947, 2009.
DOI : 10.1364/OE.17.014934

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference timedomain method, Inria RESEARCH CENTRE SOPHIA ANTIPOLIS ? MÉDITERRANÉE 2004 route des Lucioles -BP 93, 2005.