Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains

Abstract : We consider the Cauchy problem of recovering both Neumann and Dirichlet data on the inner part of the boundary of an annular domain from measurements of a harmonic function on some part of the outer boundary. Using tools from complex analysis and best approximation in Hardy classes, we present a family of fast data completion algorithms which are shown to provide constructive and robust identification schemes. These are applied to the computation of an impedance or Robin coefficient and are validated by a thorough numerical study.
Type de document :
Article dans une revue
IMA Journal of Applied Mathematics, Oxford University Press (OUP), 2009, 74 (4), pp.481-506. 〈10.1093/imamat/hxn041〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00798939
Contributeur : Juliette Leblond <>
Soumis le : lundi 11 mars 2013 - 11:18:57
Dernière modification le : jeudi 11 janvier 2018 - 15:50:31

Lien texte intégral

Identifiants

Collections

Citation

Mohamed Jaoua, Juliette Leblond, Moncef Mahjoub, Jonathan R. Partington. Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains. IMA Journal of Applied Mathematics, Oxford University Press (OUP), 2009, 74 (4), pp.481-506. 〈10.1093/imamat/hxn041〉. 〈hal-00798939〉

Partager

Métriques

Consultations de la notice

152