Strong solutions to stochastic differential equations with rough coefficients

Nicolas Champagnat 1, 2 Pierre-Emmanuel Jabin 3
1 TOSCA - TO Simulate and CAlibrate stochastic models
CRISAM - Inria Sophia Antipolis - Méditerranée , IECL - Institut Élie Cartan de Lorraine : UMR7502
Abstract : We study strong existence and pathwise uniqueness for stochastic differential equations in $\RR^d$ with rough coefficients, and without assuming uniform ellipticity for the diffusion matrix. Our approach relies on direct quantitative estimates on solutions to the SDE, assuming Sobolev bounds on the drift and diffusion coefficients, and $L^p$ bounds for the solution of the corresponding Fokker-Planck PDE, which can be proved separately. This allows a great flexibility regarding the method employed to obtain these last bounds. Hence we are able to obtain general criteria in various cases, including the uniformly elliptic case in any dimension, the one-dimensional case and the Langevin (kinetic) case.
Type de document :
Article dans une revue
Annals of Probability, Institute of Mathematical Statistics, 2018, 46 (3), pp.1498-1541. 〈10.1214/17-AOP1208〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00799242
Contributeur : Nicolas Champagnat <>
Soumis le : mardi 22 septembre 2015 - 09:41:49
Dernière modification le : samedi 6 octobre 2018 - 01:16:21
Document(s) archivé(s) le : mardi 29 décembre 2015 - 06:55:04

Fichier

strong_solutions_v13.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Nicolas Champagnat, Pierre-Emmanuel Jabin. Strong solutions to stochastic differential equations with rough coefficients. Annals of Probability, Institute of Mathematical Statistics, 2018, 46 (3), pp.1498-1541. 〈10.1214/17-AOP1208〉. 〈hal-00799242v2〉

Partager

Métriques

Consultations de la notice

407

Téléchargements de fichiers

161