Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, Epiciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
2IECL - Institut Élie Cartan de Lorraine (Université de Lorraine, Boulevard des Aiguillettes BP 70239 54506 Vandoeuvre-les-Nancy Cedex
Ile du Saulcy - 57 045 Metz Cedex 01 - France)
Abstract : We study strong existence and pathwise uniqueness for stochastic differential equations in $\RR^d$ with rough coefficients, and without assuming uniform ellipticity for the diffusion matrix. Our approach relies on direct quantitative estimates on solutions to the SDE, assuming Sobolev bounds on the drift and diffusion coefficients, and $L^p$ bounds for the solution of the corresponding Fokker-Planck PDE, which can be proved separately. This allows a great flexibility regarding the method employed to obtain these last bounds. Hence we are able to obtain general criteria in various cases, including the uniformly elliptic case in any dimension, the one-dimensional case and the Langevin (kinetic) case.
https://hal.inria.fr/hal-00799242 Contributor : Nicolas ChampagnatConnect in order to contact the contributor Submitted on : Tuesday, September 22, 2015 - 9:41:49 AM Last modification on : Friday, January 21, 2022 - 3:09:48 AM Long-term archiving on: : Tuesday, December 29, 2015 - 6:55:04 AM
Nicolas Champagnat, Pierre-Emmanuel Jabin. Strong solutions to stochastic differential equations with rough coefficients. Annals of Probability, Institute of Mathematical Statistics, 2018, 46 (3), pp.1498-1541. ⟨10.1214/17-AOP1208⟩. ⟨hal-00799242v2⟩