Modelling and numerical approximation of a 2.5D set of equations for mesoscale atmospheric processes

Abstract : The set of 3D inviscid primitive equations for the atmosphere is dimensionally reduced by a Discontinuous Galerkin discretization in one horizontal direction. The resulting model is a 2D system of balance laws where with a source term depending on the layering procedure and the choice of coupling fluxes, which is established in terms of upwind considerations. The "2.5D" system is discretized via a WENO-TVD scheme based in a flux limiter centered approach. We study four tests cases related to atmospheric phenomena to analyze the physical validity of the model.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2012, 231 (21), pp.7274-7298. 〈10.1016/j.jcp.2012.06.035〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00800377
Contributeur : Estelle Bouzat <>
Soumis le : mercredi 13 mars 2013 - 16:02:47
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Lien texte intégral

Identifiants

Collections

Citation

Dante Kalise, Ivar Lie. Modelling and numerical approximation of a 2.5D set of equations for mesoscale atmospheric processes. Journal of Computational Physics, Elsevier, 2012, 231 (21), pp.7274-7298. 〈10.1016/j.jcp.2012.06.035〉. 〈hal-00800377〉

Partager

Métriques

Consultations de la notice

110