D. L. Donoho, On minimum entropy deconvolution Applied Time Series AnalysisII, pp.565-609, 1981.

D. Kundur and D. Hatzinakos, Blind image deconvolution, IEEE Signal Processing Magazine, vol.13, issue.3, pp.43-64, 1996.
DOI : 10.1109/79.489268

A. Levin, Y. Weiss, F. Durand, and W. Freeman, Understanding and evaluating blind deconvolution algorithms, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.1964-1971, 2009.
DOI : 10.1109/CVPR.2009.5206815

S. Affes and Y. Grenier, A signal subspace tracking algorithm for microphone array processing of speech, Speech and Audio Processing, pp.425-437, 1997.
DOI : 10.1109/89.622565

R. Fergus, B. Singh, A. Hertzmann, S. Roweis, and W. Freeman, Removing camera shake from a single photograph, ACM Transactions on Graphics, vol.25, issue.3, pp.787-794, 2006.
DOI : 10.1145/1141911.1141956

Q. Shan, J. Jia, and A. Agarwala, High-quality motion deblurring from a single image, in ACM Transactions on Graphics (TOG), vol.27, issue.3, p.73, 2008.

S. Cho and S. Lee, Fast motion deblurring, ACM Transactions on Graphics (TOG), vol.28, issue.5, p.145, 2009.

H. Shen, L. Du, L. Zhang, and W. Gong, A blind restoration method for remote sensing images Geoscience and Remote Sensing Letters, pp.1137-1141, 2012.

M. Wu and D. Wang, A two-stage algorithm for onemicrophone reverberant speech enhancement, Audio, Speech, and Language Processing, pp.774-784, 2006.

H. Kameoka, T. Nakatani, and T. Yoshioka, Robust speech dereverberation based on non-negativity and sparse nature of speech spectrograms, Acoustics, Speech and Signal Processing, pp.45-48, 2009.

K. Kumar, R. Singh, B. Raj, and R. Stern, Gammatone sub-band magnitude-domain dereverberation for ASR, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4604-4607, 2011.
DOI : 10.1109/ICASSP.2011.5947380

Y. Lin, J. Chen, Y. Kim, and D. Lee, Blind channel identification for speech dereverberation using 1 norm sparse learning, Advances in Neural Information Processing Systems, 2007.

R. Jenatton, G. Obozinski, and F. Bach, Structured sparse principal component analysis, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414158

F. Theis, K. Stadlthanner, and T. Tanaka, First results on uniqueness of sparse non-negative matrix factorization, Proceedings of the 13th European Signal Processing Conference (EUSIPCO?05), 2005.

R. Gribonval and K. Schnass, Dictionary identification -sparse matrix-factorization via 1 -minimisation Information Theory, IEEE Transactions on, vol.56, issue.7, pp.3523-3539, 2010.

M. Babaie-zadeh, C. Jutten, and A. Mansour, Sparse ICA via cluster-wise PCA, Neurocomputing, vol.69, issue.13-15, pp.1458-1466, 2006.
DOI : 10.1016/j.neucom.2005.12.022

URL : https://hal.archives-ouvertes.fr/hal-00097157

S. Babacan, R. Molina, M. Do, and A. Katsaggelos, Bayesian Blind Deconvolution with General Sparse Image Priors, European Conference on Computer Vision (ECCV), 2012.
DOI : 10.1007/978-3-642-33783-3_25

J. Money and S. Kang, Total variation minimizing blind deconvolution with shock filter reference, Image and Vision Computing, vol.26, issue.2, pp.302-314, 2008.
DOI : 10.1016/j.imavis.2007.06.005

D. Krishnan, T. Tay, and R. Fergus, Blind deconvolution using a normalized sparsity measure, CVPR 2011, pp.233-240, 2011.
DOI : 10.1109/CVPR.2011.5995521

T. Chan and C. Wong, Convergence of the alternating minimization algorithm for blind deconvolution, Linear Algebra and its Applications, vol.316, issue.1-3, pp.259-285, 2000.
DOI : 10.1016/S0024-3795(00)00141-5

J. Bolte, P. Combettes, and J. Pesquet, Alternating proximal algorithm for blind image recovery, 2010 IEEE International Conference on Image Processing, 2010.
DOI : 10.1109/ICIP.2010.5652173

URL : https://hal.archives-ouvertes.fr/hal-00844115