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On ISS and iISS properties of homogeneous
systems

Emmanuel Bernuau, Andrey Polyakov, Denis Efimov and Wilfrid Perruquetti

Abstract—Several conditions are proposed to check ISS and
iISS properties for generic nonlinear systems applying the
weighted homogeneity concept (global or local). The advantages
of this result is that, under some mild conditions, the system
robustness can be established as a function of the degree of
homogeneity.

I. INTRODUCTION

The problem of robustness and stability analysis with
respect to external inputs (like exogenous disturbances or
measurement noises) for dynamical systems is in the center
of attention of many researches [1], [2], [3], [4], [5], [6].
One of the most popular theories, which can be used for this
robustness analysis for nonlinear systems, was originated more
than 20 years ago [7] and it is based on the Input-to-State
Stability (ISS) property and many related notions (see a recent
survey [8]). The advantages of ISS theory include a complete
list of necessary and sufficient conditions, existence of the
Lyapunov method extension, a rich variety of stability concepts
adopted for different control and estimation problems.

The main tool to check the ISS property for a nonlin-
ear system consists in a Lyapunov function design, which
satisfies some sufficient conditions. As usual, there is no
generic approach to select a Lyapunov function for nonlinear
systems. Therefore, computationally tractable approaches for
ISS verification for particular classes of nonlinear systems are
of great practical importance. In this work we are going to
propose such a technique for checking ISS and iISS properties
for a class of homogeneous and locally homogeneous systems.

Homogeneity is an intrinsic property of an object, which
remains consistent with respect to some scaling, e.g. level
sets (resp. solutions) are preserved for homogeneous functions
(resp. vector fields). The notion of weighted homogeneity was
found useful by many authors [9], [10], [11], [12], [13], [14].
The main feature of this property is that it transforms a local
(stability) property of the system to the whole state space via
a suitably defined scaling. In some cases such a globality of
the system behavior becomes ambiguous, that is why the local
homogeneity notion has been recently proposed [15], [16]. In
this case the property transfer can be carried out on a subspace
using different local scales.

The ISS notion of homogeneous systems has been studied
in [17], [18], [15]. In this work we are going to generalize
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the result of those works and extend it to the integral ISS
(iISS) property. The underlying idea of the proposed results is
that for a nonlinear system its asymptotic stability with zero
disturbance implies a certain robustness (ISS or iISS) under
homogeneity conditions. Note that to establish asymptotic
stability of a homogeneous system one can use a non-strict
Lyapunov function with the Krasovskiy–LaSalle arguments.

The outline of the paper is as follows. Notations used
in the paper are given in Section II. The robust stability
notions under consideration and homogeneity are introduced
in Section III. The ISS and iISS properties of homogeneous
systems are studied in Section IV. The same analysis for
locally homogeneous systems is done in Section V.

II. NOTATIONS

Through the paper the following notations will be used:
• R+ = {x ∈ R : x ≥ 0}, where R is the set of real

number.
• | · | denotes the absolute value in R, ‖.‖ denotes the

Euclidean norm on Rn.
• For a (Lebesgue) measurable function d : R+ → Rm

define the norm ||d||[t0,t1) = ess supt∈[t0,t1)‖d(t)‖, then
||d||∞ = ||d||[0,+∞) and the set of d(t) with the property
||d||∞ < +∞ we will further denote as L∞ (the set of
essentially bounded measurable functions).

• A continuous function α : R+ → R+ belongs to the class
K if α(0) = 0 and the function is strictly increasing. The
function α : R+ → R+ belongs to the class K∞ if α ∈ K
and it is increasing to infinity. A continuous function β :
R+×R+ → R+ belongs to the class KL if β(·, t) ∈ K∞
for each fixed t ∈ R+ and limt→+∞ β(s, t) = 0 for
each fixed s ∈ R+. For any α ∈ K and s, r ∈ R+,
α(s+ r) ≤ α(2s) + α(2r).

• The notation DV (x)f(x) stands for the directional
derivative of a continuously differentiable function V
with respect to the vector field f evaluated at point x.

• Young’s inequality: sv ≤ sp

p +(1− 1
p )v

p
p−1 for any s, v ∈

R+ and p > 1.
• A series of integers 1, 2, ..., n is denoted by 1, n.

III. PRELIMINARIES

In this work we will consider the following nonlinear
system:

ẋ = f(x, d), (1)

where x ∈ Rn is the state, d ∈ Rm is the external input,
d(t) ∈ L∞, and f : Rn+m → Rn is a locally Lipschitz (or
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Hölder) continuous function, f(0, 0) = 0. In some cases we
will equip the system (1) with an output y ∈ Rp:

y = h(x), (2)

where h : Rn → Rp is a continuous function. For an
initial condition x0 ∈ Rn and input d ∈ L∞, define the
corresponding solutions by x(t, x0, d) for any t ≥ 0 for which
the solution exists.

A. Stability properties

In this work we will be interested in the following stability
properties [8].

Definition 1. The system (1) is called input-to-state practi-
cally stable (ISpS), if for any input d ∈ L∞ and any x0 ∈ Rn
there are some functions β ∈ KL, γ ∈ K and c ≥ 0 such that

‖x(t, x0, d)‖ ≤ β(‖x0‖, t) + γ(||d||[0,t)) + c ∀t ≥ 0.

The function γ is called nonlinear asymptotic gain. The system
is called ISS if c = 0.

Definition 2. The system (1) is called iISS, if there are some
functions α ∈ K∞, γ ∈ K and β ∈ KL such that for any
x0 ∈ Rn and d ∈ L∞ the estimate holds:

α(‖x(t, x0, d)‖) ≤ β(‖x0‖, t) +

tˆ

0

γ(‖d(s)‖) ds ∀t ≥ 0.

These properties have the following Lyapunov function
characterizations.

Definition 3. A smooth function V : Rn → R+ is called
ISpS Lyapunov function for the system (1) if for all x ∈ Rn,
d ∈ Rm and some r ≥ 0, α1, α2, α3 ∈ K∞ and θ ∈ K:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),
DV (x)f(x, d) ≤ r + θ(‖d‖)− α3(‖x‖).

Such a function V is called ISS Lyapunov function if r = 0,
and it is iISS Lyapunov function if instead α3 : R+ → R+ is
a positive definite function.

Note that an ISS Lyapunov function can also satisfy the
following equivalent condition for some χ ∈ K:

‖d‖ ≤ χ(‖x‖)⇒ DV (x)f(x, d) ≤ −α3(‖x‖).

Theorem 1. The system (1) is ISS (ISpS, iISS) iff it admits an
ISS (ISpS, iISS) Lyapunov function.

Note that, if the system (1) is ISS, then it is also iISS.

B. Weighted homogeneity

Following [19], for any strictly positive numbers λ and ri,
i = 1, n called weights, one can define:
• the vector of weights r = (r1, . . . , rn)T , rmax =

max1≤j≤n rj and rmin = min1≤j≤n rj ;
• the dilation matrix Λr = diag{λri}ni=1, note

that for any x ∈ Rn we have Λrx =
(λr1x1, . . . , λ

rixi, . . . , λ
rnxn)T ;

• the r–homogeneous norm ‖x‖r = (
∑n
i=1 |xi|

ρ
ri )

1
ρ for

any x ∈ Rn and some ρ > 0;
• the unit sphere in the homogeneous norm Sr = {x ∈

Rn : ‖x‖r = 1}.

Definition 4. A function g : Rn → R is r–homogeneous with
degree µ ∈ R if for all x ∈ Rn we have:

λ−µg(Λrx) = g(x).

A vector field f : Rn → Rn is r–homogeneous with degree
ν ∈ R, with ν ≥ −rmin if for all x ∈ Rn we have:

λ−νΛ−1r f(Λrx) = f(x),

which is equivalent for i-th component of f being a r–
homogeneous function of degree ri + ν.

The system (1) with d = 0 is r–homogeneous of degree ν
if the vector field f is r–homogeneous of degree ν.

Theorem 2. [13] For the system (1) with d = 0 and r–
homogeneous and continuous function f the following prop-
erties are equivalent:

• the system (1) is (locally) asymptotically stable;
• there exists a continuously differentiable r–homogeneous

Lyapunov function V : Rn → R+ such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), DV (x)f(x, 0) ≤ −α(‖x‖),
λ−µV (Λrx) = V (x), µ > rmax,

for all x ∈ Rn, for some α1, α2 ∈ K∞ and α ∈ K.
The r–homogeneity concept presented in Definition 4 is in-
troduced for some r and all λ > 0. Restricting the set of
admissible values for λ we can introduce local homogeneity
[15], [16].

Definition 5. A function g : Rn → R is (r0, λ0, g0)–
homogeneous with degree ν0 ∈ R (g0 is a r0–homogeneous
function and λ0 ∈ R+ ∪ {+∞}) if for all x ∈ Sr0 we have:

lim
λ→λ0

(
λ−ν0g(Λr0x)− g0(x)

)
= 0,

uniformly on Sr0 for λ0 ∈ {0,+∞}.
A vector field f : Rn → Rn is (r0, λ0, f0)–homogeneous

with degree µ0 ≥ −r0min (f0 is a r0–homogeneous vector
field and λ0 ∈ R+ ∪ {+∞}) if for all x ∈ Sr0 we have:

lim
λ→λ0

(
λ−µ0Λ−1r0 f(Λr0x)− f0(x)

)
= 0,

uniformly on Sr0 for λ0 ∈ {0,+∞}.
The system (1) for d = 0 is (r0, λ0, f0)–homogeneous

with degree µ0 ∈ R if the vector field f is (r0, λ0, f0)–
homogeneous with degree µ0.

The coefficients r0i > 0, i ∈ 1, n are called weights, ν0
(respectively µ0) is the degree of homogeneity (it may depend
on λ0) and g0 (respectively f0) is the approximating function
of g (respectively f ) at λ0.

Theorem 3. [20], [13] Let the system (1) with d = 0 be
(r,0,f0)–homogeneous with a continuous f0 : Rn → Rn. If
the system ẋ = f0(x) is (locally) asymptotically stable, then
the system (1) is also locally asymptotically stable.
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Theorem 4. [15] Let the system (1) with d = 0 be
(r,+∞,f∞)–homogeneous with a continuous f∞ : Rn → Rn.
If the system ẋ = f∞(x) is (globally) asymptotically stable,
then there exists a compact invariant set X∞ ⊂ Rn containing
the origin such that the system (1) is globally asymptotically
stable with respect to the set X∞.

Lemma 1. Let a function g : Rn → R be (r,+∞,g∞)–
homogeneous with degree ν, g and g∞ be locally Lipschitz
continuous functions, then for all x ∈ Rn

|g(x)− g∞(x)| ≤ ω(‖x‖r), ω(s) = k

{
swmin if s ≤ 1

swmax if s > 1
,

where k > 0 and 0 ≤ wmin ≤ ν, 0 ≤ wmax < ν.

Proof: By definition for any x ∈ Rn there are y ∈ Sr
and λ = ‖x‖r such that x = Λry, then |g(x) − g∞(x)| =
|g(Λry)− g∞(Λry)|. For any y ∈ Sr consider

|λ−νg(Λry)− g∞(y)| = λ−ν |g(Λry)− g∞(Λry)|.

For λ → +∞ the left hand side of the relation above
converges to zero, therefore there is k > 0 such that
|g(Λry)− g∞(Λry)| ≤ kλwmax with wmax < ν for all λ > 1.
Next, |g(Λry) − g∞(Λry)| ≤ kλwmin for λ ≤ 1 with some
k > 0 and wmin ≥ 0 due to Lipschitz continuity of g and
g∞, additionally wmin ≤ ν (by a proper choice of k), then
k = max{k, k}.

Clearly, it is always possible to select the powers in a way
that 0 ≤ wmin ≤ wmax < ν.

Lemma 2. Let a vector field f : Rn → Rn be (r,+∞,f∞)–
homogeneous with degree ν, f and f∞ be locally Lipschitz
continuous, then for all x ∈ Rn

‖f(x)− f∞(x)‖ ≤ ω(‖x‖r), ω(s) =

{
k swmin if s ≤ 1

k swmax if s > 1
,

where k > 0 and 0 ≤ wmin ≤ wmax < rmax + ν.

Proof: In this case each fi is (r,+∞,f∞i)–homogeneous
with degree ν + ri for all 1 ≤ i ≤ n, and the result follows
Lemma 1.

IV. ROBUSTNESS OF HOMOGENEOUS SYSTEMS

The ISS property of a r–homogeneous system (1) with
degree ν > 1 has been investigated in [18], the ISS property
of a r–homogeneous system of the form

ẋ = f0(x) +G0(x)d (3)

for any admissible degree ν ≥ −rmin (with homogeneous f0
and G0) has been studied in [17]. In this work we would like
to propose the conditions of ISS and iISS properties for a
r–homogeneous system (1) with any ν ≥ −rmin.

Define f̃(x, d) = [f(x, d)T 0m]T ∈ Rn+m, it is an extended
auxiliary vector field for the system (1), where 0m is the zero
vector of dimension m.

Theorem 5. Let the vector field f̃ be homogeneous with the
weights r = [r1, . . . , rn] > 0, r̃ = [r̃1, . . . , r̃m] ≥ 0 with a
degree ν ≥ −rmin, i.e. f(Λrx,Λr̃d) = λνΛrf(x, d). Assume

that the system (1) is globally asymptotically stable for d = 0,
then the system (1) is

ISS if r̃min > 0, where r̃min = min1≤j≤m r̃j ;
iISS if r̃min = 0 and ν ≤ 0.

Proof: Under the introduced conditions f(Λrx, 0) =
λνΛrf(x, 0) and the system ẋ = f(x, 0) is globally asymptoti-
cally stable, therefore by Theorem 2 there exists a continuously
differentiable, positive definite and radially unbounded Lya-
punov function V : Rn → R+ such that V (Λrx) = λµV (x)
for any µ > rmax and

DV (y)f(y, 0) ≤ −a,
∥∥∥∥∂V (y)

∂y

∥∥∥∥ ≤ b ∀y ∈ Sr, (4)

where a > 0, b > 0. Note that by definition in this case
ν+µ > 0. Due to homogeneity of f̃ and continuity of f with
respect to d we have

‖f(y, d)− f(y, 0)‖ ≤ σ(‖d‖) ∀y ∈ Sr,

σ(s) = c

{
s%min if s ≤ 1

s%max if s > 1

for some c > 0 and %max ≥ %min > 0.
Below we will use the coordinate transformation x = Λ|x|y,

where Λ|x| = Λr|λ=‖x‖r , which connects any x ∈ Rn\{0}
with the corresponding point y ∈ Sr. For the input d we
will use the transformation d = Λ̃|x|d̃, where d̃ ∈ Rm and
Λ̃|x| = Λr̃|λ=‖x‖r , then

‖d̃‖ ≤ ρ(‖x‖r)‖d‖, ρ(s) =

{
s−r̃max if s ≤ 1

s−r̃min if s > 1
, (5)

where r̃max = max1≤j≤m r̃j . Now let us consider the time
derivative of the Lyapunov function V computed for the
system (1) for all x ∈ Rn and d ∈ Rm:

DV (x)f(x, d) = ‖x‖ν+µr

∂V (y)

∂y
f(y, d̃)

= ‖x‖ν+µr

∂V (y)

∂y
f(y, 0)

+‖x‖ν+µr

∂V (y)

∂y
[f(y, d̃)− f(y, 0)]

≤ −a‖x‖ν+µr + b‖x‖ν+µr σ(‖d̃‖)
≤ −a‖x‖ν+µr + b‖x‖ν+µr γ(‖x‖r)σ(‖d‖),

where

γ(s) =

{
s−r̃max%min if s ≤ 1

s−r̃min%max if s > 1
.

Therefore if −r̃min%max < 0, which is equivalent to r̃min > 0,
then γ(s)−1 ∈ K∞ and for ‖d‖ ≤ σ−1[a/(2b)γ(‖x‖r)−1]
we have DV (x)f(x, d) ≤ −0.5a‖x‖ν+µr that implies ISS by
Theorem 1. If r̃max%min − µ ≤ ν ≤ r̃min%max, then

‖x‖ν+µr γ(‖x‖r) ≤ υ(‖x‖r), υ(s) =

{
1 if s ≤ 1

sµ if s > 1
(6)

and for the Lyapunov function W (x) = ln[1 + V (x)] (it
is continuously differentiable, positive definite and radially
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unbounded) we obtain

DW (x)f(x, d) ≤ −a‖x‖ν+µr + bυ(‖x‖r)σ(‖d‖)
1 + V (x)

≤ −a ‖x‖
ν+µ
r

1 + V (x)
+ b̃σ(‖d‖), b̃ > 0, (7)

which implies iISS for (1). Since µ > rmax can be chosen
arbitrary, then we may assume that the inequality r̃max%min−
µ ≤ ν is always satisfied. Since for r̃min > 0 the system is
ISS (and iISS by the definition), the only interesting admissible
value is r̃min = 0, then ν has to be non positive.
As we can conclude from this result, for the homogeneous
system (1) its robustness (ISS or iISS property) is a function
of its degree of homogeneity.

Corollary 1. Let a locally Lipschitz continuous function
f0 : Rn → Rn be r–homogeneous with a degree ν and
asymptotically stable.

If f(x, d) = f0(x)+d, i.e. d is an additive disturbance, then
the system (1) is ISS for ν > −rmin, and iISS for ν = −rmin.

If f(x, d) = f0(x+ d), i.e. d is a measurement noise, then
the system (1) is always ISS.

Proof: Take r̃ = r + ν and r̃ = r for the additive
disturbance and measurement noise cases respectively.

Thus to verify robustness of a system with respect to
an external input it is enough to establish its asymptotic
stability for the case d = 0 and compute its degree of
homogeneity performing some algebraic operations, which is
a big advantage of the homogeneity approach. However, the
sole homogeneity of f̃ is not enough to claim iISS (ISS), and
the case r̃min = 0 with ν > 0 is the only exclusion as in the
following example for r̃ = 0 and r = 1:

ẋ = (d− 1)xα, α > 1.

The asymptotically stable system (1) for d = 0 is finite-
time stable if it is homogeneous with negative degree [21],
[22]. Interestingly to note that the finite-time stability and iISS
have a similar restriction on the degree of homogeneity (it has
to be negative or non positive for iISS), thus the finite-time
stability of a homogeneous system implies iISS.

Corollary 2. Let the vector field f̃ be homogeneous with the
weights r = [r1, . . . , rn] > 0, r̃ = [r̃1, . . . , r̃m] ≥ 0 with a
degree 0 > ν ≥ −rmin and asymptotically stable for d = 0,
then (1) is iISS.

Theorem 5 also provides a quantitative estimate on the
asymptotic gain of (1) in the ISS case.

Corollary 3. Let the system (1) be ISS under conditions of
Theorem 5 and ν +µ > r̃min%max, then its asymptotic gain γ
admits the estimate:

γ(s) ≤ `

{
s
%min
ν+µ if s ≤ 1

sr̃
−1
min if s > 1

, ` > 0.

The case ν + µ ≤ r̃min%max has no practical importance
and will not be treated here.

Proof: Since in the ISS case r̃min > 0 and
‖x‖ν+µr γ(‖x‖r) ≤ 1 + ‖x‖ν+µ−r̃min%max

r , then following the
proof of Theorem 5 we obtain:

DV (x)f(x, d) ≤ −a‖x‖ν+µr +b[1+‖x‖ν+µ−r̃min%max
r ]σ(‖d‖).

From Young’s inequality we get:

sν+µ−r̃min%maxv ≤ a

2b
sν+µ + π−11 vπ1ϕ,

where π1 = ν+µ
r̃min%max

> 1 and ϕ = [ a2b
π1

π1−1 ]1−π1 . Since

b[σ(s) + π−11 ϕσ(s)π1 ] ≤ ψ(s)

= z

{
s%min if s ≤ 1

s%maxπ1 if s > 1
.

for z = 2bmax{1, π−11 ϕ}max{c, cπ1}, then

DV (x)f(x, d) ≤ −0.5a‖x‖ν+µr + ψ(‖d‖).

Therefore DV (x)f(x, d) ≤ −qV (x)
ν+µ
µ + ψ(‖d‖) for some

q > 0, and from the estimate ‖x‖ν+µr ≤ V (x)
ν+µ
µ ≤

2q−1ψ(‖d‖) we obtain the proposed expression for the asymp-
totic gain.

The case r̃min = 0 is critical for Theorem 5, it is possible
that the system (1) is ISS while r̃min = 0 as it is shown in
the following example:

ẋ1 = −x31 + x22d1, (8)

ẋ2 = −x7/32 + |x1|1/2d2,

where r = [1 1.5], r̃ = [0 3], ν = 2 and its ISS Lyapunov
function is V (x) = 0.5x21 + 0.5x22.

The conditions of Theorem 5 can be technically relaxed
skipping homogeneity of f̃ (homogeneity with respect to d).
It is worth stressing that homogeneity of f̃ is not a restrictive
condition since d is an external input, and we can modify
dimension or introduce nonlinear change of coordinates for d.

Theorem 6. Assume that the system (1) is globally asymp-
totically stable for d = 0 and r–homogeneous with a degree
ν ≥ −rmin, i.e. f(Λrx, 0) = λνΛrf(x, 0). Let also for all
x ∈ Rn and d ∈ Rm

‖f(x, d)− f(x, 0)‖ ≤ θ(‖x‖r)ψ(‖d‖) + φ(‖d‖),

θ(s) =

{
sϑmin if s ≤ 1

sϑmax if s > 1
, ϑmin ≥ 0, ϑmax ∈ R

for some ψ, φ ∈ K. Then the system (1) is

ISS if ν > ϑmax − rmin;
iISS if ν = ϑmax − rmin ≤ 0.

Proof: Under introduced conditions, by Theorem 2 there
exists a continuously differentiable, positive definite and radi-
ally unbounded Lyapunov function V : Rn → R+ such that
V (Λrx) = λµV (x) for any µ > rmax with ν + µ > 0, and
the inequalities (4) are satisfied for a > 0, b > 0. Consider
the time derivative of the Lyapunov function V computed
for the system (1) for all x ∈ Rn and d ∈ Rm using the
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coordinate transformation x = Λ|x|y with Λ|x| = Λr|λ=‖x‖r
(‖x‖r = ‖Λ|x|y‖r):

DV (x)f(x, d) =
∂V (x)

∂x
f(x, 0) +

∂V (x)

∂x
[f(x, d)− f(x, 0)]

= ‖x‖ν+µr

∂V (y)

∂y
f(y, 0)

+‖x‖µr
∂V (y)

∂y
Λ−1|x| [f(Λ|x|y, d)− f(Λ|x|y, 0)]

≤ −a‖x‖ν+µr + b‖x‖µr
∥∥∥Λ−1|x|

∥∥∥ [θ(‖Λ|x|y‖r)ψ(‖d‖)
+φ(‖d‖)]

≤ −a‖x‖ν+µr + b‖x‖ν+µr [γ1(‖x‖r)ψ(‖d‖)
+γ2(‖x‖r)φ(‖d‖)],

where

γ1(s) =

{
sϑmin−rmax−ν if s ≤ 1

sϑmax−rmin−ν if s > 1
,

γ2(s) =

{
s−rmax−ν if s ≤ 1

s−rmin−ν if s > 1
.

Therefore if ϑmax − rmin − ν < 0, then
γ1(s)−1 and γ2(s)−1 are in K∞, and for ‖d‖ ≤
min{ψ−1[a/(4b)γ1(‖x‖r)−1], φ−1[a/(4b)γ2(‖x‖r)−1]}
we have DV (x)f(x, d) ≤ −0.5a‖x‖ν+µr that, by Theorem
1, implies the ISS property. If ϑmax − rmin − ν = 0,
ν ≤ 0 and ϑmin − rmax + µ ≥ 0 (the latter is true
since µ > rmax), then ‖x‖ν+µr γ1(‖x‖r) ≤ υ(‖x‖r) and
‖x‖ν+µr γ2(‖x‖r) ≤ υ(‖x‖r), where υ(s) is defined at (6)
and for the Lyapunov function W (x) = ln[1 + V (x)] we
obtain (7) for σ(s) = 2 max{ψ(s), φ(s)}, which implies iISS
for (1).
The result of Theorem 6 can be applied for a larger class of
systems, which are not necessarily homogeneous (the function
f̃ may be non homogeneous). For example, to the system (3)
with non homogeneous G0 (the result of [17] cannot be used
in this case):

ẋ1 = −x1 + x2d1/(1 + |x2|),
ẋ2 = −x2 + x

1/3
1 d2,

where r = [1 1] and ν = 0 for d = 0, ϑmin = ϑmax = 1/3.
However, the conditions obtained in Theorem 6 also do not
work for the critical case example (8), where ϑmin = 0.5,
ϑmax = 3 and the equality ν = ϑmax − rmin is satisfied. A
reason of that is hidden in the conservatism of the function
θ computation. Another explanation of this fact is that, in the
case r̃min = 0 the system (1) may not admit a r–homogeneous
ISS Lyapunov function (both theorems 5 and 6 are based on
an ISS Lyapunov function of that type), see also the case of
Proposition 1 below, where this hypothesis is proven for the
case r̃ = 0m.

Proposition 1. Considering d as a constant, let the vector field
f be r–homogeneous with a degree ν ≥ −rmin independent
of d, i.e. f(Λrx, d) = λνΛrf(x, d) for any x ∈ Rn and d ∈
Rm. Assume that the system (1) is ISS, then there is no r–
homogeneous ISS Lyapunov functions for (1).

Proof: By definition, an ISS Lyapunov function for the
system (1) is a Lyapunov function for d = 0. Take any r–
homogeneous Lyapunov function for the system (1) with d =
0, say V (x), then for any x ∈ Rn, d ∈ Rm and y ∈ Sr we
obtain

DV (x)f(x, d) = ‖x‖ν+µr c1(y) + ‖x‖ν+µr c2(y, d),

where c1(y) = ∂V (y)
∂y f(y, 0) < 0 and c2(y, d) =

∂V (y)
∂y [f(y, d)−f(y, 0)] ≤ σ(‖d‖) for some σ ∈ K. Therefore,

V cannot be an ISS Lyapunov function.
Note that an iISS Lyapunov function cannot be homoge-

neous since α3 is a bounded positive definite function in
this case (if the system is not ISS, see Definition 3), while
from consideration above α3 is proportional to ‖x‖ν+µr for a
homogeneous function V . However, the case of Proposition 1
still can be useful for the iISS property.

Theorem 7. Let the vector field f be r–homogeneous with
a degree 0 ≥ ν ≥ −rmin considering d as a constant, i.e.
f(Λrx, d) = λνΛrf(x, d) for any x ∈ Rn and d ∈ Rm. Then
the system (1) is globally asymptotically stable for d = 0 iff
it is iISS.

Proof: Under introduced conditions f(Λrx, 0) =
λνΛrf(x, 0) and the system ẋ = f(x, 0) is globally asymptoti-
cally stable, therefore by Theorem 2 there exists a continuously
differentiable, positive definite and radially unbounded Lya-
punov function V : Rn → R+ such that V (Λrx) = λµV (x)
for any µ > rmax (ν + µ > 0), and the inequalities (4) are
satisfied for a > 0, b > 0. Due to continuity of f with respect
to d we have for some σ ∈ K

‖f(y, d)− f(y, 0)‖ ≤ σ(‖d‖) ∀y ∈ Sr.

Now let us consider the time derivative of the Lyapunov
function V computed for the system (1) for all x ∈ Rn and
d ∈ Rm using the coordinate transformation x = Λ|x|y with
Λ|x| = Λr|λ=‖x‖r :

DV (x)f(x, d) = ‖x‖ν+µr

∂V (y)

∂y
f(y, 0)

+‖x‖ν+µr

∂V (y)

∂y
[f(y, d)− f(y, 0)]

≤ −a‖x‖ν+µr + b‖x‖ν+µr σ(‖d‖).

Therefore, if ν ≤ 0, then ‖x‖ν+µr ≤ υ(‖x‖r), where υ(s)
is defined in (6), and for the Lyapunov function W (x) =
ln[1+V (x)] we obtain (7) that according to Theorem 1 implies
iISS for (1).

This result can be applied, for example, to “bilinear” sys-
tems:

ẋ = f0(x) +

m∑
i=1

fi(xdi), (9)

where all fi, i = 0, . . . ,m are r–homogeneous functions of the
same degree with respect to x, fi(0) = 0 (a simplest example
is fi(x) = Aix, where Ai ∈ Rn×n). According to Theorem 7,
if in (9) the system ẋ = f0(x) is asymptotically stable and the
homogeneity degree is non-positive, then the system is iISS.
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To finish comparison of theorems 5 and 6 note that the con-
ditions of Theorem 6 may be more restrictive than in Theorem
5, as it can be demonstrated in the following example:

ẋ1 = −x31 + x
1/3
2 d1,

ẋ2 = −x5/32 + x31d2,

where r = [1 3], r̃ = [2 2], ν = 2 and it is ISS by
Theorem 5 (it also has a homogeneous ISS Lyapunov function
V (x) = x61/6 + x22/2), but Theorem 6 does not work since
ϑmin = 1, ϑmax = 3 and ν = ϑmax − rmin. In addition, the
iISS condition in Theorem 6 implicitly needs ϑmax < rmin.
Another interpretation of the ISS condition of Theorem 6 is
that the system (1) has local approximation at infinity f(x, 0).

V. ROBUSTNESS OF LOCALLY HOMOGENEOUS SYSTEMS

The ISS property of locally homogeneous systems has been
analyzed in [15], it was shown there that if the system (1) is
locally homogeneous at 0 and +∞, and all approximations
and the system itself are globally asymptotically stable for
d = 0, then (1) is ISS. First we are going to propose a variant
of that proof for approximation at infinity and, next, we will
extend it for the systems not homogeneous with respect to d.

Now assume that the system is locally homogeneous at
infinity. Define f̃∞(x, d) = [fT∞(x, d) 0Tm]T .

Assumption 1. Let the vector field f̃ be ((r, r̃),+∞, f̃∞)–
homogeneous with the weights r = [r1, . . . , rn] > 0, r̃ =
[r̃1, . . . , r̃m] > 0 and degree ν > −rmin, i.e. for any ε > 0
there is a λε > 0 such that supλ≥λε ‖λ

−νΛ−1r f(Λry,Λr̃d)−
f∞(y, d)‖ ≤ ε for all y ∈ Sr and d ∈ Sr̃, where f∞ is a
locally Lipschitz continuous function.

Since ‖f̃(x, d)− f̃∞(x, d)‖ = ‖f(x, d)− f∞(x, d)‖, define
g(x, d) = f(x, d) − f∞(x, d), then by Lemma 2 in this case
for all x ∈ Rn and d ∈ Rm we have

|gi(x, d)| ≤ ωi(‖x‖r + ‖d‖r̃),

ωi(s) = k

{
sw

i
min if s ≤ 1

sw
i
max if s > 1

for all i = 1, n, where k > 0, wimin ≥ 0 and wimax = ri + ν−
δ < ri + ν for some δ > 0.

Theorem 8. Let Assumption 1 be satisfied. Assume that the
system ẋ = f∞(x, d) is globally asymptotically stable for d =
0, then the system (1) is ISpS.

Proof: Under the introduced conditions the system ẋ =
f∞(x, d) is homogeneous with the weights (r,r̃) and the
degree ν, and it is globally asymptotically stable for d = 0,
then by Theorem 2 there exists a continuously differentiable,
positive definite and radially unbounded Lyapunov function
V : Rn → R+ such that V (Λrx) = λµV (x) for any µ > rmax

(with ν + µ > 0), and

DV (y)f∞(y, 0) ≤ −a,
∥∥∥∥∂V (y)

∂y

∥∥∥∥ ≤ b ∀y ∈ Sr, (10)

where a > 0, b > 0. We will use the coordinate transformation
x = Λ|x|y with Λ|x| = Λr|λ=‖x‖r , and d = Λ̃|x|d̃, where d̃ ∈

Rp and Λ̃|x| = Λr̃|λ=‖x‖r , then the inequality (5) is satisfied.
Due to homogeneity and continuity of f∞ with respect to d
we have

‖f∞(y, d)− f∞(y, 0)‖ ≤ σ(‖d‖) ∀y ∈ Sr,

σ(s) =

{
c s%min if s ≤ 1

c s%max if s > 1

for some c > 0 and %max ≥ %min > 0.
Now let us consider the time derivative of the Lyapunov

function V computed for the system (1) for all x ∈ Rn and
d ∈ Rm:

DV (x)f(x, d) = DV (x)f∞(x, d)+DV (x)[f(x, d)−f∞(x, d)]

= ‖x‖ν+µr

∂V (y)

∂y
f∞(y, d̃)

+‖x‖µr
∂V (y)

∂y
Λ−1|x| [f(x, d)− f∞(x, d)]

= ‖x‖ν+µr

∂V (y)

∂y
f∞(y, 0)

+‖x‖ν+µr

∂V (y)

∂y
[f∞(y, d̃)− f∞(y, 0)]

+‖x‖µr
∂V (y)

∂y
Λ−1|x| [f(x, d)− f∞(x, d)].

Define s(x, d) = Λ−1|x| [f(x, d)− f∞(x, d)], we have

‖x‖ν+µr

∂V (y)

∂y
f∞(y, 0) ≤ −a‖x‖ν+µr ,

‖s(x, d)‖ ≤
√
n max

1≤i≤n
|si(x, d)|

≤ τ(‖x‖r + ‖d‖r̃),

‖x‖µr
∂V (y)

∂y
[f∞(y, d̃)− f∞(y, 0)] ≤ b‖x‖ν+µr σ(‖d̃‖)

≤ bγ(‖x‖r)σ(‖d‖),

where

γ(s) =

{
sν+µ−r̃max%min if s ≤ 1

sν+µ−r̃min%max if s > 1
,

τ(s) =
√
nk

{
swmin−rmax if s ≤ 1

swmax if s > 1
,

wmin = min
1≤i≤n

wimin, wmax = max
1≤i≤n

wimax − ri ≤ ν − δ

and the function ρ from (5) has been used to calculate γ. From
these inequalities we obtain

DV (x)f(x, d) ≤ −a‖x‖ν+µr + bγ(‖x‖r)σ(‖d‖)
+b‖x‖µr [τ(2‖x‖r) + τ(2‖d‖r̃)].

By the homogeneous norm definition there exists a class K∞
function χ such that τ(2‖d‖r̃) ≤ χ(‖d‖) for all d ∈ Rm, then

DV (x)f(x, d) ≤ −a‖x‖ν+µr + zκ(‖x‖r) (11)
+[γ(‖x‖r) + ‖x‖µr ]σ̃(‖d‖)

where z = 2wmax
√
nkb, σ̃(s) = bmax{σ(s), χ(s)} and

κ(s) =

{
sµ+wmin−rmax if s ≤ 1

sµ+ν−δ if s > 1
.
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The power of κ for the case s > 1 is less than ν + µ and
µ+wmin− rmax ≥ 0, then κ(‖x‖r) ≤ 1 + ‖x‖µ+ν−δr and we
get

−a‖x‖ν+µr + zκ(‖x‖r) ≤ −a‖x‖ν+µr + z + z‖x‖µ+ν−δr

≤ −0.5a‖x‖ν+µr + c,

where c = z + 0.5a[1− ε]−1[2za−1(1− ε−1)]ε and ε = (ν +
µ)/δ (i.e. −0.5asν+µ+zsν+µ−δ ≤ 0.5a[1−ε]−1[2z(1−ε−1)]ε

for any s ≥ 0). Since γ(‖x‖r) ≤ 1 + ‖x‖ν+µ−r̃min%max
r , we

obtain

DV (x)f(x, d) ≤ −0.5a‖x‖ν+µr + c+ [1

+‖x‖ν+µ−r̃min%max
r + ‖x‖µr ]σ̃(‖d‖).

Since r̃min > 0 and −r̃min%max < 0, then from Young’s
inequality (sv ≤ sp

p + (1 − 1
p )v

p
p−1 for any s, v ∈ R+ and

p ≥ 1) we have:

sν+µ−r̃min%maxv ≤ a

8
sν+µ + π−11 vπ1φ1,

sµv ≤ a

8
sν+µ + π−12 vπ2φ2,

where π1 = ν+µ
r̃min%max

, π2 = ν+µ
ν and φi = [a8

πi
πi−1 ]1−πi for

i = 1, 2. Consequently,

DV (x)f(x, d) ≤ −0.25a‖x‖ν+µr + θ(‖d‖) + c,

where θ(s) = σ̃(s) +
∑2
i=1 π

−1
i σ̃(s)πiφi, which implies ISpS

property by Theorem 1.
For an example, consider the system:

ẋ1 = x1 − x31 + x2|x1|0.75d,
ẋ2 = x2 − |x2|x2 + |x1|3.5|x2|0.125d,

which is ((r, r̃),+∞, f̃∞)–homogeneous with the weights r =
[1, 2], r̃ = 0.25 and degree ν = 2 with f∞(x, d) = [−x31 +
x2|x1|0.75d − |x2|x2 + |x1|3.5|x2|0.125d]T . The linearization
of the system is unstable and it is hard to simulate this system
in order to check its stability since it very stiff. However, since
all conditions of Theorem 8 are satisfied, the system is ISpS.

Corollary 4. Let all conditions of Theorem 8 be satisfied,
a > 2wmax

√
nkb and wmin− rmax ≥ ν, then the system (1) is

ISS.

Proof: As we can conclude from (11), under these addi-
tional (restrictive) conditions there is some ε > 0 such that

DV (x)f(x, d) ≤ −ε‖x‖ν+µr + [γ(‖x‖r) + ‖x‖µr ]σ̃(‖d‖),

since the power of the functions γ is less than ν+µ (r̃min > 0),
then there is a function ς ∈ K such that for ‖d‖ ≤ ς(‖x‖r)
we have

DV (x)f(x, d) ≤ −0.5ε‖x‖ν+µr .

Corollary 5. Let a locally Lipschitz continuous vector field
f0 : Rn → Rn be (r,+∞,f∞)–homogeneous with a degree
ν > −rmin and asymptotically stable. If f(x, d) = f0(x) + d,
i.e. d is an additive disturbance, or f(x, d) = f0(x + d), i.e.
d is a measurement noise, then the system (1) is ISpS.

Proof: Take r̃ = r + ν for the additive disturbance case,
and r̃ = r for the measurement noise. The result follows
Theorem 8.

There is a modification of Theorem 8, which skips homo-
geneity with respect to d in Assumption 1.

Assumption 2. Let the vector field f be (r,+∞, f∞)–
homogeneous with degree ν > −rmin for d = 0,
i.e. for any ε > 0 there is a λε > 0 such that
supλ≥λε ‖λ

−νΛ−1r f(Λry, 0) − f∞(y, 0)‖ ≤ ε for all y ∈ Sr,
where f∞ is a locally Lipschitz continuous function. Let also
for all x ∈ Rn and d ∈ Rm the inequality

‖f(x, d)− f(x, 0)‖ ≤ θ(‖x‖r)ψ(‖d‖) + φ(‖d‖),

θ(s) =

{
sϑmin if s ≤ 1

sϑmax if s > 1
, ϑmin ≥ 0, ϑmax ∈ R

be satisfied for some ψ, φ ∈ K and ν > ϑmax − rmin.

Define g(x) = f(x, 0)−f∞(x, 0), by Lemma 2 in this case
for all x ∈ Rn we have

|gi(x)| ≤ ωi(‖x‖r),

ωi(s) = k

{
sw

i
min if s ≤ 1

sw
i
max if s > 1

,

where k > 0, wimin ≥ 0 and wimax = ri + ν − δ < ri + ν for
some δ > 0.

Theorem 9. Let Assumption 2 be satisfied. Assume that the
system ẋ = f∞(x, 0) is globally asymptotically stable, then
the system (1) is ISpS.

Proof: Under the introduced conditions the system ẋ =
f∞(x, 0) is r–homogeneous with the degree ν, and it is
globally asymptotically stable for d = 0, then by Theorem 2
there exists a continuously differentiable, positive definite and
radially unbounded Lyapunov function V : Rn → R+ such
that V (Λrx) = λµV (x) for any µ > rmax (with ν + µ > 0),
and (10) holds for some a > 0, b > 0. Consider the time
derivative of V computed for (1) for all x ∈ Rn and d ∈ Rm
(using the coordinate transformation x = Λ|x|y):

DV (x)f(x, d) = DV (x)f(x, 0)

+DV (x)[f(x, d)− f(x, 0)]

= DV (x)f∞(x, 0) +DV (x)[f(x, 0)

−f∞(x, 0)] +DV (x)[f(x, d)− f(x, 0)]

≤ −a‖x‖ν+µr + ‖x‖µr
∂V (y)

∂y
Λ−1|x| [φ(‖d‖)

+θ(‖x‖r)ψ(‖d‖)] + ‖x‖µr
∂V (y)

∂y
s(x)

≤ −a‖x‖ν+µr + κ(‖x‖r) + γ(‖x‖r)ψ(‖d‖)
+τ(‖x‖r)φ(‖d‖),
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where s(x) = Λ−1|x| g(x), γ(s) = τ ◦ θ(s) and

τ(s) =

{
sµ−rmax if s ≤ 1

sµ−rmin if s > 1
,

κ(s) =
√
nbksµ max

1≤i≤n
|si(x)|

=

{
sµ+wmin−rmax if s ≤ 1

sµ+wmax if s > 1
,

wmin = min1≤i≤n w
i
min and wmax = max1≤i≤n w

i
max− ri ≤

ν−δ. The powers of γ, κ and τ for the case s > 1 are less than
ν+µ (since µ+ϑmax−rmin < µ+ν and µ−rmin < µ+ν for
ν > max{ϑmax−rmin,−rmin}, µ+wmax ≤ µ+ν−δ < µ+ν),
then the negative term with the power ν + µ would dominate
γ, κ and τ for sufficiently high values of ‖x‖r. Next the proof
repeats the technical steps of the proof of Theorem 8.

Theorems 8 and 9 extend the conditions of theorems 5 and
6 on the case of local homogeneity at infinity. However, in
the local case the difference between applicability conditions
of theorems 8 and 9 is minor, the main advantage is that the
local approximation at infinity may be failed to exist for both
variables x and d (the case of Theorem 8), but it may exist
for d = 0 and Theorem 9 can be applied int this case.

VI. CONCLUSION

Several conditions of the ISS and iISS properties have been
developed based on the homogeneity theory. The advantage of
these conditions is that the system robustness can be checked
after its asymptotic stability in the unperturbed case provided
that some algebraic homogeneity constraints are satisfied for
the system equations (globally or locally). All results are
obtained for generic nonlinear systems. Several examples are
proposed showing efficiency of the proposed theory and its
limitations.
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