On an extension of homogeneity notion for differential inclusions

Emmanuel Bernuau 1 Denis Efimov 2, 3 Wilfrid Perruquetti 2, 3 Andrey Polyakov 3
2 SyNeR - Systèmes Non Linéaires et à Retards
CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
3 NON-A - Non-Asymptotic estimation for online systems
CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189, Inria Lille - Nord Europe
Abstract : The notion of geometric homogeneity is extended for differential inclusions. This kind of homogeneity provides the most advanced coordinate-free framework for analysis and synthesis of nonlinear discontinuous systems. Theorem of L. Rosier [1] on a homogeneous Lyapunov function existence and an equivalent notion of global asymptotic stability for differential inclusions are presented.
Document type :
Conference papers
Complete list of metadatas

Cited literature [23 references]  Display  Hide  Download

https://hal.inria.fr/hal-00801818
Contributor : Denis Efimov <>
Submitted on : Monday, March 18, 2013 - 2:30:04 PM
Last modification on : Friday, March 22, 2019 - 1:35:58 AM
Long-term archiving on : Thursday, June 20, 2013 - 4:05:07 PM

File

HomogeneityIncluDiff.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00801818, version 1

Citation

Emmanuel Bernuau, Denis Efimov, Wilfrid Perruquetti, Andrey Polyakov. On an extension of homogeneity notion for differential inclusions. European Control Conference 2013, Jul 2013, Zurich, Switzerland. ⟨hal-00801818⟩

Share

Metrics

Record views

372

Files downloads

275