Skip to Main content Skip to Navigation
Journal articles

High-Order Low Dissipation Conforming Finite-Element Discretization of the Maxwell Equations

Sébastien Jund 1 Stéphanie Salmon 2 Eric Sonnendrücker 3, 1
3 CALVI - Scientific computation and visualization
IRMA - Institut de Recherche Mathématique Avancée, LSIIT - Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection, Inria Nancy - Grand Est, IECL - Institut Élie Cartan de Lorraine
Abstract : In this paper, we study high order discretization methods for solving the Maxwell equations on hybrid triangle-quad meshes. We have developed high order finite edge element methods coupled with different high order time schemes and we compare results and efficiency for several schemes. We introduce in particular a class of simple high order low dissipation time schemes based on a modified Taylor expansion.
Document type :
Journal articles
Complete list of metadata

https://hal.inria.fr/hal-00801832
Contributor : Ist Inria Nancy Grand Est Connect in order to contact the contributor
Submitted on : Monday, March 18, 2013 - 2:58:28 PM
Last modification on : Monday, May 17, 2021 - 2:52:03 PM

Identifiers

Collections

Citation

Sébastien Jund, Stéphanie Salmon, Eric Sonnendrücker. High-Order Low Dissipation Conforming Finite-Element Discretization of the Maxwell Equations. Communications in Computational Physics, Global Science Press, 2012, 11 (3), pp.863-892. ⟨10.4208/cicp.100310.230511a⟩. ⟨hal-00801832⟩

Share

Metrics

Record views

308