High-Order Low Dissipation Conforming Finite-Element Discretization of the Maxwell Equations

Sébastien Jund 1 Stéphanie Salmon 2 Eric Sonnendrücker 3, 1
3 CALVI - Scientific computation and visualization
IRMA - Institut de Recherche Mathématique Avancée, LSIIT - Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection, Inria Nancy - Grand Est, IECL - Institut Élie Cartan de Lorraine
Abstract : In this paper, we study high order discretization methods for solving the Maxwell equations on hybrid triangle-quad meshes. We have developed high order finite edge element methods coupled with different high order time schemes and we compare results and efficiency for several schemes. We introduce in particular a class of simple high order low dissipation time schemes based on a modified Taylor expansion.
Type de document :
Article dans une revue
Communications in Computational Physics, Global Science Press, 2012, 11 (3), pp.863-892. 〈10.4208/cicp.100310.230511a〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00801832
Contributeur : Ist Inria Nancy Grand Est <>
Soumis le : lundi 18 mars 2013 - 14:58:28
Dernière modification le : mercredi 29 août 2018 - 13:08:01

Identifiants

Collections

Citation

Sébastien Jund, Stéphanie Salmon, Eric Sonnendrücker. High-Order Low Dissipation Conforming Finite-Element Discretization of the Maxwell Equations. Communications in Computational Physics, Global Science Press, 2012, 11 (3), pp.863-892. 〈10.4208/cicp.100310.230511a〉. 〈hal-00801832〉

Partager

Métriques

Consultations de la notice

198