On the identifiability of a rigid body moving in a stationary viscous fluid

Carlos Conca 1 Erica Schwindt 2, 1, 3 Takéo Takahashi 3, 2
2 EDP - Equations aux dérivées partielles
IECL - Institut Élie Cartan de Lorraine
3 CORIDA - Robust control of infinite dimensional systems and applications
IECN - Institut Élie Cartan de Nancy, LMAM - Laboratoire de Mathématiques et Applications de Metz, Inria Nancy - Grand Est
Abstract : This paper is devoted to a geometrical inverse problem associated with a fluid-structure system. More precisely, we consider the interaction between a moving rigid body and a viscous and incompressible fluid. Assuming a low Reynolds regime, the inertial forces can be neglected and, therefore, the fluid motion is modelled by the Stokes system. We first prove the well posedness of the corresponding system. Then we show an identifiability result: with one measure of the Cauchy forces of the fluid on one given part of the boundary and at some positive time, the shape of a convex body and its initial position are identified.
Type de document :
Article dans une revue
Inverse Problems, IOP Publishing, 2012, 28 (1), pp.015005. 〈10.1088/0266-5611/28/1/015005〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00801908
Contributeur : Ist Inria Nancy Grand Est <>
Soumis le : lundi 18 mars 2013 - 16:32:33
Dernière modification le : jeudi 11 janvier 2018 - 06:26:21

Lien texte intégral

Identifiants

Collections

Citation

Carlos Conca, Erica Schwindt, Takéo Takahashi. On the identifiability of a rigid body moving in a stationary viscous fluid. Inverse Problems, IOP Publishing, 2012, 28 (1), pp.015005. 〈10.1088/0266-5611/28/1/015005〉. 〈hal-00801908〉

Partager

Métriques

Consultations de la notice

258