K. Ahuja, E. De-sturler, S. Gugercin, and E. Chang, Recycling BiCG with an Application to Model Reduction, SIAM Journal on Scientific Computing, vol.34, issue.4, pp.1925-1949, 2012.
DOI : 10.1137/100801500

B. Aksoylu and H. Klie, A family of physics-based preconditioners for solving elliptic equations on highly heterogeneous media, Applied Numerical Mathematics, vol.59, issue.6, pp.1159-1186, 2009.
DOI : 10.1016/j.apnum.2008.06.002

O. Axelsson, Iterative solution methods, 1994.
DOI : 10.1017/CBO9780511624100

O. Axelsson and P. S. Vassilevski, A Black Box Generalized Conjugate Gradient Solver with Inner Iterations and Variable-Step Preconditioning, SIAM Journal on Matrix Analysis and Applications, vol.12, issue.4, pp.625-644, 1991.
DOI : 10.1137/0612048

J. Baglama, D. Calvetti, G. H. Golub, and L. , Adaptively Preconditioned GMRES Algorithms, SIAM Journal on Scientific Computing, vol.20, issue.1, pp.243-269, 1998.
DOI : 10.1137/S1064827596305258

A. H. Baker, E. R. Jessup, and T. Manteuffel, A Technique for Accelerating the Convergence of Restarted GMRES, SIAM Journal on Matrix Analysis and Applications, vol.26, issue.4, pp.962-984, 2005.
DOI : 10.1137/S0895479803422014

P. Benner and L. Feng, Recycling Krylov Subspaces for Solving Linear Systems with Successively Changing Right-hand Sides Arising in Model Reduction, Model Reduction for Circuit Simulation, pp.125-140, 2011.
DOI : 10.1007/978-94-007-0089-5_6

M. Benzi, Preconditioning Techniques for Large Linear Systems: A Survey, Journal of Computational Physics, vol.182, issue.2, pp.418-477, 2002.
DOI : 10.1006/jcph.2002.7176

P. N. Brown and H. F. Walker, GMRES On (Nearly) Singular Systems, SIAM Journal on Matrix Analysis and Applications, vol.18, issue.1, pp.37-51, 1997.
DOI : 10.1137/S0895479894262339

L. Calvez and B. Molina, Implicitly restarted and deflated GMRES, Numerical Algorithms, vol.21, issue.1/4, pp.261-285, 1999.
DOI : 10.1023/A:1019113630790

URL : https://hal.archives-ouvertes.fr/hal-01150531

M. H. Carpenter, C. Vuik, P. Lucas, M. B. Van-gijzen, and H. Bijl, A general algorithm for reusing Krylov subspace information. I. Unsteady Navier-Stokes, 2010.

B. Carpentieri, I. S. Duff, and L. Giraud, A Class of Spectral Two-Level Preconditioners, SIAM Journal on Scientific Computing, vol.25, issue.2, pp.749-765, 2003.
DOI : 10.1137/S1064827502408591

L. M. Carvalho, S. Gratton, R. Lago, and X. Vasseur, A Flexible Generalized Conjugate Residual Method with Inner Orthogonalization and Deflated Restarting, SIAM Journal on Matrix Analysis and Applications, vol.32, issue.4, pp.1212-1235, 2011.
DOI : 10.1137/100786253

URL : https://hal.archives-ouvertes.fr/hal-00650239

A. Chapman and Y. Saad, Deflated and augmented Krylov subspace techniques. Numerical Linear Algebra with Applications, pp.43-66, 1997.

D. Darnell, R. B. Morgan, and W. Wilcox, Deflation of eigenvalues for iterative methods in lattice QCD, Nuclear Physics B - Proceedings Supplements, vol.129, issue.130, pp.129-130856, 2004.
DOI : 10.1016/S0920-5632(03)02734-8

E. De-sturler, Nested Krylov methods based on GCR, Journal of Computational and Applied Mathematics, vol.67, issue.1, pp.15-41, 1996.
DOI : 10.1016/0377-0427(94)00123-5

E. De-sturler, Truncation Strategies for Optimal Krylov Subspace Methods, SIAM Journal on Numerical Analysis, vol.36, issue.3, pp.864-889, 1999.
DOI : 10.1137/S0036142997315950

M. Eiermann and O. G. Ernst, Geometric aspects of the theory of Krylov subspace methods, Acta Numerica, vol.10, pp.251-312, 2001.
DOI : 10.1017/S0962492901000046

M. Eiermann, O. G. Ernst, and O. Schneider, Analysis of acceleration strategies for restarted minimal residual methods, Journal of Computational and Applied Mathematics, vol.123, issue.1-2, pp.261-292, 2000.
DOI : 10.1016/S0377-0427(00)00398-8

S. C. Eisenstat, H. C. Elman, and M. H. Schultz, Variational Iterative Methods for Nonsymmetric Systems of Linear Equations, SIAM Journal on Numerical Analysis, vol.20, issue.2, pp.345-357, 1983.
DOI : 10.1137/0720023

J. Erhel, K. Burrage, and B. Pohl, Restarted GMRES preconditioned by deflation, Journal of Computational and Applied Mathematics, vol.69, issue.2, pp.303-318, 1996.
DOI : 10.1016/0377-0427(95)00047-X

J. Erhel and F. Guyomarc, An Augmented Conjugate Gradient Method for Solving Consecutive Symmetric Positive Definite Linear Systems, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, pp.1279-1299, 2000.
DOI : 10.1137/S0895479897330194

URL : https://hal.archives-ouvertes.fr/inria-00523682

Y. Erlangga and R. Nabben, Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices, SIAM Journal on Matrix Analysis and Applications, vol.30, issue.2, pp.684-699, 2008.
DOI : 10.1137/060678257

D. Fokkema, Subspace methods for linear, nonlinear and eigen problems, 1996.

J. Frank and C. Vuik, On the Construction of Deflation-Based Preconditioners, SIAM Journal on Scientific Computing, vol.23, issue.2, pp.442-462, 2011.
DOI : 10.1137/S1064827500373231

A. Frommer, A. Nobile, and P. Zingler, Deflation and flexible SAP-preconditioning of GMRES in lattice QCD simulation, 2012.

A. Gaul, M. Gutknecht, J. Liesen, and R. Nabben, Deflated and augmented Krylov subspace methods: Basic facts and a breakdown-free deflated MINRES, 2011.

A. Gaul, M. Gutknecht, J. Liesen, and R. Nabben, A framework for deflated and augmented Krylov subspace methods. arXiv preprint 1206, 1506.

H. , D. Gersem, and K. Hameyer, A deflated iterative solver for magnetostatic finite element models with large differences in permeability, Eur. Phys. J. Appl. Phys, vol.67, pp.45-49, 2000.

P. Ghysels, T. Ashby, K. Meerbergen, and W. Vanroose, Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines, SIAM Journal on Scientific Computing, vol.35, issue.1, pp.48-71, 2013.
DOI : 10.1137/12086563X

P. Ghysels and W. Vanroose, Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm, Parallel Computing, vol.40, issue.7, 2012.
DOI : 10.1016/j.parco.2013.06.001

L. Giraud and S. Gratton, On the Sensitivity of Some Spectral Preconditioners, SIAM Journal on Matrix Analysis and Applications, vol.27, issue.4, pp.1089-1105, 2006.
DOI : 10.1137/040617546

L. Giraud, S. Gratton, and E. Martin, Incremental spectral preconditioners for sequences of linear systems, Applied Numerical Mathematics, vol.57, issue.11-12, pp.1164-1180, 2007.
DOI : 10.1016/j.apnum.2007.01.005

L. Giraud, S. Gratton, X. Pinel, and X. Vasseur, Flexible GMRES with Deflated Restarting, SIAM Journal on Scientific Computing, vol.32, issue.4, pp.1858-1878, 2010.
DOI : 10.1137/080741847

URL : https://hal.archives-ouvertes.fr/inria-00542426

L. Giraud, D. Ruiz, and A. Touhami, A Comparative Study of Iterative Solvers Exploiting Spectral Information for SPD Systems, SIAM Journal on Scientific Computing, vol.27, issue.5, pp.1760-1786, 2006.
DOI : 10.1137/040608301

G. H. Golub and D. P. Leary, Some History of the Conjugate Gradient and Lanczos Algorithms: 1948???1976, SIAM Review, vol.31, issue.1, pp.50-102, 1989.
DOI : 10.1137/1031003

M. Gutknecht, Spectral deflation in Krylov solvers: A theory of coordinate space based methods, Electron.Trans. Numer. Anal, vol.39, pp.156-185, 2012.

M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, vol.49, issue.6, pp.409-435, 1952.
DOI : 10.6028/jres.049.044

J. Hicken and D. Zingg, A Simplified and Flexible Variant of GCROT for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific Computing, vol.32, issue.3, pp.1672-1694, 2010.
DOI : 10.1137/090754674

M. Hoemmen, Communication-avoiding Krylov subspace methods, 2010.

I. Ipsen and C. D. Meyer, The idea behind Krylov methods. The American mathematical monthly, pp.889-899, 1998.

E. F. Kaasschieter, Preconditioned conjugate gradients for solving singular systems, Journal of Computational and Applied Mathematics, vol.24, issue.1-2, pp.265-275, 1988.
DOI : 10.1016/0377-0427(88)90358-5

S. A. Kharchenko, A. Yu, and . Yeremin, Eigenvalue translation based preconditioners for the GMRES(k) method. Numerical Linear Algebra with Applications, pp.51-77, 1995.

M. Kilmer and E. De-sturler, Recycling Subspace Information for Diffuse Optical Tomography, SIAM Journal on Scientific Computing, vol.27, issue.6, pp.2140-2166, 2006.
DOI : 10.1137/040610271

A. Klawonn and O. Rheinbach, Deflation, Projector Preconditioning, and Balancing in Iterative Substructuring Methods: Connections and New Results, SIAM Journal on Scientific Computing, vol.34, issue.1, pp.459-484, 2012.
DOI : 10.1137/100811118

H. Klie, M. F. Wheeler, T. Clees, and K. Stueben, Deflation AMG solvers for highly illconditioned reservoir simulation problems. Paper SPE 105820 presented at the 2007 SPE Reservoir Simulation Symposium, pp.28-30, 2007.

L. Y. Kolotilina, Twofold deflation preconditioning of linear algebraic systems. I. Theory, Journal of Mathematical Sciences, vol.18, issue.No. 4, pp.1652-1689, 1998.
DOI : 10.1007/BF02355371

C. Lanczos, Solution of systems of linear equations by minimized iterations, Journal of Research of the National Bureau of Standards, vol.49, issue.1, pp.33-53, 1952.
DOI : 10.6028/jres.049.006

G. Meurant, The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations. Software, Environments and Tools, Society for Industrial and Applied Mathematics, 2006.
DOI : 10.1137/1.9780898718140

R. B. Morgan, Computing interior eigenvalues of large matrices, Linear Algebra and its Applications, vol.154, issue.156, pp.154-156289, 1991.
DOI : 10.1016/0024-3795(91)90381-6

R. B. Morgan, A Restarted GMRES Method Augmented with Eigenvectors, SIAM Journal on Matrix Analysis and Applications, vol.16, issue.4, pp.1154-1171, 1995.
DOI : 10.1137/S0895479893253975

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.385.9595

R. B. Morgan, Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, pp.1112-1135, 2000.
DOI : 10.1137/S0895479897321362

R. B. Morgan, GMRES with Deflated Restarting, SIAM Journal on Scientific Computing, vol.24, issue.1, pp.20-37, 2002.
DOI : 10.1137/S1064827599364659

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.331.6455

R. B. Morgan, Restarted block-GMRES with deflation of eigenvalues, Applied Numerical Mathematics, vol.54, issue.2, pp.222-236, 2005.
DOI : 10.1016/j.apnum.2004.09.028

M. F. Murphy, G. H. Golub, and A. J. Wathen, A Note on Preconditioning for Indefinite Linear Systems, SIAM Journal on Scientific Computing, vol.21, issue.6, pp.1969-1972, 2000.
DOI : 10.1137/S1064827599355153

R. Nabben and C. Vuik, A comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners. Numerical Linear Algebra with Applications, pp.355-372, 2008.

R. Nicolaides, Deflation of Conjugate Gradients with Applications to Boundary Value Problems, SIAM Journal on Numerical Analysis, vol.24, issue.2, pp.355-365, 2000.
DOI : 10.1137/0724027

Y. Notay, Flexible Conjugate Gradients, SIAM Journal on Scientific Computing, vol.22, issue.4, pp.1444-1460, 2000.
DOI : 10.1137/S1064827599362314

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.831

Y. Notay and P. S. Vassilevski, Recursive Krylov-based multigrid cycles. Numerical Linear Algebra with Applications, pp.473-487, 2008.
DOI : 10.1002/nla.542

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.8

C. C. Paige, B. N. Parlett, H. A. Van, and . Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numerical Linear Algebra with Applications, pp.115-134, 1995.
DOI : 10.1002/nla.1680020205

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.125.3199

M. Parks, The iterative solution of a sequence of linear systems arising from nonlinear finite elements, 2005.

M. Parks, E. De-sturler, G. Mackey, D. D. Johnson, and S. Maiti, Recycling Krylov Subspaces for Sequences of Linear Systems, SIAM Journal on Scientific Computing, vol.28, issue.5, pp.1651-1674, 2006.
DOI : 10.1137/040607277

S. Röllin and W. Fichtner, Improving the Accuracy of GMRes with Deflated Restarting, SIAM Journal on Scientific Computing, vol.30, issue.1, pp.232-245, 2007.
DOI : 10.1137/060656127

Y. Saad, A Flexible Inner-Outer Preconditioned GMRES Algorithm, SIAM Journal on Scientific Computing, vol.14, issue.2, pp.461-469, 1993.
DOI : 10.1137/0914028

Y. Saad, Analysis of Augmented Krylov Subspace Methods, SIAM Journal on Matrix Analysis and Applications, vol.18, issue.2, pp.435-449, 1997.
DOI : 10.1137/S0895479895294289

Y. Saad, Iterative Methods for Sparse Linear Systems, 2003.
DOI : 10.1137/1.9780898718003

Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

Y. Saad, M. Yeung, J. Erhel, and F. , A Deflated Version of the Conjugate Gradient Algorithm, SIAM Journal on Scientific Computing, vol.21, issue.5, pp.1909-1926, 2000.
DOI : 10.1137/S1064829598339761

URL : https://hal.archives-ouvertes.fr/inria-00523686

V. Simoncini and D. B. Szyld, Flexible Inner-Outer Krylov Subspace Methods, SIAM Journal on Numerical Analysis, vol.40, issue.6, pp.2219-2239, 2003.
DOI : 10.1137/S0036142902401074

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.136.9446

V. Simoncini and D. B. Szyld, Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing, SIAM Journal on Scientific Computing, vol.25, issue.2, pp.454-477, 2003.
DOI : 10.1137/S1064827502406415

V. Simoncini and D. B. Szyld, Recent computational developments in Krylov subspace methods for linear systems, Numerical Linear Algebra with Applications, vol.15, issue.156, pp.1-59, 2007.
DOI : 10.1002/nla.499

G. L. Sleijpen and H. A. , A Jacobi???Davidson Iteration Method for Linear Eigenvalue Problems, SIAM Journal on Matrix Analysis and Applications, vol.17, issue.2, pp.401-425, 1996.
DOI : 10.1137/S0895479894270427

A. Stathopoulos and K. Orginos, Computing and Deflating Eigenvalues While Solving Multiple Right-Hand Side Linear Systems with an Application to Quantum Chromodynamics, SIAM Journal on Scientific Computing, vol.32, issue.1, pp.439-462, 2010.
DOI : 10.1137/080725532

J. M. Tang, S. P. Mac-lachlan, R. Nabben, and C. Vuik, A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.4, pp.1715-1739, 2010.
DOI : 10.1137/08072084X

J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga, Comparison of Two-Level Preconditioners Derived from??Deflation, Domain Decomposition and Multigrid Methods, Journal of Scientific Computing, vol.34, issue.3, pp.340-370, 2009.
DOI : 10.1007/s10915-009-9272-6

A. Toselli and O. Widlund, Domain Decomposition methods -Algorithms and Theory, Springer Series on Computational Mathematics, vol.34, 2004.
DOI : 10.1007/b137868

H. A. Van and . Vorst, Iterative Krylov Methods for Large Linear Systems, 2003.

H. A. Van-der-vorst and C. Vuik, GMRESR: a family of nested GMRES methods, Numerical Linear Algebra with Applications, vol.160, issue.4, pp.369-386, 1994.
DOI : 10.1002/nla.1680010404

C. Vuik, A. Segal, and J. A. Meijerink, An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients, Journal of Computational Physics, vol.152, issue.1, pp.385-403, 1999.
DOI : 10.1006/jcph.1999.6255

S. Wang, E. De-sturler, and G. H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods with recycling, International Journal for Numerical Methods in Engineering, vol.35, issue.493, pp.2441-2468, 2007.
DOI : 10.1002/nme.1798

URL : https://www.ideals.illinois.edu/bitstream/2142/11150/2/Large-scale%20Topology%20Optimization%20using%20Preconditioned%20Krylov%20Subspace%20Methods%20with%20Recycling.pdf

R. Yu, E. De-sturler, and D. D. Johnson, A block iterative solver for complex non-hermitian systems applied to large-scale electronic-structure calculations, 2002.