Intelligent pixels of interest selection with application to facial expression recognition using multilayer perceptron

Abstract : This paper presents an automatic way to discover pixels in a face image that improves the facial expression recognition results. Main contribution of our study is to provide a practical method to improve classification performance of classifiers by selecting best pixels of interest. Our method exhaustively searches for the best and worst feature window position from a set of face images among all possible combinations using MLP. Then, it creates a non-rectangular emotion mask for feature selection in supervised facial expression recognition problem. It eliminates irrelevant data and improves the classification performance using backward feature elimination. Experimental studies on GENKI, JAFFE and FERET databases showed that the proposed system improves the classification results by selecting the best pixels of interest.
Type de document :
Article dans une revue
Signal Processing, Elsevier, 2013, Special issue on Machine Learning in Intelligent Image Processing, 93 (6), pp.1547-1556. 〈10.1016/j.sigpro.2012.08.007〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00804171
Contributeur : Ioan Marius Bilasco <>
Soumis le : samedi 29 septembre 2018 - 13:41:57
Dernière modification le : lundi 1 octobre 2018 - 08:24:13

Fichier

Intelligent Pixels of Interest...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Taner Danisman, Ioan Marius Bilasco, Jean Martinet, Chaabane Djeraba. Intelligent pixels of interest selection with application to facial expression recognition using multilayer perceptron. Signal Processing, Elsevier, 2013, Special issue on Machine Learning in Intelligent Image Processing, 93 (6), pp.1547-1556. 〈10.1016/j.sigpro.2012.08.007〉. 〈hal-00804171〉

Partager

Métriques

Consultations de la notice

451

Téléchargements de fichiers

18