Learning symmetrical model for head pose estimation

Abstract : This paper tackles the problem of head pose estimation which has been considered an important research task for decades. The proposed approach selects a set of features from the symmetrical parts of the face. The size of bilateral symmetrical area of the face is a good indicator of the Yaw head pose. We train a Decision Tree model in order to recognize head pose with regard to the areas of symmetry. The approach does not need the location of interest points on face and is robust to partial occlusion. Tests were performed on a different dataset from that used for training the model and the results demonstrate that the change in the size of the regions that contain a bilateral symmetry provides accurate pose estimation.
Type de document :
Communication dans un congrès
ICPR - 21st International Conference on Pattern Recognition, Nov 2012, Tsukuba, Japan. pp.3614-3617, 2012
Liste complète des métadonnées

https://hal.inria.fr/hal-00804181
Contributeur : Ioan Marius Bilasco <>
Soumis le : samedi 29 septembre 2018 - 15:23:56
Dernière modification le : lundi 1 octobre 2018 - 09:03:32

Fichier

ICPR12.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00804181, version 1

Collections

Citation

Afifa Dahmane, Slimane Larabi, Chaabane Djeraba, Ioan Marius Bilasco. Learning symmetrical model for head pose estimation. ICPR - 21st International Conference on Pattern Recognition, Nov 2012, Tsukuba, Japan. pp.3614-3617, 2012. 〈hal-00804181〉

Partager

Métriques

Consultations de la notice

236

Téléchargements de fichiers

5