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Abstract: This paper investigates the visual inertial structure from motion
problem with special focus on its observability properties. The considered sys-
tem is a sensor assembling consisting of a monocular camera and inertial sensors
(i.e., three orthogonal accelerometers and three orthogonal gyroscopes). The
considered state contains the vehicle speed and attitude, the biases on the in-
ertial measurements, the position of the features observed by the camera, the
parameters characterizing the extrinsic camera-inertial sensors calibration and
the magnitude of the gravity. In the case of a single feature, this state consists
of 24 components. The observability analysis is carried out by using the method
of continuous symmetries, which has recently been introduced. Due to the sys-
tem complexity, a direct derivation of the system continuous symmetries would
require an excessive computational cost. For this reason, new theoretical results
are derived in order to significantly reduce the load of symbolic computation.
The paper contribution is therefore twofold. From one side it provides new the-
oretical results, which allow significantly reducing the symbolic computational
load necessary to investigate the observability properties of any estimation prob-
lem by making the use of the concept of continuous symmetry. From the other
side, it provides a new result in the framework of the observability of the visual-
inertial structure from motion. Specifically, it is proven that, the information
contained in the data provided by a monocular camera which observes a single
point-feature and by an Inertial Measurement Unit (IMU), allows estimating the
absolute scale, the speed in the local frame, the absolute roll and pitch angles,
the biases which affect the accelerometer’s and the gyroscope’s measurements,
the magnitude of the gravitational acceleration and the extrinsic camera-IMU
calibration.

Key-words: Sensor Fusion, Observability, Inertial Sensors, Vision, Structure
from Motion



Résumé : Cet article étudie le problème visual inertial structure from motion
avec un accent particulier sur ses propriétés d’observabilité. Le système considéré
est un assemblage constitué par une caméra monoculaire et des capteurs inertiels
(c’est à dire trois accéléromètres orthogonaux et trois gyroscopes orthogonales).
L’état considéré contient la vitesse du véhicule et l’attitude, les bias sur les
mesures inertielles, la position des amers observés par la caméra, les paramètres
caractérisant la calibration extrinsèque caméra -capteurs inertielles et l’ampleur
de la gravité. Dans le cas d’une seule amer, cet état se compose de 24 éléments.
L’analyse d’observabilité est effectuée en utilisant la méthode de symétries
continues, qui a récemment été mis en place. En raison de la complexité du
système, une dérivation directe des symétries continues du système nécessiterait
un coût excessif de calcul. Pour cette raison, de nouveaux résultats théoriques
sont dérivées afin de réduire considérablement la charge de calcul symbolique.
La contribution du papier est donc double. D’un côté, il fournit de nouveaux
résultats théoriques, qui permettent de réduire considérablement la charge symbolique
de calcul nécessaire pour étudier les propriétés d’observabilité de n’importe quel
problème d’estimation en faisant l’usage de la notion de symétrie continue.
De l’autre côté, il fournit un nouveau résultat dans le cadre de l’observabilité
du problème visual inertial structure from motion. Plus précisément, il est
prouvé que, l’information contenue dans les données fournies par une caméra
monoculaire qui observe un seul amer et par les capteurs inertielles permet
d’estimer l’échelle absolue, la vitesse dans le repère local, l’angle de roulis et de
tangage, les bias qui affectent les mesures des accéléromètres et des gyroscopes,
l’ampleur de la gravité et la calibration extrinsèque caméra -capteurs inertielles.

Mots-clés : Fusion Sensoriel, Observabilité, Capteurs inertiels, Vision, Structure
from Motion
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1 Introduction

The structure from motion problem (SfM) consists in determining the three-
dimensional structure of the scene by using the measurements provided by one or
more sensors over time (e.g. vision sensors, ego-motion sensors, range sensors).
In the case of visual measurements only, the SfM problem has been solved up
to a scale [4, 5, 8, 12, 16] and a closed form solution has also been derived
[8, 12, 16], allowing the determination of the three-dimensional structure of the
scene, without the need for any prior knowledge.

The case of inertial and visual measurements, i.e., the visual-inertial struc-
ture from motion problem (from now on the Vi-SfM problem), has particular
interest and has been investigated by many disciplines, both in the framework
of computer science [3, 10, 11, 14, 17] and in the framework of neuroscience
(e.g., [2, 6, 7]). Vision and inertial sensing have received great attention by the
mobile robotics community since they require no external infrastructure and
this is a key advantage for robots operating in unknown environments where
GPS signals are shadowed.

In [9, 10, 11, 14] and [18] the observability properties of the Vi-SfM have
been investigated. In [9] the authors investigated the estimator inconsistency in
the Vi-SfM problem. They found that standard EKF-based estimators lead to
spurious information gain along unobservable directions. They also suggested
a modification on the basic estimator in order to enforce the unobservable di-
rections and thus to reduce inconsistency. In [10, 11] and [18] the observability
properties have been derived by accounting an unknown transformation between
the camera and the IMU1 frames and an unknown magnitude of the gravity.
Additionally, in [11] and [18] also the case of biased inertial measurements has
been considered. We remark that in [10, 11] and [18] the observability properties
have been derived starting from basic results in computer vision. Specifically,
in [10] and [11], starting from the results derived in [4], a global frame has been
fixed by constraining three directions determined by three points on the image
plane. In [18], the camera is considered as a localization sensor up to a scale.
This is based on the assumption that the camera is observing a number of fea-
tures (at least five [16]) which guarantees that its motion can be reconstructed
up to a scale. This significantly simplifies the observability analysis since, the
expression of the observation provided by the camera consists of three compo-
nents of the state which defines the system. In [14] the observability properties
have been derived without using the previous mentioned results from computer
vision and this allowed us to deal with the case when a single point feature is
observed by the camera. The analysis was based on the concept of continuous
symmetry introduced in [13]. Since under these conditions the camera obser-
vation has an expression much more complex, the analysis in [14] was limited
to the case when the camera extrinsic calibration in the IMU frame is a priori
known.

In this paper we extend the observability analysis carried out in [14] in or-
der to cope with the case of unknown camera extrinsic calibration. In order
to achieve this objective, the theory introduced in [13] has been extended by
adding some new techniques which allow us to significantly reduce the load
of symbolic computation required to perform the analysis and the derivation of

1In this paper IMU is the Inertial Measurement Unit, which consists of three orthogonal
accelerometers and three orthogonal gyroscopes.
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4 A. Martinelli

the system symmetries. Specifically, we introduce the quasi-projection operation
which allows us to reduce the space dimensionality when deriving the observ-
ability properties of any estimation problem. The considered system together
with its basic equations are provided in section 2. In section 3 the observability
properties of this system are derived by firstly introducing the quasi-projection
operation (3.1) and then by applying this operation to our system (3.2). Finally,
conclusions are provided in section 4.

2 The Considered System

We consider a system (from now on we call it the vehicle) consisting of a monocu-
lar camera and an Inertial Measurement Unit (IMU). The IMU consists of three
orthogonal accelerometers and three orthogonal gyroscopes. We introduce a
global frame in order to characterize the motion of the vehicle moving in a 3D
environment. Its z-axis points vertically upwards. We will adopt lower-case let-
ters to denote vectors in this frame (e.g., the gravity is g = [0, 0, − g]T , where
g is the magnitude of the gravitational acceleration). We define the vehicle local
frame as the IMU frame. We will adopt upper-case letters to denote vectors in
the vehicle frame. The camera frame differs from the local frame. We charac-
terize the transformation between these two frames through Rc and qc, where
Rc ≡ [Xc, Y c, Zc]T is the position of the camera optical center in the local
frame and qc ≡ qct + qcxi+ qcyj + qczk is the unit quaternion which characterizes
the orientation of the camera frame in the local frame. We assume that both
Rc and qc are independent of time and are unknown.

The IMU provides the vehicle angular speed and acceleration. We will
denote the measured quantities by Ω and A, respectively. These quantities
differ from the true values, Ωtrue and Atrue. Regarding the angular speed,
the one measured by the gyroscopes includes a bias and a zero-mean error, i.e.:
Ω = Ωtrue + Ωbias +nΩ. Regarding the acceleration, the one measured by the
accelerometers includes the inertial acceleration (Ainertial), the gravitational
acceleration (G), a bias and a zero-mean error. In other words: A = Ainertial+
Abias − G + nA. Note that the gravity comes with a minus since, when the
vehicle does not accelerate (i.e. Ainertial is zero), the accelerometers perceive
an acceleration which is the same of an object accelerated upward in absence of
gravity.

Our system is characterized by the state [r, v, q]T where r = [rx, ry, rz]
T

is the 3D vehicle position in the global frame, v is its time derivative, i.e. the
vehicle speed in the global frame (v ≡ dr

dt ) and q ≡ qt + qxi + qyj + qzk is the
unit quaternion which characterizes the vehicle orientation in the global frame.

In the following, we want to derive the analytical expression of the dynamics
and the camera observations. For the sake of simplicity, we consider the case
of noiseless measurements. The case with noise can be easily obtained with the
substitution A → A + nA and Ω → Ω + nΩ. The dynamics of the previous
state can be easily provided by expressing all the 3D vectors as imaginary
quaternions. In practice, given a 3D vector w = [wx, wy, wz]

T we associate

INRIA



Visual-Inertial Structure from Motion Observability 5

with it the imaginary quaternion wq ≡ 0 + wxi+ wyj + wzk. The dynamics of
the state [rq, vq, q]

T are:
ṙq = vq

v̇q = qAinertialq q∗ = qAqq
∗ − qAbiasq q∗ + gq

q̇ =
1

2
qΩq −

1

2
qΩbiasq

(1)

being q∗ the conjugate of q, q∗ = qt − iqx − jqy − kqz. By considering the case
of unknown biases, unknown magnitude of the gravity and unknown transfor-
mation between the IMU and the camera frames, the state which defines our
system becomes the following 24−dimensional vector:

X ≡
[
r, v, q, Abias, Ωbias, Rc, qc, g

]T
(2)

whose dynamics are given in (1) with the following trivial additional equations:{
Ȧbias = Ω̇bias = Ṙc = [0 0 0]T

ġ = q̇c = 0
(3)

Note that this is the state which defines our system when a single point feature
is observed by the camera. In this case the origin of the global frame can
be chosen as coincident with the observed feature. In the case of multiple
features, the state dimension becomes 24 + 3(Nf − 1) (Nf being the number
of observed features) and the coordinates of the further Nf − 1 features are
included in the state (see [14] for more details). On the other hand, the state
defined in (2) is not a suitable choice to characterize our system. Indeed, the
expression of the camera observations in terms of it involves the product of
five quaternions: (qc)∗q∗rqqq

c. This makes impossible to efficiently derive the
observability properties. In order to have a simple expression of the camera
observations it is much more convenient to adopt a new state. Let us refer to
the case of a single feature. The new state is:

Xn ≡
[
cF , V , q, Abias, Ωbias, Rc, qc, g

]T
(4)

where cF ≡ [cFx,
cFy,

cFz]
T is the position of the feature in the camera frame

and V is the vehicle speed in the local frame (i.e., in the IMU frame). By using
the equations in (1) we obtain the following dynamics for the new state:

cḞ = M(cΩ)cF −Rqc [V + (Ω−Ωbias) ∧Rc]

V̇ = M(Ω− Ωbias)V +A−Abias +G

q̇ =
1

2
qΩq −

1

2
qΩbiasq

Ȧbias = Ω̇bias = Ṙc = [0 0 0]T

ġ = q̇c = 0

(5)

where:

• M(Ω) ≡

 0 Ωz −Ωy
−Ωz 0 Ωx
Ωy −Ωx 0

;

RR n° 8272



6 A. Martinelli

• cΩ is the angular speed in the camera frame, i.e., cΩq = (qc)∗(Ωq −
Ωbiasq )qc;

• Rqc is the rotation matrix associated with the quaternion qc (i.e., for a
3D vector w = [wx, wy, wz]

T , (Rqcw)q = (qc)∗wqq
c);

• the symbol ”∧” denotes the vectorial product.

Figure 1 displayes the three reference frames together with some of the previous
vectors.

Figure 1: Global frame, local (IMU) frame and camera frame with the feature
position (cF ) in the camera frame and the vehicle speed (V ) and the camera
position (Rc) in the local frame.

As the majority of real control systems, the dynamics given in (5) are affine
in the controls, i.e. they can be written as follows:{

Ṡ = f(S,u) = f0(S) +

nc∑
i=1

fi(S)ui (6)

with S = Xn, nc = 6 and u = [u1, u2, ..., unc
]T = [Ax, Ay, Az, Ωx, Ωy, Ωz]

T .
The expression of the vector fields fi, i = 0, 1, ..., nc, which is necessary for the
computation of the Lie derivatives, can be obtained by a direct computation2.

The expression of the camera observations in terms of the new state is trivial.
Indeed, the camera provides the direction of the observed feature in its own
frame. Hence, it provides the vector cF up to a scale, or, equivalently, the two
following ratios:

hcam(Xn) ≡ [hu, hv]
T =

[
cFx
cFz

,
cFy
cFz

]T
(7)

2The reader is addressed to [13] for the definition and details about the computation of
the Lie derivatives.
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Visual-Inertial Structure from Motion Observability 7

We have also to consider the two constraints q∗q = 1 and (qc)∗qc = 1. These
can be dealt as further observations:

hconst(Xn) ≡ [hq, hqc ]T = [q∗q, (qc)∗qc]
T

(8)

Finally, the case of multiple features can be characterized by including in the
state the position of each feature in the camera frame, i.e., cF → cF i, i =
1, 2, · · · , Nf . The resulting state has dimension 24 + 3(Nf − 1).

3 Observability Properties

In [14] we investigated the observability properties of the Vi-SfM problem in sev-
eral contexts which include the case of a single and multiple features, the case of
known and unknown magnitude of the gravity, the case of biased and unbiased
inertial measurements. In all the considered cases, the extrinsic camera-IMU
transformation was assumed known. In the case of a single feature, the state
adopted to characterize the case of biased inertial measurements and unknown

magnitude of the gravity was
[
r, v, q, Abias, Ωbias, g

]T
, whose dimension is

17. The results of the observability analysis carried out in [14] can be summa-
rized as follows:

Theorem 1 (Known extrinsic calibration) Let us consider the Vi-SfM prob-
lem with biased inertial measurements, unknown magnitude of the gravity and
known camera-IMU transformation. All the independent observable modes are:
the positions in the local frame of all the observed features, the 3 components
of the speed of the vehicle in the local frame, the two biases affecting the ac-
celerometer and gyroscope measurements, the roll and the pitch angle and the
magnitude of the gravity.

The derivation of this result required to analytically compute the Lie deriva-
tives up to the third order. In general, the complexity of the computation of
the Lie derivatives and the determination of their dependence or independence
dramatically depends on the state dimension.

Let us consider now the case when the extrinsic camera-IMU transformation
is unknown. In order to solve the structure from motion we also need to estimate
the parameters which characterize this transformation. In other words, the state
which defines our system, is the one given in (2) or in (4), for the case of a
single feature. In this case, even by using the state in (4), we found prohibitive
to analytically deal with second-order Lie derivatives. Specifically, by using the
symbolic computation tool of Matlab running on a 2.7GHz dual-core Intel Core
i7 processor with 4MB shared L3 cache, the time demanded to compute the
rank of the matrix whose lines are the gradients of all the Lie derivatives up
to the second order, is equal to 101734s and the analytical determination of its
null space required 127683s. One of the goal of this paper is to show how the
theory developed in [13] can be used to deal with such complex cases, namely,
how the observability properties can be derived by avoiding the computation
of high-order Lie derivatives and how the space dimensionality where the rank
must be computed can be reduced.

RR n° 8272



8 A. Martinelli

3.1 Quasi-Projection Operation and Matrix

In this section we introduce new theoretical results which allow significantly
reducing the load of symbolic computation requested in order to derive the
observability properties of a given system starting from the analysis of its con-
tinuous symmetries. Throughout this section, we denote by n the dimension of
the state. We start by reminding the reader the definition of continuous sym-
metry and the basic result derived in [13], which characterizes the observable
modes.

Definition 1 (Continuous Symmetry) The vector field ws(S) is a contin-
uous symmetry in S for the system defined in (6) if and only if it is a non null
vector belonging to the null space of the matrix whose lines are the gradients of
all the Lie derivatives computed in S.

Property 1 g(S) is an observable mode if and only if its gradient is orthogonal
to all the symmetries.

According to this result, the derivation of all the observable modes requires,
first of all, to derive all the symmetries. The following remark provides an upper
bound on the number of Lie derivatives which must be computed in order to
detect the system symmetries:

Remark 1 In order to detect the symmetries of the system in (6), only the first
(n− 1)−order Lie derivatives must be computed.

The reader is addressed to [1] to verify the validity of this remark. On the
other hand, this remark is not useful to deal with our case since it is prohibitive
even to deal with the second-order Lie derivatives.

Let us denote with φ1, ..., φn′
(1 ≤ n′ < n) a set of independent col-

umn vectors of dimension n which are orthogonal to the gradients of n − n′

independent Lie derivatives. We have the following result:

Property 2 A sufficient condition for g(S) to be an observable mode is that
its gradient is orthogonal to all the vectors φ1, ..., φn′

.

Proof: According to definition 1, if n−n′ is the number of all the independent
Lie derivatives, φ1, ..., φn′

are all the symmetries of the system. In this case,
as stated in property 1, the previous condition is also necessary. When n − n′
is smaller than the number of all the independent Lie derivatives, we only know
that the vector space generated by the symmetries is a subspace of the space
generated by φ1, ..., φn′

. Hence, if the gradient of g(S) is orthogonal to this
latter vector space it is also orthogonal to any of its subspace. From property 1
we conclude that g(S) is an observable mode �
This result is useful since it can be used by computing any number of indepen-
dent Lie derivatives and not necessarily all of them. Additionally, this simple
result allows us to reduce the system dimensionality in the special case when
a component of the state verifies the sufficient condition stated in the previous
property. In this case, since we know that this component is observable, in order
to detect the other observable modes we can consider the reduced system, which
is obtained by removing this component from the state.

INRIA



Visual-Inertial Structure from Motion Observability 9

The second new result allows us to determine the dependence or indepen-
dence of a given set of Lie derivatives by computing the rank of matrices whose
dimension is smaller than the dimension of the original state. Let us suppose
that we detected n − n′ independent Lie derivatives (L1, ..., Ln−n′

) and, as
before, let us denote with φ1, ..., φn′

(1 ≤ n′ < n) a set of independent col-
umn vectors orthogonal to their gradients. Let us suppose that we compute m
additional Lie derivatives (P1, ..., Pm). We need to determine if they are inde-
pendent from the previous ones and also if they are independent one each other.
In other words, we want to know the number of independent Lie derivatives in
the set L1, ..., Ln−n′

, P1, ..., Pm. The easiest way to determine this is to
compute their gradients and then the rank of the matrix which contains these
gradients. The dimension of this matrix is (n − n′ + m) × n. We know that
this rank is larger or equal to n − n′ since we assumed that L1, ..., Ln−n′

are
independent. Let us denote this rank by n−n′+p. We remark that determining
p is very easy if the vectors φ1, ..., φn′

are orthonormal. In this special case,
it is immediate to project the gradients of the Lie derivatives (P1, ..., Pm)
onto the vectors φ1, ..., φn′

. This allows us to reduce the space dimensional-
ity: instead of working in the original n−dimensional space we can work in a
n′−dimensional space. In other words, p is the rank of the m×n′ matrix, whose
lines are the projections of the gradients of the Lie derivatives (P1, ..., Pm)
onto the vectors φ1, ..., φn′

. On the other hand, even in the case when the
vectors φ1, ..., φn′

are not orthonormal, p can be computed by computing a
rank of a m× n′ matrix. We have the following result:

Property 3 p is the rank of the m× n′ matrix, whose i, j entry is the scalar
product ∇SPi · φj .

Proof: In this proof we will use the following two results from linear algebra
about the matrix rank [15]:

1. rank(AB) = rank(A) when rank(B) = k, where k is the number of lines
of B;

2. If A is a matrix over the real numbers, rank(AAT ) = rank(ATA) =
rank(A) = rank(AT ).

Let us introduce the following notation:

• D is the (n−n′)×n matrix whose lines are the gradients of the functions
L1, ..., Ln−n′

, i.e.:

D ≡

 ∇SL1

· · ·
∇SLn−n

′


• E is the m × n matrix whose lines are the gradients of the functions
P1, ..., Pm, i.e.:

E ≡

 ∇SP1

· · ·
∇SPm



RR n° 8272



10 A. Martinelli

• M is the (n−n′+m)×n matrix whose lines are all the previous gradients,

i.e.: M≡
[
D
E

]
• F is the n× n′ matrix whose columns are the vectors φ1, ..., φn′

;

• N is the following n× n: N ≡
[
DT F

]
We have: n−n′+p = rank(M). Since rank(N ) = n, by using the first property
mentioned at the beginning of this proof, we also have rank(M) = rank(MN ).
We have:

MN =

[
DDT 0(n−n′)×n′

EDT EF

]
(9)

where 0(n−n′)×n′ is the zero (n−n′)×n′ matrix. Because of the second property
mentioned at the beginning, rank(DDT ) = rank(D), which is n−n′, because of
the independence of L1, ..., Ln−n′

. In order to compute the rank of the matrix
in (9), we detect the largest number of independent columns. Let us consider
any linear combination of its columns which includes all the first n−n′ columns.
A necessary condition to be the null vector is that the first n − n′ coefficients
are equal to zero. Hence, a necessary and sufficient condition such that this
linear combination vanishes if and only if all the coefficients are equal to zero,
is that the columns selected among the last m columns of the matrix MN are
independent among them. This proves that rank(MN ) = n− n′ + rank(EF).
But the i, j entry of EF is precisely the scalar product ∇SPi · φj �

This result is very important since allows us to verify the independence of
a set of Lie derivatives by computing the rank of matrices with low dimen-
sion. Specifically, the gradients of the Lie derivatives are n−dimensional vec-
tors. Once we have detected n − n′ independent Lie derivatives and a basis
for its null space (i.e., φ1, ..., φn′

), in order to detect further independent Lie
derivatives, we can work with n′−dimensional vectors. Indeed, for a given Lie
derivative P, instead of working with the n−dimensional vector ∇SP, we can
work with the n′−dimensional vector, which is defined as the vector whose jth

entry is ∇SP · φj (j = 1, · · · , n′). This operation would be a projection if
the basis φ1, ..., φn′

were orthonormal. For this reason we will call this op-
eration a quasi-projection. This result is very powerful since it can be applied
more consecutive times. Specifically, let us suppose that, by quasi-projecting
the gradients of additional Lie derivatives in the n′−dimensional space we detect
additional n′ − n′′ independent Lie derivatives (1 ≤ n′′ < n′). Let us denote
with φ′1, ..., φ′n′′

a basis of the null space of the matrix made by these gradi-
ents quasi-projected in the n′−dimensional space. Now, in order to work in the
new n′′−dimensional space, we must quasi-project the gradient of a given Lie
derivative, first on the n′−dimensional space and then on the n′′−dimensional
space. By computing the matrix whose i, k entry is

∑
j φ

j
iφ

′k
j we can simply

multiply the gradient of the Lie derivative by this matrix. We we will call this
matrix the quasi-projection matrix. Therefore, each time we apply the result in
property 3, we need to compute the new quasi-projection matrix.

INRIA



Visual-Inertial Structure from Motion Observability 11

3.2 Vi-SfM Observability

We illustrate the power of the previous two properties by referring to our case,
where the original state has dimension n = 24. We remind the reader that the
time demanded to compute the rank of the matrix whose lines are the gradients
of all the Lie derivatives up to the second order, is equal to 101734s. We start by
considering the matrix whose lines are the gradients of the following Lie deriva-
tives: L0hu, L0hv, L

0hq, L
0hp, L

1
f5
hu, L1

f6
hu, L1

f6
hv. The computation of its

rank and its null space demands 0.37s and 0.24s, respectively. In particular,
the rank is 7 proving that these functions are independent. In a second step we
quasi-project the gradient of the following Lie derivatives: L1

f0
hu and L1

f4
hu.

We build with them a 2 × 17 matrix. The computation of its rank and null
space requires 0.027s and 3.11s, respectively. The rank is 2. The computation
of the quasi-projection matrix requires 6.48s. In a third step we quasi-project
the gradient of the following Lie derivatives: L1

f4
hv and L1

f5
hv. We build with

them a 2× 15 matrix. The computation of its rank and null space requires 64s
and 81s, respectively. The rank is 2. The computation of the quasi-projection
matrix requires 0.34s. Finally, we quasi-project the gradient of the Lie deriva-
tive L1

f0
hv. We build with it a 1 × 13 matrix. The computation of its rank

and null space requires 0.041s and 0.089s, respectively. The computation of
the quasi-projection matrix requires 0.44s. We can proceed further in order to
detect all the independent Lie derivatives. However, it is more convenient to
use property 2. Specifically, we can check if some of the components of the
state are observable (property 2 is a sufficient condition). We compute the
gradient of the components of the original state and we quasi-project them on
the final 12−dimensional space. Regarding the four components of the quater-
nion qc we obtain the null vector, meaning that these components are four
observable modes. Hence, we remove these coponents from the original state
and we start again the observability analysis of a new system whose state has
now dimension equal to 20. As previously mentioned, the complexity of the
computation dramatically depends on the dimension of the state. Specifically,
with the new state, it is possible to work with third-order Lie derivatives. In
particular, we found the following 19 independent Lie derivatives: L0hu, L0hv,
L0hq, L

1
f0
hu, L1

f5
hu, L1

f6
hu, L1

f0
hv, L

1
f6
hv, L

2
f0f0

hu, L2
f0f1

hu, L2
f0f4

hu,

L2
f0f5

hu, L2
f0f6

hu, L2
f0f0

hv, L
2
f0f4

hv, L
3
f4f0f0

hu, L3
f0f0f4

hu, L3
f0f0f5

hu,

L3
f0f0f6

hv. The computation of the null space of the matrix whose lines are

their gradients requires 0.46s and provides the vector:

wRotz
s = [01×6,−qz,−qy, qx, qt, 01×10]T

where 0i×j denotes the i×j zero matrix. This vector expresses the system invari-
ance under rotations around the vertical axis. Indeed, an infinitesimal rotation
of magnitude ε about the vertical axis leaves the vectors cF , V , Abias, Ωbias

and Rc unchanged and the quaternion q changes as follows [?]:
qt
qx
qy
qz

→

qt
qx
qy
qz

+
ε

2


−qz
−qy
qx
qt



RR n° 8272



12 A. Martinelli

i.e., the reduced 20−dimensional stateXr ≡
[
cF , V , q, Abias, Ωbias, Rc, g

]T
changes as follows: Xr →Xr + ε

2w
Rotz
s . Hence, wRotz

s is a continuous symme-
try for our system and the only non-observable mode is the yaw angle. In other
words, we extended the result in theorem 1 to the case of unknown camera-IMU
calibration. We have the following new result:

Theorem 2 (Unknown extrinsic calibration) Let us consider the Vi-SfM prob-
lem with biased inertial measurements, unknown magnitude of the gravity and
unknown camera-IMU transformation. All the independent observable modes
are: the positions in the local frame of all the observed features, the three com-
ponents of the speed of the vehicle in the local frame, the two biases affecting
the accelerometer and gyroscope measurements, the roll and the pitch angle, the
magnitude of the gravity and the transformation between the camera and IMU
frames.

Note that this result holds even in the case when the camera observes a single
point-feature.

4 Conclusion

In this paper we extended the results of the state of the art about the Vi-SfM ob-
servability. Specifically, it has been proven that, even in the case of a single point
feature, monocular vision and inertial sensors provide the necessary information
to determine the scale, the vehicle speed, the absolute roll and pitch, the iner-
tial biases, the magnitude of the gravity and the camera extrinsic calibration
in the IMU frame. To achieve this result, we introduced the operation of quasi
projection and new results which allow us to perform an observability analysis
with a reduced load of symbolic computation. It is remarkable to note that,
by using these new results, it is possible to check the independence of the Lie
derivatives up to the third order in less than 200 seconds while, on the same
processor and for the same problem, the computational time required to check
the independence of the Lie derivatives up to the second order is larger than
105 seconds.
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