M. Anguelova, Non linear Observability and Identifiability: General Theory and a Case Study of a Kinetic Model, 2004.

A. Berthoz, B. Pavard, and L. R. Young, Perception of linear horizontal self-motion induced by peripheral vision (linearvection) basic characteristics and visual-vestibular interactions, Experimental Brain Research, vol.23, issue.5, pp.471-489, 1975.
DOI : 10.1007/BF00234916

M. Bryson and S. Sukkarieh, Observability analysis and active control for airborne SLAM, IEEE Transactions on Aerospace and Electronic Systems, vol.44, issue.1, pp.261-280, 2008.
DOI : 10.1109/TAES.2008.4517003

A. Chiuso, P. Favaro, H. Jin, and S. Soatto, Structure from motion causally integrated over time, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.4, pp.523-535, 2002.
DOI : 10.1109/34.993559

A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, MonoSLAM: Real-Time Single Camera SLAM, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.6, pp.1052-1067, 2007.
DOI : 10.1109/TPAMI.2007.1049

K. Dokka, P. R. Macneilage, G. C. De-angelis, and D. E. Angelaki, Estimating distance during self-motion: A role for visual-vestibular interactions, Journal of Vision, vol.11, issue.13, pp.11-12, 2011.
DOI : 10.1167/11.13.2

C. R. Fetsch, G. C. Deangelis, and D. E. Angelaki, Visual-vestibular cue integration for heading perception: applications of optimal cue integration theory, European Journal of Neuroscience, vol.42, issue.Suppl., pp.1721-1729, 2010.
DOI : 10.1111/j.1460-9568.2010.07207.x

R. I. Hartley, In defense of the eight-point algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, issue.6, pp.580-593, 1997.
DOI : 10.1109/34.601246

J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, Towards Consistent Vision-Aided Inertial Navigation, Proc. of the Int. Workshop on the Algorithmic Foundations of Robotics, 1315.
DOI : 10.1007/978-3-642-36279-8_34

E. Jones and S. Soatto, Visual-inertial navigation, mapping and localization: A scalable real-time causal approach, The International Journal of Robotics Research, vol.73, issue.60, pp.407-430, 2011.
DOI : 10.1007/s11263-006-0025-9

J. Kelly and G. Sukhatme, Visual-Inertial Sensor Fusion: Localization, Mapping and Sensor-to-Sensor Self-calibration, The International Journal of Robotics Research, vol.10, issue.2, pp.56-79, 2011.
DOI : 10.1177/0278364910382802

H. and C. Longuet-higgins, A computer algorithm for reconstructing a scene from two projections, Nature, vol.194, issue.5828, pp.133-135, 1981.
DOI : 10.1038/293133a0

A. Martinelli, State Estimation Based on the Concept of Continuous Symmetry and Observability Analysis: The Case of Calibration, IEEE Transactions on Robotics, vol.27, issue.2, pp.239-255, 2011.
DOI : 10.1109/TRO.2011.2109210

URL : https://hal.archives-ouvertes.fr/hal-00578795

A. Martinelli, Vision and IMU Data Fusion: Closed-Form Solutions for Attitude, Speed, Absolute Scale, and Bias Determination, IEEE Transactions on Robotics, vol.28, issue.1, pp.44-60, 2012.
DOI : 10.1109/TRO.2011.2160468

URL : https://hal.archives-ouvertes.fr/hal-00743262

L. Mirsky, Introduction to Linear Algebra, The Mathematical Gazette, vol.49, issue.367, 1990.
DOI : 10.2307/3614275

D. Nistér, An efficient solution to the five-point relative pose problem, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.6, pp.756-770, 2004.
DOI : 10.1109/TPAMI.2004.17

D. Strelow and S. Singh, Motion Estimation from Image and Inertial Measurements, The International Journal of Robotics Research, vol.23, issue.12, 2004.
DOI : 10.1177/0278364904045593

S. Weiss, Vision Based Navigation for Micro Helicopters, Diss. ETH No, 20305.