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ILLUMINATION-INVARIANT REPRESENTATION FOR NATURAL COLOUR IMAGES

THROUGH SIFT MATCHING

Frédéric SUR

LORIA - projet Magrit

Université de Lorraine, CNRS, INRIA, France

ABSTRACT

Illumination conditions may severely impair many computer

vision applications. Defining an illumination-invariant repre-

sentation from a colour image is therefore of great interest.

Assuming that two views of a scene are available, we show

that it is easy to derive such a representation from corre-

spondences between interest points, within a Lambertian

reflectance / Planckian lighting model. An application to

shadow removal or lightening is also discussed.

Index Terms— Illumination-invariant representation,

Lambertian reflectance, Planckian lighting, shadows, SIFT.

1. INTRODUCTION

This article explains how to derive illumination-invariant rep-

resentations from two colour pictures of a 3D scene. Such

a representation should not depend on the lighting intensity,

colour, or direction. The article is based on a theory devel-

oped by Finlayson et al. [1], briefly recalled in this section.

In the Lambertian reflectance model and assuming that the

camera sensitivity is a Dirac function in each channel and that

the lighting is Planckian, the camera response in each channel

(typically k = R,G, B) writes:

ρk(x, y) = qkσ(x, y)Eλk
(x, y)Sλk

(x, y) (1)

where λk is the wavelength to which channel k is sensitive,

qk is a constant across the image, σ(x, y) is the Lambertian

shading at pixel (x, y) (i.e. the dot product between the nor-

mal of the surface imaged at (x, y) and the illumination direc-

tion), Eλk
(x, y) is the spectral power distribution of the light

at wavelength λk, and Sλk
(x, y) is the surface reflectance.

Among these terms, only σ depends on the light direction.

Within Wien’s approximation of Planck’s law, Eλ is

parametrized by the colour temperature T of the illuminant

via: Eλ(x, y) = c1λ
−5e

−c2

T λ I(x, y) where c1 and c2 are

constants and I is the overall light intensity.

It is possible to derive at each pixel (x, y) from an RGB

image the so-called log-chromaticity values χ′

1
and χ′

2
:

χ′

1
(x, y) := log

(
ρR(x, y)

ρG(x, y)

)
= log

(
sR(x, y)

sG(x, y)

)
+

1

T
(eR−eG)

(2)

χ′

2
(x, y) := log

(
ρB(x, y)

ρG(x, y)

)
= log

(
sB(x, y)

sG(x, y)

)
+

1

T
(eB−eG)

(3)

where sk(x, y) := qkλ−5

k
Sλk

(x, y) and ek := −c2/λk.

Consequently, the two-vector χχχ′ is parametrized by colour

temperature T via χχχ′(x, y) = sss(x, y) + 1

T
eee where sss depends

on the imaged surface and on the camera, and eee only depends

on the camera. Note that the direction of the light (in σ) and

the light intensity I have been factored out

Finlayson et al’s illumination-invariant representation is

the 1D image I ′ obtained by factoring out the information

along the line spanned by eee: I ′(x, y) = χχχ′(x, y)T · eee⊥. A 2D

invariant representation is also defined as: χ̃χχ′ = Peee⊥χχχ′ where

Peee⊥ is a projection in the 2D log-chromaticity space onto a

line orthogonal to eee in 2D.

This model proves robust enough for giving shadow-free

representations which can be subsequently used in applica-

tions such as shadow removal [2, 3] or shadow-resistant track-

ing [4]. Indeed, contrary to non-shadow regions, shadows are

not directly lightened by the source but rather by a diffuse

light with a different resulting colour temperature. Hence,

shadows are no more present in the I ′ or χ̃χχ′ representations.

A difficulty is to estimate the direction eee. In Sec. 2 and 3

we show that it is possible to estimate eee from two views of

a scene. Proof-of-concept experiments about shadow lighten-

ing are discussed in Sec. 4. Some related works are in Sec. 5.

2. DERIVING AN ILLUMINATION-INVARIANT

IMAGE FROM TWO VIEWS OF A SCENE

2.1. Displacement in the log-chromaticity space

Let us note χχχ′

A
(resp. χχχ′

B
) the log-chromaticities of two

images (A and B respectively), as defined in Eq. (2-3). Let

(x, y) be an interest point in A, and (x′, y′) be the corre-

sponding interest point in B, in the sense that both points

are the projection of the same physical 3D point. Then the

log-chromaticity displacement is defined as χχχ′

B
(x′, y′) −

χχχ′

A
(x, y) = sssB(x, y) − sssA(x′, y′) + 1

TB
eeeB − 1

TA
eeeA. Since

the surface reflectance at two corresponding points is the

same, Sλ(x, y) = Sλ(x′, y′), hence sssB(x, y) = sssA(x′, y′).
Since the same camera is used for A and B: eeeB = eeeA. Con-



sequently, the log-chromaticity displacement simplifies into:

∆∆∆ := χχχ′

B(x′, y′) −χχχ′

A(x, y) =

(
1

TB

−
1

TA

)
eee. (4)

which is collinear with eee if TA 6= TB .

2.2. Estimating eee

The 2D-invariant χ̃χχ′ is the projection of the log-chromaticityχχχ′

onto a line spanned by eee⊥. Hence, an estimation of any vector

collinear with eee is sufficient. The proposed process is to:

1. Compute the log-chromaticities χχχ′

A
and χχχ′

B
;

2. Match interest points between both images;

3. Estimate ∆∆∆ = χχχ′

B
(x′, y′) − χχχ′

A
(x, y) for each correspon-

dence (x, y) − (x′, y′) (a bilinear interpolation of the RGB

channels is used to compute the log-chromaticities);

4. Estimate the orientation of eee in a robust way (to get rid

of spurious measurements): keep only correspondences

such that the norm |∆∆∆| is above half of the median value

of all |∆∆∆|’s, then estimate the orientation of eee as the mean

value of the 30% of the samples around the maximum in the

histogram of the orientations of the ∆∆∆’s.

In step 2, correspondences are obtained either by SIFT [5]

or by ASIFT [6] in case of large viewpoint changes (both

yield subpixel accuracy), and RANSAC enforces either a ho-

mography constraint or an epipolar constraint [7].

2.3. Invariant chromaticity image

Once the orientation of eee is known, the 2D illumination-

invariant representation χ̃χχ′ can be computed. This easily

yields a 3D illumination-invariant image which is better

suited for visual purposes, the so-called invariant chromatic-

ity image. It is obtained by the method detailed in [2, 3].

3. EXPERIMENTS AND DISCUSSION

The dataset is made of pairs of images taken with a consumer

Canon EOS 350D DSLR camera. Images are initially in Raw

format, and rendered within Canon DPP software using linear

processing (hence the final RGB channels are proportional to

the ρk in eq. (1)) and resized to 1024 × 683 pixels. An expo-

nential γ-correction simply amounts to multiplying χχχ′ by γ,

which does not interfere with the estimation of the direction

of ∆∆∆. However, we find out that the non-linear processing of

DPP (usually used to get images pleasing to the eye) is not a

simple γ-correction, and actually interferes with ∆∆∆.

In Fig. 1, a) and b) depict the two images (non-linearly

rendered for illustration purposes.) Image A is taken under

direct sun illumination; a cast shadow can be seen. Image B

is taken under artificial light. c) shows the 161 ASIFT corre-

spondences. The ∆∆∆ vector is estimated for every correspon-

dence, and superimposed on the luminance, originating from

the interest points, in d) and e). The variations of this vector

are actually limited, and a dominant orientation appears, as

expected from Sec. 1. f) is the histogram of the orientations

of the ∆∆∆’s, showing an extremum around −50o. g) and h)

are the invariant chromaticity images (Sec. 2.3.) Shadows are

barely visible. The direction of the light and the illumination

intensity have actually been factored out. For comparison, i)

is the luminance-normalized image A (i.e. each channel is di-

vided by R + G + B). As noted by Finlayson et al., it shows

that such a representation, invariant only to illumination in-

tensity changes, still contains shadow information.

Fig. 2 shows that the invariant direction eee can actually be

estimated in various situations. In the Ride-On Truck experi-

ment, image A is taken under sun and image B under artificial

light (32 corresp., orientation ≃ −60o); in the Pine Cone ex-

periment, image A is taken under sun and image B under a

cloudy sky (28 corresp., orientation ≃ −62o modulo 180o.)

In the Pine Cone 2 experiment, both images were taken a few

seconds apart, under the same light. The histogram of the δδδ
orientations shows two well separated modes, differing by an

angle of 180o. Hence the invariant direction can still be es-

timated (≃ −55o from 515 corresp.) One can wonder why

an invariant direction still exists, since here the temperature

colour does not vary. It is mainly due to the limited accu-

racy of SIFT keypoint localization. The RGB values of cor-

responding points are actually not exactly the same in both

images since the interest points correspond to slightly differ-

ent physical 3D points. These 3D points are not lit up exactly

in the same way (probably because of diffuse lighting.) How-

ever, they have the same reflectance. Thus, Eq. 4 holds and

the ∆∆∆ vectors are still oriented towards a common direction.

The two leftmost images of Fig. 3 shows that the ∆∆∆ vectors

have actually approximately the same direction. Comparing

the distribution of χχχ′

A
and of χχχ′

B
shows a displacement along a

dominant direction (but in both ways), even if it is less promi-

nent than in the Newspaper experiment, where a frank colour

temperature change occurs. Note that the marginal distribu-

tion of the log-chromaticities over the orthogonal direction eee⊥

is likely sharper than in any other direction. It is exactly the

idea behind [3] where the ”flatness” of a probability distribu-

tion is measured by Shannon’s entropy, and the direction is

obtained by entropy minimization. In [3] the chromaticities

are computed for every pixel (not just interest points.) Our

procedure, relying on two images, is much simpler. A thor-

ough comparison with [3] has yet to be done.

4. APPLICATION TO SHADOW LIGHTENING

Shadows are not present in the invariant chromaticity repre-

sentation. Hence, their edges can be extracted by keeping

the edges in the original image that are not also edges in the

illumination-invariant representation. Mimicking [2, 3], im-

ages are first segmented with Mean-Shift [8] to make edge

retrieval easier (we use the Matlab wrapper1 for EDISON2.)

1http://www.wisdom.weizmann.ac.il/~bagon/
2http://coewww.rutgers.edu/riul/research/code/EDISON/



a) Image 1 b) Image 2 c) SIFT matching
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Fig. 1. Newspaper experiment. The reader is kindly asked to zoom in the pdf file.

This yields a shadow-edge map M(x, y) such that M(x, y) =
0 if there is a shadow edge at (x, y) and 1 otherwise. Then the

following Poisson equation is solved for each log(ρ̃k):

∆ log(ρ̃k)(x, y) = ∇ ·
(
M(x, y)∇ log(ρk)(x, y)

)
(5)

with Neumann conditions (derivatives at the boundary set to

zero). We solve this equation by the simple method in the

Fourier domain from [9]. This method gives each log(ρ̃k), up

to an additive constant. In the same way as [2], we normalize

each channel such that the 1% brightest pixels (which are thus

not in shadow) of log(ρ̃k) have the same intensity as the 1%

brightest pixels of log(ρk).
This method suffers from inherent drawbacks: some ob-

jects that do not correspond to shadows cannot be seen in

the invariant chromaticity images though (such as the greyish

body of the ride-on truck over the grey tiles), edge detection

is a difficult problem, and shadows have not necessarily sharp

edges, even with segmentation. Here, the images were not

deliberately chosen to ease shadow removal. In spite of it, we

succeed in removing or at least lightening shadows (Fig. 4.)

5. RELATION TO PRIOR WORK

Shadow removal is an ill-posed problem addressed by a large

literature. Despite its limitations, Finlayson’s et al. approach

does not necessitate learning as in [10] or [11]. The present

contribution is to derive the illumination-invariant representa-

tion defined in [1] from SIFT correspondences of two nat-

ural images. The seemingly restrictive assumptions of the

model proves to be realistic enough, although more robust

invariant representations exist (see e.g. [12].) The proposed

method is designed to work if the colour temperature of the

light changes between the two views, but we have noted that

it still works without any colour temperature change. The

proposed approach does not need a colour checker chart (un-

like [2]), a complex optimization stage (unlike [3] or [12]), or

a static camera (unlike [13] for flash/no-flash pairs.) Let us

also mention [14] where multi-view patch matching is used

for the colour constancy problem.

Acknowledgements. Thanks are due to Margot and Colin for

the loan of the ride-on truck and of the pine cone.



Fig. 2. From top to bottom: Ride-on Truck, Pine Cone, and Pine Cone 2 experiments: from left to right: image A, image B,

histogram of ∆ orientation among SIFT correspondences, and invariant chromaticity image A (information about illumination

direction, intensity, and colour has actually been removed, and hence also shadows.)
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Fig. 3. Pine Cone 2 experiment. From left to right: displacement ∆∆∆ over images 1 and 2, distribution of χχχ′

A
(in blue) and χχχ′

B

(in red), and comparison with the Newspaper experiment (far right.)

Fig. 4. Application to shadow lightening for image A of Newspaper, Ride-on Truck, and Pine Cone experiments.
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