J. Boissonnat and F. Cazals, Natural neighbor coordinates of points on a surface, Computational Geometry, vol.19, issue.2-3, pp.155-173, 2001.
DOI : 10.1016/S0925-7721(01)00018-9

J. Boissonnat, R. Dyer, and A. Ghosh, The stability of Delaunay triangulations, 2012. submitted to Int, J. Comp. Geom. & Appl

[. Boissonnat and A. Ghosh, Triangulating Smooth Submanifolds with Light Scaffolding, Mathematics in Computer Science, vol.41, issue.3, pp.431-461, 2010.
DOI : 10.1007/s11786-011-0066-5

URL : https://hal.archives-ouvertes.fr/inria-00604004

[. Boissonnat and A. Ghosh, Manifold reconstruction using tangential Delaunay complexes, 2011.
DOI : 10.1145/1810959.1811013

URL : https://hal.archives-ouvertes.fr/inria-00440337

J. Boissonnat, L. J. Guibas, and S. Y. Oudot, Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes, Discrete & Computational Geometry, vol.33, issue.2, pp.37-70, 2009.
DOI : 10.1007/s00454-009-9175-1

URL : https://hal.archives-ouvertes.fr/hal-00488434

J. Boissonnat, C. Wormser, and M. Yvinec, Anisotropic Delaunay Mesh Generation, SIAM Journal on Computing, vol.44, issue.2, 2011.
DOI : 10.1137/140955446

URL : https://hal.archives-ouvertes.fr/inria-00615486

[. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S. Teng, Sliver exudation, Proceedings of the fifteenth annual symposium on Computational geometry , SCG '99, pp.883-904, 2000.
DOI : 10.1145/304893.304894

[. Cheng, T. K. Dey, and E. A. Ramos, Manifold reconstruction from point samples, SODA, pp.1018-1027, 2005.

]. I. Inria-[-cha06 and . Chavel, Riemannian Geometry, A modern introduction, 2006.

]. K. Cla06 and . Clarkson, Building triangulations using epsilon-nets, STOC, 1992.

]. B. Del34 and . Delaunay, Sur la sphère vide, Izv. Akad. Nauk SSSR, vol.7, pp.793-800, 1934.

H. [. Dyer, T. Zhang, and . Möller, Surface sampling and the intrinsic Voronoi diagram, Computer Graphics Forum, vol.32, issue.3, pp.1393-1402, 2008.
DOI : 10.1111/j.1467-8659.2008.01279.x

]. P. Ehr74 and . Ehrlich, Continuity properties of the injectivity radius function, Composito Mathematica, vol.29, pp.151-178, 1974.

N. [. Edelsbrunner and . Shah, Triangulating Topological Spaces, International Journal of Computational Geometry & Applications, vol.07, issue.04, pp.365-378, 1997.
DOI : 10.1142/S0218195997000223

]. H. Fed59, . [. Federer, U. Giesen, and . Wagner, Curvature measures Shape dimension and intrinsic metric from samples of manifolds, Trans. Amer. Math. Soc. Discrete & Comp. Geom, vol.93, issue.32, pp.418-491245, 1959.

]. G. Lei99 and . Leibon, Random Delaunay triangulations, the Thurston-Andreev theorem, and metric uniformization, 1999.

[. Li, Generating well-shaped d-dimensional Delaunay Meshes, Theoretical Computer Science, vol.296, issue.1, pp.145-165, 2003.
DOI : 10.1016/S0304-3975(02)00437-1

D. [. Leibon and . Letscher, Delaunay triangulations and Voronoi diagrams for Riemannian manifolds, Proceedings of the sixteenth annual symposium on Computational geometry , SCG '00, pp.341-349, 2000.
DOI : 10.1145/336154.336221

J. [. Labelle and . Shewchuk, Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation, Proceedings of the nineteenth conference on Computational geometry , SCG '03, pp.191-200, 2003.
DOI : 10.1145/777792.777822

J. R. Munkres, Elementary differential topology, 1968.

J. R. Munkres, Elements of Algebraic Topology, 1984.

P. Niyogi, S. Smale, and S. Weinberger, Finding the Homology of Submanifolds with High Confidence from??Random??Samples, Discrete & Computational Geometry, vol.33, issue.11, pp.419-441, 2008.
DOI : 10.1007/s00454-008-9053-2

]. T. Sak83 and . Sakai, On continuity of injectivity radius function, Mathematical Journal of Okayama University, vol.25, issue.1, pp.91-97, 1983.

H. Whitney, Geometric Integration Theory, 1957.
DOI : 10.1515/9781400877577