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Abstract
In this deliverable, we document the progress of WP2 during the fourth year of the CONNECT project.
Following the last reviews' recommendations, the work is organized into two main streams. One stream
concerns a quantitative extension of the compositional speci�cation theory devised during the previous
two years, while the other integrates the WP2 CONNECTor algebra with the speci�cation theory so as
to support WP3 CONNECTor synthesis. In particular, the assume-guarantee reasoning framework de-
veloped for the compositional speci�cation theory ensures that a CONNECTed system preserves global
safety properties by just checking the local properties of its constituent components. The proposed
quantitative extension of the compositional speci�cation theory allows the modeling of the real-time
performance of networked systems, in addition to enabling the synthesis of CONNECTors that are com-
patible with both the functional behavior and timing constraints of their environments. Finally, in order
to integrate the CONNECTor algebra with the speci�cation theory so as to support WP3 synthesis, we
de�ned a method for the automated synthesis of modular CONNECTors. We prove that the behavior of
such a CONNECTor is equivalent to the behaviour of a monolithic WP3 CONNECTor. All of the work is
evaluated through an application to relevant CONNECT scenarios, e.g., the GMES (Global Monitoring
for Environment and Security) scenario.

Keyword List
Speci�cation theory, quotient, synthesis, assume-guarantee, data, quantitative veri�cation, functional
and non-functional requirements, mediators, compositional connectors, mediation patterns, interface
automata.
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1 Introduction
The CONNECT project aims to develop a revolutionary approach to the seamless networking of digital sys-
tems by synthesizing, on-the-�y, the C ONNECTors via which heterogeneous Networked Systems (NSs)
communicate. The role of Work Package 2 (WP2) is to investigate the foundations and veri�cation meth-
ods for composable CONNECTors, so that support is provided for composition of NSs, whilst enabling
automated learning, reasoning and synthesis.

This document provides an overview of the work undertaken by WP2 in the fourth year of the project.
The work is organized into two streams: (i) a quantitative extension of the compositional speci�cation the-
ory de�ned during the third year [ 12], with an application to a CONNECT case study, and (ii) the integration
of the connector algebra, de�ned during the second year [ 11], with the speci�cation theory and its support
for WP3 synthesis. These two work streams were explicitly mentioned in the reviewers' recommenda-
tions from the last review (see Section 1.3), hence we considered them as a priority for this deliverable.
Furthermore, the �rst work stream addresses the main topics of D2.4, as planned in the C ONNECT DoW,
i.e., “Investigate a quantitative assume-guarantee framework” and “Develop scalable techniques for timed
systems based on approximation and abstraction”.

In this chapter, we introduce the two mentioned work streams. Section 1.1 recalls the role of WP2
within the CONNECT project by highlighting the WP2 tasks and objectives. Then, in Section 1.2, we
describe how the work undertaken during the fourth year �ts the WP2 tasks/objectives. Section 1.3
highlights how this work addresses the last reviewers' recommendations, while Section 1.4 provides an
outline for the remainder of the deliverable.

1.1 The role of work package WP2

We recall that the role of WP2 is to investigate the foundations and veri�cation methods for composable
connectors, so that support is provided for composition of NSs, whilst enabling automated learning, rea-
soning and synthesis. The expected outcomes are formalisms, methods and software tools that can be
used for the speci�cation, design and development of connectors, allowing for both functional and non-
functional properties to be expressed and veri�ed. WP2 thus provides the theoretical underpinning for
the work carried out in the other work packages, in the sense that connectors speci�ed in WP2 can be
instantiated in WP3 (synthesis), WP4 (learning) and WP5 (dependability analysis).

The remit of WP2 is to develop compositional speci�cation and veri�cation techniques to the extent
that they can be successfully applied to the modeling and reasoning of connector behaviours in a compo-
sitional manner. To achieve this goal, WP2 is structured into the four tasks:

• Task 2.1. Capturing functional and non-functional connector behaviours. This task aims to guide
the project by formalizing the notions of connector and component, characterizing the types of inter-
action and identifying a veri�cation approach, capable of capturing non-functional properties.

• Task 2.2. Compositional connector operators. The main thrust here is to formulate a compositional
modeling and reasoning framework for components and connectors.

• Task 2.3. Rephrasing interoperability in terms of connector behaviours. The aim is to formulate
techniques for interoperability checking, in the presence of dynamic behaviours and non-functional
properties.

• Task 2.4. Reasoning toolset. The focus here is on a quantitative veri�cation framework for connec-
tors and components, capable of handling dynamic scenarios and non-functional properties, which
includes algorithms and prototype implementations.

1.2 WP2 progress during the fourth year

Work in the fourth year has focused on completing the remaining objectives of Tasks 2.3 and 2.4, in
addition to addressing the recommendations from the third review. Consequently, we have organized this
work into two main streams.
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One stream of work concerns the integration of the de�ned Compositional Speci�cation Theory [12]
with the devised Assume-Guarantee-based Quantitative Veri�cation Framework [12], and an application of
it to a CONNECT case study. As suggested by the reviewers, to address this issue, we have been working
on (i) an assume-guarantee framework for reasoning compositionally about the safety properties satis�ed
by speci�cations of components; (ii) the formulation of a quantitative extension to the speci�cation theory;
and (iii) the identi�cation of a suitable C ONNECT scenario to demonstrate the overall applicability of our
veri�cation framework to the objectives of C ONNECT. We brie�y remark on each strand below:

• The work of (i) has allowed us to develop sound and complete assume-guarantee rules for inferring
the strongest safety properties satis�ed by a collection of components (modelling e.g., networked
systems and connectors) under the full collection of composition operators on the speci�cation the-
ory. Such compositional techniques are required in order to improve the ef�ciency with which the
behaviour of a connector can be veri�ed, which is of key importance when connectors are to be
synthesised on the �y. Details are provided in Section 2.1.

• From (ii) we have developed a real-time extension of the speci�cation theory [ 12] that allows us
to model the real-time performance of networked systems. From this, we have formulated a tech-
nique based on quotient for synthesising connectors that are not only functionally compatible with
their environment, but that are also responsive to the timing demands of the systems to be made
interoperable. Details are provided in Section 2.2.

• Finally, strand (iii) has allowed us to test the suitability of our framework in meeting the objectives of
CONNECT. We have developed an example based on the GMES scenario, for which we synthesise
connectors in order to allow successful communication between a number of networked systems.
This example has been applied to both the non-quantitative assume-guarantee framework for safety
properties, as well as the real-time extension of the speci�cation theory.

The second stream of work highlights intra- and inter-WP integration. We have clari�ed how the for-
malized Connector Algebra [11] relates to the speci�cation theory (intra-WP2 integration), and we have
demonstrated how this relationship correlates with the mediator patterns and the associated CONNECTor
synthesis approach developed within WP3 [13] (inter-WP2-WP3 integration). In particular, we have con-
nected the speci�cation theory with the connector algebra so as to support WP3 synthesis. To this aim,
we have provided a synthesis algorithm that produces a modular CONNECTor in terms of the primitives of
the algebra and its composition operators. The modular CONNECTor is equivalent to its monolithic version
as produced by the speci�cation theory via quotient. An important aspect of our C ONNECTor decompo-
sition concerns the ability for it to be re�ected in terms of constraints for the mapping-driven synthesis
in WP3. Furthermore, the CONNECTed system, composed by the synthesized modular CONNECTor plus
the considered NSs, satis�es a general goal representing crucial conditions for correct communication
and coordination. These conditions can be considered as the intent of the synthesized CONNECTor or,
equivalently, of the CONNECTed system. Details are provided in Section 2.3.

1.3 Review recommendations

The following list recalls the reviewers' recommendations for the work done within WP2 after the third year
of the project. For each recommendation, the reactions of the WP2 participants are reported.

• ...There seem to be some inconsistencies between the synthesis approaches of WP2 and WP3.
Deliverable D3.3 says that the connectors generated there are more speci�c and more concise than
those of WP2. This needs to be explained better. Also ontology alignment in WP3 looks different
from the one in WP2. This needs to be clari�ed...

We have integrated the speci�cation theory with the connector algebra so as to support WP3 syn-
thesis. In particular, we have provided an algorithm for the automated synthesis of modular CON-
NECTors, each of them expressed as the composition of independent mediators. A modular CON-
NECTor, as synthesized by our method, supports CONNECTor evolution and performs correct medi-
ation.
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To show correctness, we have formally de�ned the semantics of protocols (as well as of mediators
and CONNECTors) by using a revised version of the usual Interface Automata (IA) theory. Then,
we have proved that a modular CONNECTor for two protocols P and R enjoys the same correctness
properties of the monolithic CONNECTor obtained by expressing the synthesis problem as a quotient
problem between P and R, as speci�ed by the WP2 speci�cation theory. Concerning the set of
considered mediation patterns and, hence, CONNECTor modularization, our synthesis method relies
on a revised version of the WP2 CONNECTor algebra. We have revised the original algebra by
adding an iterator operator and by giving its semantics in terms of our revised IA theory.

To show how modular CONNECTors support evolution, we have used a case study in the e-
commerce domain to illustrate that relevant changes can be applied on a modular CONNECTor by
simply acting on its constituent mediators, without entirely re-synthesizing its protocol.

• At the last review, this work package presented the draft of a connector algebra and a compositional
approach based on assume-guarantee reasoning for probabilistic liveness and reward properties.
The reviewers recommended at that review that the relationship between the calculus developed in
WP2 and its application and usefulness to the other work packages be clari�ed and asked speci�-
cally how synthesis is supported by the calculus. Some further comments about the ability to deal
with mismatches were made.

At this review, the work package presented a compositional speci�cation theory for connector behav-
ior and composition which is based on some of the earlier ideas and directions but which essentially
replaces the earlier draft connector algebra. Deliverable D2.3 includes a description of a quotient
operator and its application to synthesis. In addition, the theory includes actions and states that have
data parameters. These elements permit the theory to provide an underlying basis for the mediator
synthesis in WP3, the extended LTS in WP3 and the register automata in WP4. The speci�cation
theory enables a general description of mismatches as constraints, which address comments on the
limited set of mismatch situations that could be dealt with previously.

At the previous review, WP2 reported considerable progress in the area of Quantitative Composi-
tional Veri�cation based on assume-guarantee reasoning, and the reviewers commended this but
commented on the relatively weak proof rules. In this review period, this work stream reported im-
provements and extensions to the learning framework for assume-guarantee reasoning that go some
way towards addressing the reviewers' comments. In addition, work on a new assume-guarantee
framework is reported. The veri�cation performance of this new framework is as yet uncompetitive
in relation to previous work. Furthermore, it is unclear where the contract-based veri�cation which
has been developed in the second year comes into play in that context.

...

In summary, work stream (i) has developed a compositional speci�cation theory that can underpin
synthesis work in the rest of the project and in doing so has clearly addressed recommendations
made in the last review. Work stream (ii) has addressed the reviewers' comments with respect to
proof rules. However, there is very little evidence that relevance to the rest of the project is being
addressed.

The next phase of WP2 has a goal to integrate work streams (i) and (ii) through a quantitative
extension of the speci�cation theory and we would recommend that this be treated as a priority
together with the need to demonstrate application of the Quantitative Compositional Veri�cation to a
problem drawn from the CONNECT case studies.

In an effort to bridge workstreams (i) and (ii), we have formulated an assume-guarantee reasoning
framework for safety properties based on the compositional component speci�cation theory devel-
oped in D2.3. Component speci�cations are expressed as pairs of pre�x-closed sets, an assumption
and a guarantee. We de�ne the notion of satisfaction between components and AG speci�cations,
as well as substitutive re�nement that preserves implementation containment. The re�nement pre-
order is linear-time, to also align with WP4. We also give compositional rules on AG speci�cations
for the operations of parallel composition, conjunction and quotient, and apply the framework to a
case study from the systems domain, where we demonstrate how components can be inferred at
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run-time from their speci�cations and substituted without introducing errors. An extension of the AG
framework with liveness properties (via quiescence) is envisaged.

Additionally, we have developed a quantitative, real-time extension of the component speci�cation
theory in order to integrate workstreams (i) and (ii) and to align with WP5 (latency). The framework
is capable of reasoning about safety and bounded-liveness properties and admits as a re�nement
relation the largest pre-congurence preserving absence of safety and bounded-liveness errors. It
supports the operators of parallel composition, conjunction, disjunction and quotient, which are com-
positional. The framework relies on the notion of time-lock, which corresponds to the stopping of
the global system clock and results in strong algebraic properties. We apply the formalism to a case
study from the systems domain, demonstrating how components can be synthesized from real-time
speci�cations as in WP3, including also at runtime.

Continuing the work on a quantitative, real-time extension of the speci�cation theory, we have for-
mulated a realizable variant which is restricted to systems that are free of time-lock. The formalism
includes the operators of parallel, conjunction, disjunction and quotient, and enjoys strong algebraic
properties, as well as offering strong potential for implementability.

As the �rst step towards obtaining a quantitative, probabilistic and real-time, speci�cation theory,
which fully integrates workstreams (i) and (ii), we formulate the notion of re�nement for a speci�ca-
tion theory based on abstract probabilistic timed automata. These correspond to abstract speci�ca-
tions of components that exhibit both probability as well as real-time behaviour. Re�nement in this
setting is based on modal may/must speci�cations, rather than linear time. We develop the opera-
tors of parallel composition and conjunction and prove their compositionality properties. As future
work, we intend to formulate disjunction and quotient.

1.4 Outline

This deliverable is organized as follows. In Chapter 2, we brie�y discuss the work undertaken by WP2 in
the fourth year of the project, and highlight the signi�cance of the devised formalisms/theories with respect
to their support for WPs 3-5. The work of Year 4 integrates, extends and �nalizes previous WP2 work,
meaning Chapter 2 should be interpreted as a chapter highlighting the contributions of the work package
as a whole. In Chapter 3, we report an overall evaluation of the WP2 results with respect to the objectives
and assessment criteria discussed in Deliverable D6.3 [14], hence re�ning the preliminary evaluation
contained in that deliverable. The key conclusions of our work are stated in Chapter 4. Appendix A
contains peer-reviewed papers related to the discussed work, hence providing more details with respect
to the overview given in Chapter 2. Appendix B brie�y reports the technical details for computing the
? -backpropagation technique discussed in Section 2.2.
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2 Year 4 work
In this chapter, we provide a brief overview of the two work streams undertaken by WP2 in the fourth

year of the project. A detailed description of these works can be found in Appendix A, where the re-
lated CONNECT papers are reported. We recall that the discussed work integrates, extends and �nalizes
the WP2 work undertaken during the previous years of the project, meaning that this chapter highlights
the contributions of WP2 overall. Outlining this chapter, Section 2.1 begins by introducing an assume-
guarantee framework for reasoning about safety properties satis�ed by components modelled using the
speci�cation theory, while Section 2.2 de�nes a real-time quantitative extension of the speci�cation theory.
In Section 2.3, we provide an overall discussion of how we connected the speci�cation theory with the
connector algebra so as to support WP3 synthesis, along with an informal description of the underlying
algorithm used for the automated synthesis of modular CONNECTors.

2.1 Safe assume-guarantee reasoning framework for the composi-
tional speci�cation theory

In this section, we outline the development of a compositional assume-guarantee (AG) reasoning frame-
work for the preservation of safety properties satis�ed by components modelled using the speci�cation
theory reported in Years 2 and 3 of the project [9]. We begin by brie�y recalling the essential concepts
of the speci�cation theory for modelling components, highlight the key features of the assume-guarantee
reasoning framework, and conclude by evaluating our framework against the objectives of CONNECT by
means of a small case-study/example.

In the context of CONNECT, the purpose of developing such an AG reasoning framework is strongly
related to the necessity of ensuring that connected systems satisfy safety properties, e.g., a communica-
tion mismatch will never occur. For complex systems of considerable size, inferring such properties on the
whole state-space is infeasible, due to issues of scalability. Instead, we need a compositional framework
in which properties can be checked on the components of the system, and from which global properties
can be deduced under a collection of sound and complete AG rules.

2.1.1 Primer on the speci�cation theory

Recall from D2.3 [12] that a component model encodes the temporal ordering of interactions between the
component and the environment. Interactions in the speci�cation theory correspond to synchronisation
of input and output actions, with the understanding that outputs are non-blocking. The input/output (I/O)
type of an action is indicated by the interface of the component. We introduced a trace-based formalism
for components, referred to as declarative speci�cations, and an operational representation referred to as
Logic IOLTSs (I/O labelled transition systems). Component models are not required to be input-enabled
(as in the I/O automata due to Lynch and Tuttle [26], and Jonsson [23]), making our formalism conceptually
similar to the interface automata of De Alfaro and Henzinger [17, 18], which place assumptions on the
behaviour of the environment.

To support a full speci�cation theory, we introduced a re�nement preorder corresponding to safe sub-
stitutivity. A declarative speci�cation Q is a re�nement of declarative speci�cation P, written Q v dec P,
iff for any environment E composable with P, if P and E can exist without introducing communication
mismatches (i.e., P and E will never issue an output when the other is unwilling to receive it), then Q and
E must not generate communication mismatches. Naturally, this de�nition of re�nement is the weakest
preorder preserving substitutivity. A similar notion of re�nement can be de�ned on Logic IOLTSs (say
P, Q), which we denote by v op. By giving a semantic preserving mapping J�K� from Logic IOLTSs to
declarative speci�cations respecting P v op Q iff JPK� v dec JQK� , it is suf�cient to consider only declarative
speci�cations, which have more elegant algebraic properties. Henceforth, we will talk only of declarative
speci�cations, and refer to such models as components.

Let P, Q and R be components. The speci�cation theory comes equipped with a range of composi-
tional operators for constructing new components:
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• Parallel composition P jj Q . This operator is used for examining the structural behaviour of P and
Q. Communication mismatches arising between P and Q are explicitly represented in P jj Q .

• Conjunction P ^ Q . The conjunctive operation is the meet operator on the re�nement preorder,
meaning P ^Q v dec P, P ^Q v dec Q, and R v dec P and R v dec Q implies R v dec P ^Q . As a result,
P^Q is a component that does not introduce communication mismatches in any environment safe for
P or Q. Consequently, conjunction supports independent development by combining requirements.

• Quotient R=P. Given R and a sub-component P, if there exists Q such that P jj Q v dec R, then
P jj (R=P) v dec R and Q v dec R=P. Thus, quotient can be thought of as the adjoint of parallel
composition, and has applications to incremental development in the form of component synthesis.

• Disjunction as the dual of conjunction can also be added in a straightforward manner, as can hiding
of actions, which supports abstraction and hierarchical development. In the case of the latter, the
de�nition of the hiding operator depends on the I/O type of the action to be hidden.

For each of these operations, we prove a range of compositionality results, and highlight their algebraic
properties. Besides the formal de�nition of a component, this level of detail is suf�cient to understand
the subsequent sections of this report, although a more detailed exposition is contained in [9]. Before
concluding this section, we brie�y state the de�nition of a component.

De�nition 2.1 A component P is a tuple hAI
P ; A O

P ; TP ; FP i , where A I
P and A O

P are the inputs and outputs
respectively, which make up the interface of P, and TP and FP are sets of traces over (A I

P [A O
P ), referred

to as the observable traces and inconsistent traces respectively, satisfying the following properties:

• TP is pre�x closed

• TP (A I
P ) � � TP i.e., TP is closed under input extensions

• FP (A P ) � � FP i.e., FP is closed under all extensions

• FP � TP i.e., any inconsistent trace is also a permissible trace.

TP contains all observable interactions between the environment and P. As inputs are issued by the
environment, P cannot prevent them from being observed, meaning that TP must be receptive on inputs.
To cater for the unwillingness of P to accept a particular input from the environment, we treat traces with
a non-enabled input as being inconsistent. Once an inconsistency has been encountered, the resultant
behaviour is unspeci�ed, so we allow for chaotic observations, which is why FP is closed under arbitrary
extensions.

2.1.2 Assume-guarantee reasoning framework

Based on the speci�cation theory outlined in the previous section, we devised an assume-guarantee (AG)
framework for reasoning about the safety properties satis�ed by components. For this framework, we
prove a number of sound and complete AG rules that allow one to infer the strongest safety property
satis�ed by the composition of any two components under the operations of the speci�cation theory. The
motivation for such a theory is heavily geared towards combatting issues of complexity and state space
explosion during system development and veri�cation.

The primitive objects of the framework are AG speci�cations (or contracts), which we write as a tuple
hAI ; A O ; R ; Gi, where A I and A O make up the interface of the speci�cation (i.e., speci�es the inputs and
outputs that the speci�cation deals with), and R and G are pre�x closed sets of traces over A I [ A O ,
referred to as the assumption and guarantee respectively. A speci�cation represents a collection of com-
ponents, precisely those components that satisfy the speci�cation, which are said to be implementations.
A component P is an implementation of the speci�cation S = hAI

S ; A O
S ; R S ; GS i , written P j= S, just if

(leaving interfaces aside) any permissible trace of the component that is contained within the assumption
is also contained within the guarantee, and does not allow the component to become inconsistent (i.e.,
R \ TP � G \ FP , where TP corresponds to all of P 's traces, while FP is all of P 's inconsistent traces).
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Given the de�nition of satisfaction, we say that speci�cation S is a re�nement of speci�cation T ,
written S v T , just if the implementations of S are a subset of T 's i.e., fP : P j= Sg � fP : P j= T g.
Equipped with re�nement, we de�ne the compositional operators of the speci�cation theory directly on
AG speci�cations. Below, we explain the intuition behind these operators.

Parallel composition. The parallel composition of two speci�cations is the strongest speci�cation sat-
isfying independent implementability. That is to say:

• For each P, Q: P j= S and Q j= T implies P jj Q j= S jj T .

• For each P, Q: if P j= S and Q j= T implies P jj Q j= X , then S jj T v X .

The actual de�nition of the operator is included in CJK12, as reported in Appendix A, and is based on
the well-known result due to Abadi and Lamport [1, 2]. At a high-level, the composition will only guarantee
what can be guaranteed by both speci�cations, and the guarantee of one speci�cation must not violate
the assumption of the other speci�cation. Based on these properties, we have the following sound and
complete AG rule (leaving interfaces aside):

PARALLEL
P j= S Q j= T S jj T v U

P jj Q j= U
:

Although the rule in [1] (which is conceptually similar to ours) is sound, it is not complete. We obtain
both soundness and completeness in our framework by the assumption that the outputs of the speci�ca-
tions to be composed are disjoint, as an output should be controlled by at most one component. Adopting
this convention allows us to break circularity in the AG rule, because a guarantee cannot be simultane-
ously violated by two components.

Conjunction. As for conjunction on components, we wish conjunction on speci�cations to correspond
to the meet operator, but on v . Consequently, the implementation set of S ^ T is equal to the intersection
of the implementation sets of S and T . Based on this, we can formulate a sound and complete assume-
guarantee rule for conjunction (disregarding issues with interfaces).

CONJUNCTION
P j= S Q j= T S ^ T v U

P ^ Q j = U
:

The de�nition of conjunction has a straightforward assumption that corresponds to the union of the
assumptions of the speci�cations to be composed. The guarantee contains the union of the guaran-
tees, but constrained to just those behaviours that do not violate the assumption/guarantee on the other
speci�cation.

Quotient. To mirror the speci�cation theory on components, we also introduce a quotient operator di-
rectly on speci�cations for decomposing the parallel composition operator. If there exists T such that
S jj T v U , then U=S is de�ned, S jj (U=S) v U and T v U =S. From this, we can formulate a sound and
complete AG rule for quotient:

QUOTIENT
8P � P j= S implies P jj Q j= U

Q j= U=S
:

Although we have not considered it is this report (the technical details being in CJK12, contained in
Appendix A), this rule is only sound and complete when satisfaction of a speci�cation by a component
equates interfaces. This is related to the fact that parallel composition is only monotonic under re�nement
when certain restrictions are imposed on the interfaces of the components to be composed.

However, based on this de�nition of quotient, we can rewrite the AG rule for parallel composition to
make use of the decomposition under quotient. This is particularly useful for system development, as
we will often have the speci�cation of a global system, rather than speci�cations of the systems to be
composed.
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PARALLEL-DECOMPOSE
P j= S Q j= T T v U =S

P jj Q j= U
:

Compared to the rules for parallel composition and conjunction, note that none of the quotient rules
deal with the quotient operator on components. This is not a problem, because when dealing with speci�-
cations and implementations, it does not entirely make sense to talk about the quotient of implementations.
Instead, we should take the quotient of the speci�cations representing the implementations, and then �nd
an implementation satisfying the resulting speci�cation, as after all, if we have a component satisfying the
global speci�cation, then there is no need to decompose it.

In CJK12 (reported in Appendix A), we also provide de�nitions for constructing the most-general com-
ponent that satis�es a speci�cation, and document how to create the characteristic speci�cation for a
component. These transformations are important for moving between models of the AG framework and
models of the compositional speci�cation theory.

2.1.3 Evaluation

We illustrate our AG framework on a simple example concerned with a portion of the GMES (Global
Monitoring for Environment and Security) scenario. For geographical areas prone to �re-risk, it is common
to install battery-powered cameras that can transmit an image of the surrounding area to a central control
centre, where an operator can take appropriate action. This allows �re crews to head directly to the
affected area, which can greatly reduce the spread of �re and its associated destruction.

The system as a whole is composed of a �re detector, system controller and the physical camera
itself. Intuitively, the sensor signals when a �re is detected, and can be reset once the �re has been
acknowledged. The controller, on the other hand, waits for the indication of a �re from the sensor, after
which it instructs the camera to capture an image of the environment, and awaits the resultant photo to be
sent. At this stage, the controller will signal to the sensor that the �re has been acknowledged, and so the
detector may be reset. The camera itself waits for a capture request, after which it will send the photo.

We iteratively derive a design for the connector (corresponding to the system controller) by succes-
sively applying AG rules and constructions. At this stage, we are crafting a speci�cation for the detector
and controller by hand. Later, we will see how the speci�cation can be adapted on-the-�y in order to
handle detectors that expect to be interacted with in different ways. We start by making use of two speci-
�cations for the combined effect of the detector and system controller:

1. Spec1: If the number of capture requests is equal to or one greater than the number of photos taken,
then the number of �re detections must be equal to or one greater than the number of capture
requests sent to the camera.

2. Spec2: If the number of capture requests is equal to or one greater than the number of photos
taken, then a photo must be taken before the detector can be reset, and the detector cannot be
consecutively reset without a photo having been taken in between.

Spec1 and Spec2 can be represented by the AG speci�cations hRSpec; GSpec1i and hRSpec; GSpec2i re-
spectively, where the assumptions and guarantees are depicted in Figure 2.1. For simplicity, we represent
sets of traces by means of �nite automata, and annotate states with an F to indicate that a trace be-
comes inconsistent. The combined effect of Spec1 and Spec2 is given by the conjunctive speci�cation
Spec1̂ Spec2= hRSpec; GSpec1̂ Spec2i , the guarantee of which is presented in Figure 2.2.

We now demonstrate compositional AG reasoning on our speci�cations (references to de�nitions,
lemmas and theorems in the following paragraph refer to CJK12, reproduced in Appendix A). By De�nition
10 we can �nd implementations I (Spec1) and I (Spec2) of Spec1 and Spec2 respectively, which by
Theorem 5 allows us to derive I (Spec1) ^ I (Spec2) j= Spec1̂ Spec2. According to Lemma 4, this means
that I (Spec1) ^ I (Spec2) v imp I (Spec1̂ Spec2). Now by Theorem 3, we know Spec1̂ Spec2v Spec1, so
from Lemma 2 we obtain I (Spec1̂ Spec2) j= Spec1, and from Lemma 4 we derive I (Spec1̂ Spec2) v imp

I (Spec1). By similar reasoning it can be shown that I (Spec1̂ Spec2) v imp I (Spec2), hence by Theorem
2 of [9] we acquire I (Spec1̂ Spec2) v imp I (Spec1) ^ I (Spec2). Mutual re�nement of components in
our framework corresponds to equality of models, so I (Spec1̂ Spec2) = I (Spec1) ^ I (Spec2). Such an
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Figure 2.1: Assumption and guarantees for Spec1 and Spec2
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Figure 2.2: The guarantee for Spec1̂ Spec2

implementation is shown in Figure 2.3. Note how this component is unwilling to capture an image after
encountering two �re signals without a photo being taken. This is because R Spec can issue an error after
such an occurrence, but this is not accepted by GSpec1̂ Spec2. Moreover, this implementation is able to see
an unbounded number of �re indications that it captures an image for, without ever having to reset the
detector.

We now demonstrate how our theory can be used in the context of CONNECT in order to support
on-the-�y synthesis of connectors. By using quotient on the connector formulated in the previous part
by means of conjunction, we now allow the environment to change by insisting that the detector must
be reset before it can signal any new �re s. We do so by making use of a constraint speci�cation
Detect = hRDetect ; GDetect i that requires �re and reset to alternate (shown in Figure 2.4). We wish to
�nd an implementation for the system controller, let it be called Controller, such that Controller is an
implementation of Spec1̂ Spec2subject to the constraints imposed by Detect. This is equivalent to re-
quiring Controller j= ( Spec1^ Spec2)=Detect. The speci�cation (Spec1^ Spec2)=Detect is exhibited in
Figure 2.5, and the most general implementation is obtained from G(Spec1̂ Spec2)=Detect by appending all
non-enabled inputs as inconsistent traces. In contrast to I (Spec1̂ Spec2), the constraints imposed by
Detect on Spec1̂ Spec2means that any candidate implementation for Controller will ensure that there can
be at most one outstanding �re signal that has not been reset.

2.2 Quantitative extension of the compositional speci�cation the-
ory and its application

A key requirement of CONNECT is to model the QoS aspects of networked systems, in addition to the
functional behaviour. In this section, we focus on a quantitative extension of the compositional speci�-
cation theory, which is capable of modelling the real-time performance of components and connectors.
We de�ne a substitutive re�nement preorder that takes into account the timing constraints imposed by
networked systems, and the full collection of compositional operators (as mentioned in Section 2.1.1), in
order to see how the timing constraints of the individual components in�uence the interactive behaviour
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of the system as a whole.

2.2.1 Component model

At the heart of our theory are timed I/O automata, an extension of the timed automata of Alur and Dill [3],
in which actions are partitioned into inputs and outputs, and states are annotated with co-invariants in
addition to invariants. While invariants specify the bounds beyond which time may not progress, co-
invariants specify the bounds beyond which the component will time-out and enter an inconsistent state.
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Thus, invariants specify liveness timing guarantees on the outputs in a particular state, while co-invariants
express liveness timing assumptions on the inputs enabled in a state. Similarly, the guard on an input
transition speci�es a safety timing assumption, while the guard on an output labelled transition speci�es
a safety timing guarantee. Thus, our models allow to capture the AG nature of timed components.

Informally, the parallel composition of two components automatically checks whether the guarantees
provided by one component meet the assumptions required by the other. For instance, the unexpected
arrival of an input at a particular location and time (indicated by a non-enabled transition) leads to a safety
error in the parallel composition. On the other hand, non-arrival of an expected input at a location before
its time-out (speci�ed by the co-invariant) leads to a bounded-liveness error in the parallel composition.

Our formalism differs from the framework due to De Alfaro et al. [19], in that we take as our re�nement
relation a weakest preorder corresponding to substitutivity, rather than timed alternating simulation. More-
over, by equating safety and bounded liveness errors with the single notion of inconsistency, we are able
to avoid the necessity of utilising two transition systems. Our framework generalises that of [19] by sup-
plying compositional de�nitions of conjunction, disjunction and quotient, which are crucial for combining
requirements of networked systems in order to synthesise connectors on-the-�y.

The timed I/O framework due to Larsen et al. [15] also makes use of timed alternating re�nement,
which has lower complexity than our relation, but does not admit the weakest pre-congruence for safe
substitutivity. The framework does, however, include de�nitions for conjunction and quotient. A shortcom-
ing of the framework is that errors must be speci�ed by the user, which means that the compositional
operators and re�nement are error-agnostic.

2.2.2 Semantic model

The semantics of our component models are given in terms of timed I/O transition systems (TIOTSs),
which provide an explicit representation for the timed transitions of the automaton. A con�guration of a
TIOTS is a location and clock-valuation pair, or one of the special chaotic states ? and > . ? is used
to represent inconsistency (i.e., violation of safety and bounded-liveness properties), while > represents
timestop (i.e., a point from which time may not progress).

The TIOTS for a timed component is largely generated in the same way as for timed automata, except
that we must give special consideration to the invariant and co-invariant. Let �! S be the standard tran-
sition system for a timed component (i.e., treating the component as a timed automaton), then the TIOTS
representation �! is the smallest relation such that:

• If (l; t ) a�! S (l0; t0) and:

– t0 satis�es the invariant and co-invariant on l0, then (l; t ) a�! (l0; t0)

– t0 satis�es the invariant, but does not satisfy the co-invariant on l0, then (l; t ) a�! ?

– t0 does not satisfy the invariant on l0, then (l; t ) a�! >

• If (l; t ) d�! S (l; t + d) and:

– t + d satis�es the invariant and co-invariant on l, then (l; t ) d�! (l; t + d)

– there exists 0 < � � d such that � satis�es the invariant, but not the co-invariant on l, then
(l; t ) d�! ?

• If (l; t ) 6a�! S with a an input, then (l; t ) a�! ?

• If (l; t ) 6a�! S with � an output or delay, then (l; t ) ��! > .

The initial state of the TIOTS is (l0; 0) if both the invariant and co-invariant hold in this con�guration,
is > if the invariant does not hold on (l0; 0), and is ? otherwise. Note that every state of the TIOTS has
outgoing transitions for each input, output and delay, and also that the TIOTS is time-additive, meaning
that it satis�es the triangle rule on delays.
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Table 2.1: State representations under composition operators

k > p ?
> > > >
q > p� q ?
? > ? ?

^ > p ?
> > > >
q > p� q q
? > p ?

_ > p ?
> > p ?
q q p� q ?
? ? ? ?

% > p ?
> ? ? ?
q > p� q ?
? > > ?

:
> ?
p p
? >

In many practical applications, including in CONNECT, the presence of timestop (> ) is an undesirable
feature, as we should never halt the progress of time. Any TIOTS for which there is no strategy of the
component allowing it to avoid > is said to be unrealisable. For such TIOTSs, it is inevitable that > will
be reached for some strategy of the environment, and so time will be forced to stop. We develop two
frameworks for timed systems, one where the stopping of time is permitted, and another where time may
not be stopped. The latter builds on the former by using ? and > back propagation techniques. In the
sequel, we consider the �rst framework, until we state otherwise.

2.2.3 Re�nement

Substitutive re�nement of timed components is characterised by a test that checks for preservation of
? -presence under every environment. Formally, Q is a re�nement of P, written Q v P , iff for each
environment R of P1, if ? is reachable in Q jj R , then ? is reachable in P jj R (where jj is de�ned in
Section 2.2.4). It is obvious that such a relation is the weakest preorder corresponding to safe-substitutivity
of components.

In CKW12 (presented in Appendix A), we show that in a game-based interpretation of the speci�cation
theory, re�nement corresponds to strategy containment. Similarly, in a trace-based representation of
timed components, re�nement is characterised by means of trace containment. Both of these frameworks
avoid the need to quantify over all environments. These different representations for timed components
do not directly concern the modelling of networked systems in CONNECT, so we do not describe them in
this summary. Instead, we focus on a simple operational model based on TIOTSs.

2.2.4 Compositional operations

The compositional operators of the speci�cation theory (consisting of parallell jj , conjunction ^ , disjunction
_ and quotient %) are de�ned directly on TIOTSs. Although we have not considered it in CKW12 (see
Appendix A), the operations can be de�ned on the automata representation by using symbolic techniques
for timing constraints.

Given appropriate alphabetisations of TIOTSs P and Q (as for the non-quantitative speci�cation the-
ory), the composition under 
 2 fjj ; ^ ; _ ; %g, written P 
Q , can be de�ned in a straightforward manner, as
prescribed by the following de�nition. Note that for the quotient operator, we require that Q is deterministic,
which can be achieved by a modi�ed subset construction.

De�nition 2.2 For suitable alphabetisations of TIOTSs P and Q, P 
 Q is the TIOTS with set of states
(SP � SQ ) [ SP [ SQ

2, initial state s0
P 
 s0

Q , and transition relation �! , which is the smallest relation
containing �! P and �! Q , and satisfying the following rules (when p 
 q 62 f>; ?g ):

p ��! P p0 q ��! Q q0

p 
 q ��! p0 
 q0

p a�! P p0 a =2 AQ

p 
 q a�! p0 
 q

q a�! Q q0 a =2 AP

p 
 q a�! p 
 q0
,

where p 
 q has the interpretation given in Table 2.1, and (lp; tp) � (lq; tq) = (( lp; lq); tp ] tq) for location-
valuation pairs. Note that the clocks of P and Q must be disjoint, so tp ] tq corresponds to the union of
valuation functions having disjoint domains.

1An environment for P is any timed component having a complementary alphabet to P .
2It is assumed that SP \ SQ = f> ; ?g , where SP and SQ also contain the location-valuation pairs for P and Q.
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The de�nitions of the compositional operations are simpli�ed by our representation of TIOTSs, in that
every con�guration-state has successors for each input, output and timed action (perhaps going to > or
? ), in addition to the encoded behaviour in Table 2.1.

As is well known in the literature, quotient can be de�ned as a derived operator in terms of parallel
composition and mirroring [31, 21, 7], i.e., P%Q = ( P : jj Q ): . The unary mirroring operator : , must �rst
determinise its argument, then switch the > and ? states, as reported in Table 2.1. This is equivalent to
interchanging the invariant and co-invariant in the automaton.

In CKW12, we show that the operators of the speci�cation theory satisfy the desired properties, in that
^ and _ are respectively the meet and join operations on the re�nement preorder, and quotient is the least
re�ned component whose parallel composition with Q is a re�nement of P.

2.2.5 Realisability

Under substitutive re�nement, we have that ? is re�ned by any location-valuation con�guration, which
is in turn re�ned by > . As previously remarked, > signi�es the stopping of time, which is undesirable
for CONNECT, as components must work continually in real-time. In this section, we remark on how our
theory can be extended to handle only realisable components that will not encounter > .

For any TIOTS P, we can extract the most general TIOTS that is realisable, denoted PR , by means of
> -backpropagation. This is achieved by repeatedly equating location-valuation con�gurations with > on
the determinised TIOTS PD according to the following rules: p = > if

• auto- > . p a�! > when a is an input

• semi- > . p d�! > , and d0 � d and p d0

�! a�! p0 when a is an output implies p0 = > .

Note that > -backpropagation treats as > any state from which the component cannot avoid reaching
> when the environment acts as an adversary. Auto-> states must be marked as > , because of the
possibility that the environment will issue an input leading to > . Semi-> states on the other hand, are
states from which time stop will eventually occur if an output cannot be made by the component to a
non-> state before the time stop occurs.

P is said to be realisable just if PR is not the > -TIOTS, meaning that the component is always able
to avoid reaching > . Re�nement of realisable components is de�ned as previously, except that only
realisable environments are considered. Parallel composition and disjunction, which maintain realisability,
also remain as before. For conjunction, quotient and mirroring, the original de�nitions are also used, but
it is necessary to �rst normalise the components to be composed. Normalisation can be thought of as
performing ? -backpropagation, which equates a location-valuation state p with ? just if:

• auto- ? . p a�! ? when a is an output

• semi- ? . p d�! ? , and d0 � d and p d0

�! a�! p0 when a is an input implies p0 = ? .

This means that a state is equivalent to ? , if the component can issue a sequence of outputs leading
to ? , or if after a delay ? is encountered without the possibility of the environment issuing an input to avoid
reaching this state. For a realisable component P, we denote the normalised version by PN .

Equipped with normalisation, we now de�ne conjunction as (PN ^ Q N )R , quotient as (PN %QN )R and
mirroring as (PN ): , providing the resulting component is not the > -TIOTS. Otherwise, the operations are
unde�ned. In the following section, we demonstrate how these compositional operators work in practice.

2.2.6 Evaluation

We use the GMES (Global Monitoring for Environment and Security) and Terrorist Alert scenario as the
basis to evaluate and demonstrate the use of timed quotient in the synthesis of connectors with quantita-
tive constraints. In the GMES scenario, one of the most crucial network services is the video streaming
service between video streaming sources and video streaming consumers. The video streaming sources
can be UAV/UGV cameras, �xed or controlled (e.g. PTZ) cameras for traf�c monitoring or estate/environ-
ment surveillance, or mobile cameras for patrol. The video streaming consumers can be either staff in the
Command and Control Fire Operations Center or �re �ghters at the �re scenes. The video to be streamed
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Figure 2.6: Video streaming services

can be either live or recorded (UAV/UGV or mobile patrol cameras), and encoded in various formats (e.g.
MPEG/H.264).

Due to the unpredictability and volatility of a �re-�ghting situation and its organisation (a typical ex-
ample being on-the-scene reinforcement integration from another country), the GMES scenario calls for
dynamic discovery and integration of maximal video resources available, which in turn requires on-the-�y
synthesis and deployment of connectors to overcome the large heterogeneity in the dynamic context with
lots of improvisations. One of the key responsibilities for video streaming connectors is the conversion and
adaptation between different video formats and protocols, covering what we call the qualitative aspect. In
the case study below, we demonstrate that our timed speci�cation theory can synthesise the quantitative
aspects (of the connectors) as well, i.e. the timing constraints employed in the connectors.

Below we abstract away some irrelevant details of the video streaming connectors and focus on the
timing issues. The video streaming source is modelled as a timed automaton (Video Streaming Source ,
Figure 2.6) that, after being requested to stream video, sends out one frame every two time units. The
video streaming consumer is modelled by a timed automaton (Video Streaming Consumer, Figure 2.6)
that �rst sends the video streaming request to the source and then waits for a signal to start playing the
video. Once the playback has started, the consumer expects that one frame will arrive every two time
units (using co-invariants).

However, due to changeability in �re-�ghting environments, the communication media between video
streaming sources and consumers can vary greatly in QoS and reliability parameters. For instance, the
communication media can be Wi�, cellular, satellite or wired networks or any hybrid combination of them.
The QoS and reliability parameters of such media can have large variations, which can impact greatly
on the quality and reliability of the streaming service. In order to bridge the variations, and guarantee
the quality of streaming service no matter what communication media is used, the streaming connectors
need to dynamically synthesise their timing constraints/parameters based on the actual QoS parameters
collected from the communication media in use.

In this case study, we use a speci�c model with a �xed set of parameters for the communication
media. However, both the model and parameters can be dynamically changed since the synthesis of
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Figure 2.7: Speci�cation of the services

timing-constraints can be done on-the-�y using arbitrary models and parameter sets.
The communication media is modelled using two timed automata, the combined effect of which we

refer to as Communication Media(Figure 2.6). The factoring of Communication Mediainto two automata
is solely for the purpose of simplifying the presentation. The left automaton models the fact that our
communication media transmits through different phases of reliability in a periodic manner. We �x a
period to have four time slots (u + r = 4 ) and each time slot to have ten time units (z = 10). For some
time slots, the communication media is in the reliable mode V , while for others it is in the unreliable mode
U. The users need only supply the ratio of reliable vs unreliable (i.e. u=r), which is 1=3 for our case.
Given a speci�c slot, its reliability or not (modelled as variable b) is chosen non-deterministically by the
automaton. The right automaton, on the other hand, models the fact that, when a frame has been placed
on the communication media, the outcome will be given at a time-point non-deterministically selected
within one time unit. The outcome can be either frame loss or frame recv depending on the mode of the
communication media. The model of the communication media is the product of the two automata.

The overall speci�cation of the streaming service is given by Specification (Figure 2.7), which is
also factored into two automata, and captures the facts that: 1) the occurrence of actions needs to be
ordered, e.g. send frame after req video and frame loss / frame recv after input; and 2) the number of
frames received shall not exceed the number of frames sent. Note that there will need to be two buffers
in the system, one on the source side buf and the other on the consumer side bf .

If the communication media is put in parallel directly with the video streaming source and consumer,
then the system will not work very well as a whole. For instance, if the current frame buffering on the
consumer side is empty and the communication media is in unreliable mode, then there will be no frame
for the next playback. A possible strategy to work around this problem is to let the connector inform the
consumer to start play only after a proper delay, which is calculated based on the QoS parameters and
current mode of the communication media, so that the consumer side can buffer a number of frames large
enough to tide the consumer over during future unreliability of the communication media. The expected
future behaviour of the communication media is captured in the values like u and r .

In total, our case study consists of six timed automata utilising four clock variables, four integer vari-
ables and one boolean variable. We now give the detailed steps to calculate the quotient:

Specification % (Video Streaming Source k Video Streaming Consumerk Communication Media).

Our calculation is based on the equation P%Q = ( P : k Q): , so we �rst construct the product
Specification : k (Video Streaming Source k Video Streaming Consumer k Communication Media)
(as depicted in Figure 2.8). To obtain the timed quotient automaton, further mirroring is performed on
the product by �rst computing the ? -backpropagation, after which the inputs and outputs, as well as
invariants and co-invariants, must be exchanged. Note that > -backpropagation is not needed here as
the product automaton constructed is automatically realisable. The technical details for computing the
? -backpropagation, along with the actual derivation, are included in Appendix B.
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Although the procedure for performing ? -backpropagation has been applied manually in this example,
it should be straightforward to see that it can be automated without much effort. The timing constraints
synthesised are obviously subtle and highly non-trivial, which demonstrates the effectiveness of our quo-
tienting technique for synthesising a connector in the GMES video streaming scenario, and its general
applicability to networked systems with complex timing constraints.

2.3 Connecting the speci�cation theory with the C ONNECTor alge-
bra to support WP3 synthesis

In this section, we give an informal overview of a method for the automated synthesis of modular CON-
NECTors. A detailed description of the method can be found in IT12 as reported in Appendix A. A modular
CONNECTor is represented as a suitable composition of independent mediators. Each mediator can be
seen as a basic (sub-)CONNECTor that realizes a speci�c mediation pattern, which corresponds to the
solution of a recurring protocol mismatch. As mentioned in Section 1.3, our method for the automated
synthesis of modular CONNECTors has been conceived to address two fundamental questions raised in
the last reviews' recommendations:

Q1 - “how does the CONNECTor algebra relate to the compositional speci�cation theory devised within
WP2?”;

Q2 - “how do the above WP2 work streams integrate with WP3 work on automated CONNECTor syn-
thesis?”.

Figure 2.9: Overview of the intra-WP2 and inter-WP2-WP3 integration

As pictorially sketched in Figure 2.9, our method for the automated synthesis of modular CONNECTors
relies on some fundamental pieces of work developed within both WP2 and WP3, and establishes some
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relationships among them (see the thicker dashed arrows within the circle). In particular, each mediator
synthesized as a basic constituent of a modular CONNECTor is an instance of a speci�c mediation pattern
(e.g., reordering of messages) from the WP3 theory of mediators. To enable automated reasoning on our
CONNECTor decomposition (e.g., to prove that a modular CONNECTor is equivalent to a WP3 monolithic
CONNECTor, or is free of mismatches), we have formally de�ned the semantics of protocols, as well
as of mediators and CONNECTors, by using a revised and restricted version of the WP2 compositional
speci�cation theory. It is restricted in the sense that we only consider deterministic protocols. Under this
assumption, the WP2 compositional speci�cation theory largely coincides with the Interface Automata
(IA) theory [16]. Further revisions account for the notions of hidden actions and semantically related
actions (yet syntactically different), which are needed for our synthesis algorithm, the details of which are
contained in IT12 (see Appendix A).

Based on this revised version of the compositional speci�cation theory, we prove that a modular C ON-
NECTor for two protocols P and R enjoys the same correctness properties of the monolithic CONNECTor
obtained by expressing the synthesis problem as the quotient problem between P and R [12]. Since, as
described in D2.3 [12], CONNECTors synthesized through quotient generalizes WP3 CONNECTors, this
also means that our modular CONNECTors are equivalent to WP3 CONNECTors and, hence, our synthesis
algorithm supports WP3 CONNECTor synthesis. This answers Q2, as phrased above. To answer Q1,
concerning the set of considered mediation patterns, our synthesis method relies on a revised version of
the WP2 CONNECTor algebra. We recall that it is an algebra for reasoning about protocol mismatches
where basic mismatches can be solved by suitably de�ned primitives, while complex mismatches can
be settled by composition operators that build CONNECTors out of simpler ones. We revise the original
algebra by adding an iterator operator and by giving its semantics in terms of the restricted and revised
speci�cation theory. Thus, the structure of a modular C ONNECTor is expressed by means of the primitives
of the revised algebra and its composition operators.

Beyond addressing the Q1 and Q2 reviewers' questions and ensuring correctness of the synthesized
CONNECTors, a further contribution of our method is that it promotes CONNECTor evolution, hence easing
the synthesis and maintenance of the CONNECTor's implementation code. Note that the support for CON-
NECTor evolution is another crucial aspect for the synthesis of CONNECTors. In IT12 (see Appendix A),
we use a slightly revised version of a WP3 case study (borrowed from the work described in [13]) to illus-
trate that some changes can be applied on the synthesized modular CONNECTor by simply acting on its
constituent mediators, without entirely re-synthesizing its protocol.

2.3.1 An informal overview on the automated synthesis of modular C ONNECTors

In Figure 2.10, we show the main activities (as rounded-corner rectangles) and input/output artefacts
(as text) respectively performed and manipulated by our method for the automated synthesis of modular
CONNECTors. The numbers denote the order in which the activities are carried out.

Figure 2.10: Overview of the automated synthesis of modular C ONNECTors

We recall that a modular CONNECTor is a composition of independent mediators, each of them solving
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a protocol mismatch. A mediator has an input-output behaviour (not necessarily strictly sequential, e.g.,
for allowing reordering of messages), and it is a “reactive” software entity harmonizing the interaction
between heterogeneous NSs by intercepting output messages from one NS and eventually issuing to
another NS the co-related input messages. Message co-relations can be inferred by taking into account
ontological information.

Synthesis of communication mediators

The �rst activity of our method, “ Synthesis of Communication Mediators”, takes as input a domain ontology
DO, for protocols P and R, and automatically synthesizes the set W of the so called communication
mediators. Communication mediators are responsible for solving communication mismatches. These
mismatches concern the semantics and granularity of protocol actions. For instance, by considering
the domain of purchase order systems, it could be the case that P provides a single operation, e.g.,
StartOrder , to authenticate and create an empty order, whereas R expects to use two different operations,
e.g., Login and CreateOrder , one for the authentication and one for the creation of the empty order. As
depicted in the �gure, to solve these kind of mismatches it is necessary to assume and use ontology
knowledge (DO) in order to align the two protocols to the same concepts and language.

Typically, ontologies account for two fundamental relations between concepts: subsumption and ag-
gregation [4]. A concept a is subsumed by a concept b, in a given ontology O, if in every model of O the
set denoted by a is a subset of the set denoted by b. A concept a is an aggregate of concepts b1; : : : ; bn

if the latter are part of the former. It is worth mentioning that our use of the ontology concept is speci�c
to the CONNECT project. Thus, in the following, we will exploit these notions to our purposes. That is,
concepts in DO correspond to NS input/output actions. The two relations between concepts are, then,
used to account for the granularity of the data that de�ne the structure of the messages exchanged by
the respective input/output actions. For instance, by continuing the example introduced above, the input
message (for P) associated to the request of StartOrder is an aggregate of the output messages (for
R) associated to the requests of Login and CreateOrder . This means that the message associated to
StartOrder can be built by merging the messages associated to Login and CreateOrder . Thus, a medi-
ator would take Login and CreateOrder as input in any order from R, and send StartOrder as the merge
of Login and CreateOrder to P (plus possible additional data explicitly speci�ed in DO for StartOrder ).
As introduced above, a revised version of the CONNECTor algebra is used to express the corresponding
communication mediator as follows:

W1 = JT rans(Login; x 1) � T rans(CreateOrder; x 2) � P rod(x3) � Merge([x1; x2; x3]; StartOrder )K;

whose semantics is the interface automaton shown in Figure 2.11. It is obtained by giving semantics
of the algebra primitives and operators through the restricted and revised version of the compositional
speci�cation theory, and by performing minimization with respect to hidden actions.

Figure 2.11: Interface automaton of the W1 communication mediator

Subsumption ontological relationships are handled analogously. For instance, let us consider two new
actions, CloseOrder of R and P laceOrder of P. Furthermore, the message associated to CloseOrder
is subsumed by the message associated to P laceOrder. This means that the set of data constituting
CloseOrder is a subset of those constituting P laceOrder. Thus, in order to build the message associated
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to CloseOrder, a mediator needs to process the data contained in the message associated to P laceOrder
�rst. In other words, the mediator takes P laceOrder as input from P and sends, as co-related message,
CloseOrder as output to R. Note that, internally, this means consuming the extra data in P laceOrder
that do not belong to set of data for CloseOrder. The corresponding communication mediator can be
expressed as follows:

W2 = JSplit (P laceOrder; [CloseOrder; x2]) � Cons(x2)K;

whose semantics is the interface automaton shown in Figure 2.12.

Figure 2.12: Interface automaton of the W2 communication mediator

Alphabet alignment

Once the set of communication mediators is automatically synthesized, the second activity of our method,
“Alphabet Alignment”, starts by taking as input the two protocols, P and R, and the synthesized set,
f Wi g, of communication mediators. By continuing our running example, for the sake of simplicity3, let us
consider a very simple protocol for P as shown in Figure 2.13.

Figure 2.13: Interface automaton of P

Note that the alphabet of P is represented by the set of actions f StartOrder; P laceOrder g. According
to the discussion above, let us consider as alphabet for R the set f Login; CreateOrder; CloseOrder g.
The aim of this activity is to exploit, as protocol wrappers, the synthesized communication mediators,
W1 and W2, in order to “align” the alphabets of P and R, hence solving all the possible communication
mismatches. Roughly speaking, the goal of this activity is to suitably exploit communication mediators in
order to make two heterogeneous protocols “speak” the same language. In particular, when synthesized
out of subsumption (resp., aggregation), a communication mediator is used as a wrapper for output (resp.,
input) actions of a protocol. Thus, we de�ne a derived composition operator called wrapping. By continu-
ing our running example, in the lowermost side of Figure 2.14, we show the interface automaton resulting
from wrapping the interface automaton of P by the one of W1.

Intuitively, as pictorially highlighted in Figure 2.14 by means of dashed arrows, the wrapping “fuses”,
into a single state, those transitions labeled by common actions (see the gray-colored actions in Fig-
ure 2.14) and their respective source and target states. Furthermore, each common action disappears in
the result of the wrapping. In other words, the wrapping allows to achieve the purposes of the alphabet
alignment activity since it allows to translate an action from an alphabet into a certain sequence of actions
from another alphabet.

3By referring to Appendix A, the case study described in the paper IT12 considers a more complex protocol.
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Figure 2.14: Interface automaton of W1 (uppermost and left-hand side), P (uppermost and right-
hand side), and “ P wrapped by W1” (lowermost side)

Going back to our example, in Figure 2.15 we show the interface automaton of P wrapped by W1 and,
in turn, wrapped by W2.

Figure 2.15: Interface automaton of P wrapped by W1 and, in turn, wrapped by W2

Thus, by exploiting the two synthesized communication mediators, W1 and W2, as wrappers for P,
we made the alphabets of P and R the same. That is, at this stage, P and R speak the same language
hence solving any communication mismatch. However, communication mediators are not able to solve all
mismatches such as coordination mismatches. These mismatches deal with the control structure of the
(wrapped) protocols. The last activity of our synthesis method is for solving such mismatches.

Synthesis of coordination mediators

Continuing our running example, to better illustrate the third activity of our method, let us consider a slightly
extended version of both the “wrapped” version of P (hereafter, referred to simply as P) and R, whose IA
are shown in Figure 2.16.

Although the two protocols shown in Figure 2.16 share the same alphabet of actions, their interaction
can still exhibit some mismatches (i.e., coordination mismatches). They are due to (i) messages sent/re-
ceived in a different order (see the sequences made of Conf irmItem and CloseOrder); (ii) third-party
messages (P ayT hirdP arty ); and (iii) extra/missing sends corresponding to redundant messages (possi-
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Figure 2.16: IA for P (left-hand side) and R (right-hand side)

bly also coming from looping/cyclic behavior, e.g., SelectItem and SetItemQuantity ). Thus, in general,
the construction of other mediators that can delegate/receive4, consume, produce, and reorder messages
is required. We call these kinds of mediators coordination mediators.

The synthesis of coordination mediators is carried out by reasoning on the two sets of traces of P and
R, denoted as T r (P) and T r (R), respectively. Note that P and R are pre�x-closed and hence their sets
of traces are �nite. Furthermore, possible loops/cycles are considered k times (where k is a parameter of
our synthesis algorithm). This means that our method produces �nite sets of �nite traces.

For all pairs of traces (tP ; tR ) 2 T r (P) � T r (R), our method tries to synthesize a coordination mediator
that makes the protocols corresponding to tP and tR able to interoperate. If no mediator has been synthe-
sized, then a modular connector for P and R does not exist. Otherwise, a non-empty set of coordination
mediators is produced. Indeed, considering all pairs in T r (P) � T r (R) is not needed. It is suf�cient to
consider only the subset of pairs of semantically related traces. Traces tP and tR are semantically related
if every action that does not belong to their set of common actions is a third-party action, e.g., the action
P ayT hirdP arty of P.

Figure 2.17: (tP ; tR ): a pair of semantically related traces for P and R

Figure 2.17 shows a pair of semantically related traces for P and R. Input (resp., output) actions are
denoted by the question (resp., exclamation) mark. For each pair (tP ; tR ), the method computes the so
called difference pair (t0

P ; t0
R ). Coming back to our example, Figure 2.18 shows the difference pair for the

pair of traces shown in Figure 2.17.
t0
P (resp., t0

R ) is a sub-trace of tP (resp., tR ) representing, in a single sequence, the sequences of
actions in which tP (resp., tR ) differs from tR (resp., tP ). Due to the alphabet alignment, �nding a coordi-
nation mediator for tP and tR means �nding a coordination mediator for t0

P and t0
R . As pictorially shown

4To/from a third-party.
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Figure 2.18: Difference pair for (tP ; tR )

in Figure 2.18 by tagging actions with (i ), (ii ) or (iii ), since tP and tR are semantically related and their
loops/cycles are considered k times, t0

P and t0
R can be different for three reasons only: (i ) they have

unshared actions corresponding to input/output third-party actions; (ii ) they exhibit extra/missing sends
corresponding to redundant messages, possibly also coming from looping/cyclic behavior; and (iii ) they
have complementary shared actions that appear in a different order. By means of the coordination medi-
ators to be synthesized, the �rst ones should be received by a third-party (resp., an NS) and delegated to
the receiving NS (resp., third-party), the second ones should be produced/consumed, and the third ones
should be reordered. Thus, by denoting with � the iterator operator (for details, see IT12 in Appendix A),
the synthesized coordination mediators for our running example, only limited to t0

P and t0
R in Figure 2.18,

are:

M 1 = JT rans(P ayT hirdP arty; P ayT hirdP arty 0) � K;
M 2 = JOrder ([Conf irmItem; CloseOrder ]; (2; 1); [Conf irmItem 0; CloseOrder0]) � K;

M 3 = J(P rod(SelectItem)) � K;
M 4 = J(P rod(SetItemQuantity )) � K;

M 5 = J(Cons(Conf irmItem )) � K.

The modular connector for our entire example is given by the follow-
ing composition of coordination mediators: M = M 1jj : : : jjM 6, where M 6 =
JOrder ([SelectItem; SetItemQuantity ]; (2; 1); [SelectItem0; SetItemQuantity 0]) � K and jj denotes the
IA parallel composition operator (for details, see IT12 in Appendix A); plus the set W = f Wi g of commu-
nication mediator used for the alphabet alignment. As formally shown in the next section, under alphabet
alignment, M is a correct connector meaning that the CONNECTed system is free from communication
and coordination mismatches, deadlocks only when each of P, M , and R deadlock, and satis�es the
constraints imposed by the given domain ontology.

2.3.2 Evaluation: correctness and C ONNECTor evolution

In this section, we evaluate our method for the automated synthesis of modular CONNECTors with respect
to its support to: (i) WP3 CONNECTor synthesis; and (ii) CONNECTor evolution, which represents a crucial
dimension for a highly dynamic scenario such as CONNECT.

As described in [12], the WP2 compositional speci�cation theory can be used to synthesize, via a
quotient operator =, a monolithic connector M such that P jjM jjR re�nes 5 a given goal G, i.e., M =
G=(PjjR). G can be considered as the intent of the CONNECTor to be synthesized or, equivalently, of the

5Under a suitable notion of re�nement whose formal de�nition is given in IT12 (see Appendix A).
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CONNECTed system to be. The formal de�nition of G is out of the scope of this work. For the purposes of
this section, it is suf�cient to say that G is an interface automaton, representing the CONNECTed system
goal, which explicitly models three crucial conditions for correct communication and coordination: (c1)
PjjM jjR is not permitted to generate any inconsistencies; (c2) PjjM jjR is only permitted to deadlock
when all P, M , and R deadlock; and (c3) PjjM jjR must satisfy the constraints imposed by the given
protocol ontology.

As already mentioned above, CONNECTors synthesized through quotient generalizes WP3 CON-
NECTors. Thus, showing that our synthesis method supports the WP3 CONNECTor synthesis means
to show that a modular CONNECTor enjoys the same correctness properties of a monolithic CONNECTor
obtained via quotient, i.e., the c1, c2, and c3 correctness conditions. This, in turn, means showing that a
modular connector M synthesized for protocols P and R is such that c1, c2, and c3 hold, under alphabet
alignment. However, note that c2 and c3 trivially hold by construction. In fact, when composing in parallel
protocols, the only possibility to have “sink” states concerns scenarios in which none of the protocols is
willing to perform any action (c2); and communication mediators ensure alphabet alignment (c3). Thus,
in this section, by considering W as the set of synthesized communication mediators, we focus on stating
that the CONNECTed system made of:

• P wrapped by all mediators in W ;

• M ; and

• R wrapped by all mediators in W ;

is free from inconsistencies (c1). To do this we can exploit our notion of re�nement (see IT12 in
Appendix A) to state the following theorem whose formal proof can be found in the related paper reported
in Appendix A.

Theorem 2.3 ( Correctness under alphabet alignment )
Let M be a modular connector synthesized for the aligned protocols “P wrapped by all mediators in W ”
and “R wrapped by all mediators in W ”, then the following properties hold: (1) the CONNECTed system
made of M and “R wrapped by all mediators in W ” re�nes any legal environment for “ P wrapped by all
mediators in W ”, and (2) the CONNECTed system made of “P wrapped by all mediators in W ” and M
re�nes any legal environment for “ R wrapped by all mediators in W ”.

Concerning the ability, for modular connectors, to evolve in response of possible changes, the most
interesting scenario is related to changes at the level of the domain ontology. In fact, syntactic changes at
the level of the NSs' interface directly correspond to a relabeling of mediator inputs/outputs, and related
concepts in the ontology. We recall that the synthesis of coordination mediators deals with sets of traces.
Thus, changes at the protocol level imply to re-iter the synthesis step on the affected traces only, hence
accordingly changing the corresponding mediators. However, in the worst case, i.e., all the traces of a
protocol share at least one action, the entire synthesis step must be repeated.

As an example of a possible change at the level of the domain ontology, let us go back to our run-
ning example and apply the following modi�cation to the domain ontology: remove the ontological con-
straint for which StartOrder is an aggregate of Login and CreateOrder , and add the two constraints for
which StartOrder is subsumed by both SelectItem and SetItemQuantity . Although simple, this change
highlights the effectiveness of our decomposition with respect to supporting CONNECTor evolution. In
fact, to address the applied change, it is suf�cient to reason compositionally at the level of the algebra-
based description of the modular connector M and related set W of communication mediators, instead
of reasoning in terms of its underlying IA-based monolithic representation. In particular, by just look-
ing at the mediators' interface, one can easily recognize that the communication mediator affected by
the proposed change is W1, while no coordination mediator is affected. Due to the fact that the above
mentioned aggregation constraint has been removed from the domain ontology, W1 is removed as well.
In place of it, two communication mediators, W1:1 = J(Split (SelectItem; [StartOrder; z ]) � Cons(z)) � K
and W1:2 = J(Split (SetItemQuantity; [StartOrder; k ]) � Cons(k)) � K, are synthesized due to the ad-
dition in the ontology of the two above considered subsumption constraints. Furthermore, we recall
that the interface automaton of P has been modi�ed in order to align its alphabet to the one of R.
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To re�ect the change on the performed alphabet alignment, a trace in T r (R) that contains SelectItem
and/or SetItemQuantity is modi�ed by considering the following substitution: f StartOrder=SelectItem;
StartOrder=SetItemQuantity g. Analogously, a trace in T r (P) that contains either the sequence
hSelectItem SetItemQuantity i or hSetItemQuantity SelectItem i is modi�ed by replacing any of these
sequences with StartOrder . According to the new alphabet alignment, in place of both M 3 and M 4

the coordination mediator J(P rod(StartOrder )) � Kis synthesized. Note that, in the monolithic connector,
SelectItem and SetItemQuantity would always appear one after the other and modifying the connector
according to the applied change would mean to solve again the entire quotient problem.
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3 Evaluation of WP2 results
In this chapter, we report an overall evaluation of the WP2 results with respect to the objectives

and assessment criteria discussed in Deliverable D6.3 [14], hence re�ning the preliminary evaluation
contained in that deliverable. We recall that the objective of WP2 is to provide a comprehensive theory
to enable composition and automated synthesis of CONNECTors in order to automatically learn and
reason about CONNECTor behaviours via a quantitative assume-guarantee reasoning paradigm. The
expected outcomes are theories, formalisms, and methods that can be used for the speci�cation, design,
development, and automated synthesis of CONNECTors, allowing for both functional and non-functional
properties to be expressed and veri�ed. Throughout the duration of the project, we have developed
quantitative assume-guarantee reasoning techniques able to express and manage both functional and
non-functional properties of CONNECTors. We have also developed compositional techniques for enabling
automated synthesis of CONNECTors whose modularity supports dynamic evolution. All of the achieved
results have been published in leading international conferences. The success of this work package will
be evaluated on the �nal speci�cation theory formalism, along with the de�ned method for the automated
synthesis of modular CONNECTors. There are two criteria for the evaluation.

Objective 1: Innovative formalism

• Assessment criterion: since there are many formalisms in the literature that address system mod-
elling and synthesis, we will assess our formalisms/methods on their signi�cance, in the sense of
advancing the state of the art, and the range of functionality of the operators that are supported. This
can be judged by high quality publications, e.g., in leading international conferences and journals.

• Methodology: the evaluation of our formalisms/methods will be based on assessment against other
state of the art formulations, in addition to our related publication acceptance at leading venues.

• Assessment: the main contributions of the project are compositional quantitative assume-guarantee
reasoning and a compositional speci�cation theory for components. Our results were published
in internationally leading conferences, and we have a number of journal papers under submission
or in preparation. Among the leading conferences listed in [10] - overall 25 conferences, which
means more than 7 papers published per year - it is worth mentioning FACS2012, TACAS2010,
TACAS2011, FASE2011, ESEC-FSE2009, ICSE2009, FORMATS2009, FORMATS2010, FOR-
MATS2012, QEST2011, and QEST2012.

We proposed the �rst compositional assume-guarantee framework for probabilistic systems, both for
safety as well as liveness properties (papers accepted for the leading conferences TACAS2010 and
TACAS2011). We formulated and implemented model checking algorithms based on multi-objective
model checking, demonstrating encouraging performance. We also extended the compositional
framework with automated assumption learning for a subset of rules (reported in QEST2010 and
FASE2011).

Our speci�cation theory addresses a number of shortcomings of interface automata and supports a
broader range of operators than previously achieved. In particular, we propose the �rst quotient for
non-deterministic interface automata, the �rst de�nition of conjunction on this model type, and the
weakest preorder preserving substitutivity. Furthermore, the developed real-time extension of the
speci�cation theory allows the modelling of the real-time performance of networked systems. From
this, as a further advance on the state of the art, we have formulated a technique based on quotient
for synthesising connectors that are not only functionally compatible with their environment, but that
are also responsive to the timing demands of the systems to be made interoperable. The �rst paper
about the speci�cation theory was accepted to ESOP2012, a leading symposium on programming,
followed by the timed extension (FORMATS2012) and the assume-guarantee reasoning framework
(FACS2012).

The de�ned method for the automated synthesis of modular C ONNECTors represents a signi�cant
progress with respect to state of the art methods, where the output of the synthesis process results
in a monolithic connector that prevents evolution, and makes synthesis and maintenance of the
connector code a dif�cult task. The signi�cance of our method has been con�rmed by acceptance
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of a related publication at ICSE2013, a leading conference with interest in system modelling and
reasoning.

It is worth mentioning that a focused amount of attention has been given to component-based spec-
i�cation theories recently, by numerous authors, justifying that our work has tangible bene�ts, both
in terms of its practical applicability, and technical contribution (cf [5, 6]). Other work has focused on
components with different semantics, such as those based on modalities [20, 28].

Objective 2: Introducing the theoretical underpinning for emergent connectors

• Assessment criterion: WP2 intends to provide the theoretical underpinning for the work carried out
in the other work packages, in the sense that connectors speci�ed in WP2 can be instantiated
in WP3 (synthesis), WP4 (learning) and WP5 (dependability analysis). Thus a key challenge when
developing the speci�cation theory and its related synthesis methods (e.g., quotient-based, for pro-
ducing modular CONNECTors) is to ensure that it is fully integrated and usable by WPs 3, 4 and
5.

• Methodology: we will assess the application of the formalisms/methods to the concrete approaches
developed in WPs 3-5.

• Assessment: we have studied CONNECT-relevant examples where they have been available, for
example, mediator synthesis from WP3. In particular, as described in this deliverable, we have
developed an example based on the GMES scenario, for which we synthesise connectors in order
to allow successful communication between a number of networked systems. This example has
been applied to both the non-quantitative assume-guarantee framework for safety properties, as
well as the real-time extension of the speci�cation theory. We have also developed an extension of
the speci�cation theory in D2.3 [ 12] aimed at the register automata of WP4, but without imposing
restrictions (determinism, canonicity) where this is not necessary. We have applied the quantitative
assume-guarantee veri�cation framework to the dependability analysis in WP5 (see D2.2 [ 11] and
D2.3).

We have demonstrated integration with WP3 in both D2.3 and this deliverable. In particular, in D2.3,
we have shown how quotient can be used for synthesis by showing that a mediator synthesised by
WP3 is the most general mediator, and that the theory supports checking for freedom of errors. As
a further proof of integration, in this deliverable, we have shown how to integrate the speci�cation
theory with the WP2 connector algebra so as to support CONNECTor synthesis in WP3. In particular,
we have provided a method for the automated synthesis of modular CONNECTors that enjoy the
same correctness properties of the monolithic CONNECTor obtained by expressing the synthesis
problem as a quotient problem, as speci�ed by the speci�cation theory and as it is equivalently
produced by the WP3 synthesis. Moreover, to show how modular CONNECTors support evolution,
we applied our method on a WP3 case study in the e-commerce domain borrowed from D3.3 [13].
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4 Conclusion
In this deliverable, we reported the progress of WP2 during the fourth year of the CONNECT project.

The work has been organized into two main streams: (i) a quantitative extension of the compositional
speci�cation theory devised during the previous two years; and (ii) the integration of the WP2 C ONNECTor
algebra with the speci�cation theory so as to support WP3 C ONNECTor synthesis. As main outcomes of
WP2 for the fourth year of the project, these two streams of work have led us to de�ne an AG framework
for safety properties, a quantitative speci�cation theory , and an automated method for the synthesis of
modular CONNECTors. In the following, for each outcome, we report a brief discussion on groundbreaking
research challenges solved and open.

• AG framework for safety properties. We have presented an algebraically elegant framework for
reasoning compositionally about the safety properties satis�ed by speci�cations of components.
Our work is more general than existing attempts in the area [24], as we do not insist on equality
of interfaces under satisfaction, do not require components and guarantees to be input-enabled,
provide the �rst de�nition of conjunction and quotient on contracts for this model type, and present
strong algebraic properties for the operations de�ned directly on contracts.

We are currently looking at a liveness extension of the framework, based on quiescence (in order to
stay within the present setup of �nite traces). To facilitate this, besides assumptions and guarantees
on contracts, we also include a set of liveness traces on which implementing components may not
become quiescent (i.e., they must be able to extend such a trace by an output, without further
stimulation from the environment). This work has also resulted in a quiescence extension of the
compositional speci�cation theory, where re�nement guarantees both substitutivity and progress,
the latter being achieved by requiring that a quiescent trace in a re�ning component must have been
quiescent in the original. Present work involves submission of these two frameworks.

• Quantitative extension of the speci�cation theory. This framework supports the modelling of
real-time components with critical timing constraints. As for the non-quantitative speci�cation theory,
we de�ne the full collection of compositional operators, including quotient for synthesis, and provide
the weakest substitutive re�nement preorder maintaining absence of safety and bounded liveness
errors. Our theory is elegant in comparison to existing approaches, based on our equating of safety
and liveness errors through a single inconsistent state ? . This means that we need only use a single
transition system, rather than two (cf [19]).

Subsequent work has led us to look at the realisable sub class of timed components, which are
not permitted to stop the global system clock. This involves rede�ning the compositional operators,
in order to avoid encountering a timestop state from which time may not progress. In addition to
this, we also plan to look at developing an AG framework for reasoning compositionally about timed
components. This will strengthen the parallels between our non-quantitative theories and this timed
extension, as well as our eventual goal of formulating a speci�cation theory for models exhibiting
both real-time and discrete probabilistic behaviour (work in progress).

The speci�cation theory developed as part of WP2 is based on linear-time re�nement (to align with
automata learning in WP4) and supports operations such as conjunction for independent devel-
opment and quotient for connector synthesis (to align with WP3). In the last reporting period, we
focused on developing assume-guarantee rules for our speci�cation theory as well as a quantitative,
timed extension of the speci�cation theory, which aligns with the monitoring framework (WP5). One
additional advantage of the timed extension is that re�nement can be de�ned in terms of timed trace
containment, a natural extension of the re�nement de�ned in the non-quantitative case. In contrast,
probabilistic re�nement de�ned in terms of traces is known not to be compositional, and is usually
based on simulation relations. As a �rst step, we have formulated a re�nement relation for abstract
probabilistic timed automata based on modal speci�cations, together with parallel and conjunction
(work in progress, not reported here). Future work will include formulation of quotient as well as link-
ing the results to the quantitative, probabilistic assume-guarantee framework developed in earlier
deliverables that supports a parallel operator and a number of compositional reasoning rules.
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• Automated synthesis of modular C ONNECTors. A modular connector is synthesized as a com-
position of independent mediators, each of them corresponding to the solution of a recurring pro-
tocol mismatch. We have proven that our connector decomposition is correct and, by means of
a WP3 case study, we have shown how it promotes connector evolution. An overall advantage
of our approach with respect to the work in the state of the art (see [32, 29, 25, 22, 30, 27, 8]
just to mention a few) is that our connectors have a modular software architecture organized as
a composition of fundamental mediation primitives. This supports connector evolution and au-
tomated generation of the connector's implementation code. In particular, we have recently re-
leased a �rst implementation (http://code.google.com/p/otf-connector/) of both the algebra primi-
tives and the plugging operator. This implementation is based on the use of Enterprise Integra-
tion Patterns (http://www.eaipatterns.com/) and is developed through the Apache Camel framework
(http://camel.apache.org/). Because of the way a modular connector is structured, the automatic
generation of its actual code written in terms of our algebra implementation is viable and can be
achieved with little effort. We have started to show, through its application to the real world case
study presented in IT12 (see Appendix A), that our method supports connector evolution.

As future work, we intend to carry out a rigorous empirical investigation to con�rm the results re-
ported in IT12. Another future research direction concerns the ability to infer the needed ontological
information, out of the interface description of the two protocols, rather than assuming it as given.
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A Published work
In this appendix, we report some CONNECT papers that have been accepted for publication to leading

international conferences during the fourth year of the project. These papers provide details on the work
undertaken by WP2, whose overview has been given in this deliverable. The reported papers have been
attached in the same order as listed below.

CJK12 C. Chilton, B. Jonsson, and M. Kwiatkowska. Assume-Guarantee Reasoning for Safe Component
Behaviours. In C. Pasareanu and G. Salaun, editors, Proc. 9th International Symposium on Formal
Aspects of Component Software (FACS'12), Lecture Notes in Computer Science, vol. 7684, pp.
92-109. Springer-Verlag, 2012.

The relation of this paper to CONNECT is documented in Section 2.1.

CKW12 C. Chilton, M. Kwiatkowska, and X. Wang. Revisiting Timed Speci�cation Theories: A Linear-Time
Perspective. In M. Jurdzinski and D. Nickovic, editors, Proc. 10th International Conference on For-
mal Modelling and Analysis of Timed Systems (FORMATS'12), Lecture Notes in Computer Science,
vol. 7595, pp. 75-90. Springer-Verlag, 2012.

An exposition of this paper is contained in Section 2.2.

IT12 Automatic Synthesis of Modular Connectors via Composition of Protocol Mediation Patterns. In
Proc. of the 35th International Conference on Software Engineering (ICSE 2013). To appear.

It provides details for the work discussed in Section 2.3.
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Assume-Guarantee Reasoning
for Safe Component Behaviours

Chris Chilton 1, Bengt Jonsson2, and Marta Kwiatkowska 1

1 Department of Computer Science, University of Oxford, UK
2 Department of Information Technology, Uppsala University, Sweden

Abstract. We formulate a sound and complete assume-guarantee frame-
work for reasoning compositionally about safety properties of component
behaviours. The speci�cation of a component, which constrains the tem-
poral ordering of input and output interactions with the environment,
is expressed in terms of two pre�x-closed sets of traces: an assumption
and guarantee. The framework supports dynamic reasoning about com-
ponents and speci�cations, and includes rules for parallel composition,
logical conjunction corresponding to independent development, and quo-
tient for incremental synthesis. Practical applicability of the framework
is demonstrated by considering a simple printing example.

Keywords: assume-guarantee, speci�cation theory, components, com-
positionality, parallel, conjunction, quotient.

1 Introduction

Component-based design methodologies enable both design- and run-time as-
sembly of software systems from heterogeneous components, thus facilitating
component reuse, incremental development and independent implementability.
To improve the reliability and predictability of such systems, speci�cation the-
ories have been proposed that permit the mixing of speci�cations and imple-
mentations, and allow for the construction of new components from existing
ones by means of compositional operators [1,2,3]. A speci�cation should make
explicit the assumptions that a component can make about the environment,
and the correspondingguaranteesthat it will provide about its own behaviour.
This allows for the use of compositional assume-guarantee (AG) reasoning, in
order to combat issues of complexity and state space explosion during system
development and veri�cation.

In earlier work [4], we introduced a component-based speci�cation theory, in
which components communicate by synchronisation of I/O actions, with the un-
derstanding that inputs are controlled by the environment, while outputs (which
are non-blocking) are under the control of the component. The component-model
is conceptually similar to the interface automata of de Alfaro and Henzinger [5],
except that our re�nement is based on classical sets of traces, as opposed to alter-
nating simulation, and that we allow explicit speci�cation of inconsistent traces,
which can model underspeci�cation and errors, etc. With both trace-based and

A.1 Assume-Guarantee Reasoning for Safe Component Be-
haviours
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operational representations for components, a distinguishing feature of our the-
ory is the inclusion of conjunction and quotient operators (which generalise those
of [2,6]) for supporting independent and incremental development, respectively.
Logical disjunction and hiding can also be added. The theory enjoys strong al-
gebraic properties with all the operators being compositional under re�nement,
and we prove full abstraction with respect to a simple testing framework.

In [4] and [5], the assumptions and guarantees of components are merged
into one behavioural representation. In many cases, this avoids duplication of
common information, although there are situations in which it is desirable to
manipulate the assumptions and guarantees separately. For instance, we may
want to express a simple guarantee (such as \no failure will occur") without
having to weave it into a complex assumption. Another advantage of separation
is speci�cation reuse, in that the same guarantees (or assumptions) can be used
for several related interfaces, each representing di�erent versions of a component.

Contributions. In this paper, we present a complete speci�cation theory for
reasoning about AG speci�cations of components (as modelled in [4]). Assump-
tions and guarantees are pre�x-closed sets of traces, meaning our framework
facilitates reasoning about safety behaviours, and di�ers from (arguably) more
complex approaches based on modal speci�cations and alternating simulation.
Building upon the theory in [4], we de�ne the operators of parallel, conjunc-
tion and quotient directly on AG speci�cations (the last being the �rst such
de�nition), and prove their compositionality. By treating AG speci�cations as
�rst-class citizens, the theory supports 
exible development and veri�cation of
component-based systems using AG principles. A component can be charac-
terised by its weakest AG speci�cation, and, in the opposite direction, we can
infer the least re�ned component satisfying a given speci�cation. From this, a
notion of re�nement corresponding to implementation containment is de�ned.
In relating implementations with AG speci�cations by means of satisfaction, we
formulate a collection of sound and complete AG reasoning rules for the preser-
vation of safety properties under the operations and re�nement preorder of the
speci�cation theory. These rules are inspired by the Compositionality Principle
of [7,8] for parallel composition, which we generalise to the operations of con-
junction and quotient. The rules allow us to infer properties of compositions
for both AG speci�cations and components, thus enabling designers to deduce
whether it is safe to substitute a component, for example one synthesised at
run-time by means of the quotient operator, with another.

Related Work. Compositional AG reasoning has been extensively studied in
the literature, where traditionally the work was concerned with compositional
reasoning for processes, components and properties expressed in temporal log-
ics [9,10,11]. A variety of rule formats have been proposed, although Maier
demonstrates through a set-theoretic setting in [12] that compositional circular
AG rules for parallel composition (corresponding to intersection) cannot both
be sound and complete. This seems to contradict the work of Namjoshi and Tre-

CONNECT 231167 43/94



94 C. Chilton, B. Jonsson, and M. Kwiatkowska


er [13], although the discrepancy is attributed to the fact that the sound and
complete circular rule presented in [13] is non-compositional.

Compositional reasoning about AG speci�cations in the form of AG pairs,
similar to what we consider in this paper, is discussed in [7] for the generic setting
of state-based processes. The authors formulate a Compositionality Principle for
parallel composition, and observe that this is sound for safety properties. A logi-
cal formulation for speci�cations is then discussed in [8], where intuitionistic and
linear logic approaches are put forward. The main di�erence with our approach
is that we consider an action-based component model and have a richer set of
composition operators, including conjunction and quotient. We also prove com-
pleteness, by relying on the convention that an output is controlled by at most
one component, which can be used to break circularity.

More recent proposals focus on compositional veri�cation for interface theo-
ries [14,15], namely interface and I/O automata, which are closest to our work.
In [14], Emmi et al. extend a learning-based compositional AG method to inter-
face automata. They only consider the much more limited asymmetric rules for
safety properties, which are shown to be both sound and complete. The rules are
supplied for the original subset of operators and relations de�ned in [5], namely
compatibility, parallel composition and re�nement based on alternating simula-
tion. Thus, no consideration is given to conjunction or quotient. Other notable
work concerning compositional reasoning for interface theories is the AG frame-
work de�ned by Larsen et al. in [15] for I/O automata, where assumptions and
guarantees are themselves speci�ed as I/O automata. The authors consider a
parallel composition operator on AG speci�cations that is the weakest speci�-
cation for composed components respecting independent implementability, for
which they present a sound and complete rule. Our work allows a more gen-
eral component model that does not require input-enabledness, and allows for
speci�cations to have non-identical interfaces to their implementations. We go
beyond [15] by de�ning conjunction and quotient operations directly on AG
speci�cations, thus providing a signi�cantly richer basis for AG based reasoning
and development, and we do not require input-enabledness of guarantees.

A compositional speci�cation theory based on modal speci�cations has been
developed in [3], which includes all the operations we consider in this paper,
but for systems without I/O distinction. Larsen et al. consider a cross between
modal speci�cations and interface automata [1], where re�nement is given in
terms of alternating simulation/modal re�nement (which is stronger than our
trace containment), and no operations for conjunction and quotient are given.
Surveying [16], Baueret al. provide a generic construction for obtaining a con-
tract framework based on AG pairs from a component-based speci�cation theory.
The abstract ideas share similarity with our framework, and it is interesting to
note how parallel composition of contracts is de�ned in terms of the conjunction
and quotient operators of the speci�cation theory. Our work di�ers in that we
de�ne both of these operators directly on contracts. A de�nition of conjunction
on contracts is provided in [17], but this is for a simpli�ed contract framework,
as witnessed by the de�nition of parallel composition on contracts.
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Outline. In Section 2 we summarise the compositional speci�cation theory of [4],
which serves as a basis for our AG reasoning framework. Section 3 introduces
the main de�nitions of the AG framework, and presents a number of sound
and complete compositional rules for the operators of the speci�cation theory.
An application of our framework is illustrated in Section 4, while Section 5
concludes our work and suggests possible extensions. Proofs of our results are
made available as the technical report [18].

2 Compositional Speci�cation Theory

In this section, we brie
y survey the essential features of our compositional
speci�cation theory presented in [4]. In that paper, we present two notations for
modelling components: a trace-based formalism and an operational representa-
tion. Here we focus on the trace-based models, since operational models can be
mapped to semantically equivalent trace-based ones.

A component comes equipped with an interface, together with a set of be-
haviours over the interface. The interface is represented by a set of input actions
and a set of output actions, which are necessarily disjoint, while the behaviour
is characterised by sets of traces.

De�nition 1 (Components). A component P is a tuple hAI
P ; A O

P ; TP ; FP i in
which A I

P and A O
P are disjoint sets referred to as inputs and outputs respectively

(the union of which is denoted byA P ), TP � A �
P is a non-empty set of permis-

sible traces, andFP � A �
P is a set of inconsistent traces. The trace sets must

satisfy the constraints:

1. FP � TP

2. If t 2 TP and i 2 A I
P , then ti 2 TP

3. TP is pre�x closed
4. If t 2 FP and t0 2 A �

P , then tt 0 2 FP .

The permissible traces contain all possible interaction sequences between the
component and the environment; they are thus receptive to all inputs, as these
are under the control of the environment. If on some interaction sequence an
error arises in the component, or the environment issues a non-enabled input,
the trace is said to be inconsistent. We adopt the convention that any inconsistent
trace is su�x closed, meaning that, once the component becomes inconsistent,
it behaves similarly to the processCHAOSin CSP.

From hereon letP, Q and R be components with signatureshAI
P ; A O

P ; TP ; FP i ,
hAI

Q ; A O
Q ; TQ ; FQ i and hAI

R ; A O
R ; TR ; FR i respectively.

Notation. Let A , B and C be sets of actions. For a tracet, write t � A for the
projection of t onto A . Now for T � A � , write T � B for f t � B : t 2 Tg, T * B
for f t 2 B � : t � A 2 Tg, T � B for � + ( T * B )( � + A I ), T " B for T(B)(A [ B ) � ,
T " � B for T [ (T " B ), T for A � nT, and pre(T) for the largest pre�x-closed set
contained in T.
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Re�nement. In the speci�cation theory, re�nement corresponds to safe-substitutivity.
This means that Q is a re�nement of P if Q can be used safely in any environ-
ment that is safe for P. An environment is safe for a component if any interaction
between the two cannot be extended by a sequence of output actions under the
control of the component such that the resulting trace is inconsistent. We will
thus need to consider the safe representation of a component, obtained by prop-
agating inconsistencies backwards over outputs.

De�nition 2 (Safe component). Let P be a component. The most general
safe representation forP is a componentE(P) = hAI

P ; A O
P ; TE(P ) ; FE(P ) i , where

TE(P ) = TP [ FE(P ) and FE(P ) = f tt 0 2 A �
P : t 2 TP and 9t002 (A O

P ) � � tt 002 FP g.

We can now give the formal de�nition of re�nement. Intuitively, Q must be
willing to accept any input that P can accept, but it must produce no more
outputs than P, otherwise we could not be certain how the environment would
respond to these additional outputs.

De�nition 3 (Re�nement). For components P and Q, Q is said to be a re-
�nement of P, written Q v imp P, i�:

1. A I
P � A I

Q
2. A O

Q � A O
P

3. TE(Q ) � TE(P ) [ TE(P ) " (A I
Q n A I

P )
4. FE(Q ) � FE(P ) [ TE(P ) " (A I

Q n A I
P ).

The set TE(P ) " (A I
Q nA I

P ) represents the extension ofP 's interface to include
all inputs in A I

Q n A I
P . As these inputs are not ordinarily accepted byP, they

are treated as bad inputs, hence the su�x closure with arbitrary behaviour.

Parallel Composition. The parallel composition of two components is obtained as
the cross-product by synchronising on common actions and interleaving on inde-
pendent actions. To support broadcasting, we make the assumption that inputs
and outputs synchronise to produce outputs. Communication mismatches aris-
ing through non-input enabledness automatically appear as inconsistent traces
in the product, on account of our component formulation. As the outputs of
a component are controlled locally, we assume that the output actions of the
components to be composed are disjoint.

De�nition 4 (Parallel composition). Let P and Q be components such that
A O

P \A O
Q = ; . Then P jj Q is the componenthAI

PjjQ ; A O
PjjQ ; TPjjQ ; FPjjQ i , where:

{ A I
PjjQ = ( A I

P [ A I
Q ) n (A O

P [ A O
Q )

{ A O
PjjQ = A O

P [ A O
Q

{ TPjjQ = [( TP * A PjjQ ) \ (TQ * A PjjQ )] [ FPjjQ

{ FPjjQ = [( TP * A PjjQ ) \ (FQ * A PjjQ )]A �
PjjQ [

[(FP * A PjjQ ) \ (TQ * A PjjQ )]A �
PjjQ .
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Informally, a trace is permissible in P jj Q if its projection onto A P is a
trace of P and its projection onto A Q is a trace of Q. A trace is inconsistent if
it has a pre�x whose projection onto the alphabet of one of the components is
inconsistent and the projection onto the alphabet of the other component is a
permissible trace of that component.

Conjunction. The conjunction of componentsP and Q is the coarsest component
that will work safely in any environment that P or Q can work safely in. It can be
thought of as �nding a common implementation for a number of speci�cations.
Thus, conjunction is essentially the meet operator on the re�nement preorder.
Consequently, the conjunction of two components is only de�ned when the union
of their inputs is disjoint from the union of their outputs.

De�nition 5 (Conjunction). Let P and Q be components such thatA I
P [ A I

Q
and A O

P [ A O
Q are disjoint. Then P ^ Q is the componenthAI

P^Q ; A O
P^Q ; TP^Q ;

FP^Q i , where:

{ A I
P^Q = A I

P [ A I
Q

{ A O
P^Q = A O

P \ A O
Q

{ TP^Q = [( TP [ TP " (A I
Q n A I

P )) \ (TQ [ TQ " (A I
P n A I

Q ))] \ A �
P^Q

{ FP^Q = [( FP [ TP " (A I
Q n A I

P )) \ (FQ [ TQ " (A I
P n A I

Q ))] \ A �
P^Q .

Intuitively, after any trace of P ^ Q , the conjunction must accept any input
o�ered by either P or Q, but can only issue an output if both P and Q are
willing to o�er it. Once P becomes inconsistent, or an input is seen that is not
an input of P, the conjunction behaves likeQ (and vice-versa).

Quotient. In [4], we introduced a quotient operator acting on components. Given
a component R, together with a component P implementing part of R , the
quotient R=P yields the coarsest component for the remaining part ofR to be
implemented. Thus, the quotient satis�es the property: there exists Q such that
P jj Q v imp R i� P jj (R=P) v imp R and Q v imp (R=P). Whether the quotient
exists depends on the extent to whichP is a sub-component ofR .

For the development in this paper, we will not use quotient on components,
and refer to [4]. Instead, we will de�ne a quotient operator that acts on AG spec-
i�cations. Thus, the quotient of two AG speci�cations yields an AG speci�cation
characterising a set of component implementations.

3 Assume-Guarantee Framework for Safety Properties

To support reasoning about components, we introduce the concept of an AG
speci�cation, which consists of two pre�x-closed sets of traces referred to as the
assumptionand guarantee. The assumption speci�es the environment's allowable
interaction sequences, while the guarantee is a constraint on the component's
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behaviour. As assumptions and guarantees are pre�x-closed, our theory ensures
that components preserve (not necessarily regular) safety properties3.

De�nition 6 (AG speci�cation). An AG speci�cation S is a tuple hAI
S ; A O

S ;
R S ; GS i , in which A I

S and A O
S are disjoint sets, referred to as the inputs and

outputs respectively, andR S and GS are pre�x closed subsets of(A I
S [ A O

S ) � ,
referred to as the assumption and guarantee respectively, such thatt 2 R S and
t0 2 (A O

S ) � implies tt 0 2 R S .

Since outputs are under the control of a component, we insist that assump-
tions are closed under output-extensions. On the other hand, we need not insist
that the guarantee is closed under input-extensions, since the assumption can
select inputs under which the guarantee is given.

Given an AG speci�cation S, we want to be able to say whether a component
P satis�es S. Informally, P satis�es S if for any interaction between P and the
environment characterised by a tracet, if t 2 R S , then t 2 GS and t cannot
become inconsistent inP without further stimulation from the environment.
Components can thus be thought of as implementations of AG speci�cations.

Before de�ning satisfaction, we need to introduce a notion of compatibility
between AG speci�cations and components, meaning that they do not disagree
on what are inputs or outputs.

De�nition 7 (Compatibility). Let P be a component, and letS and T be
AG-speci�cations. Then P is compatible with S, written P � S , i� A I

P \ A O
S =

; = A O
P \ A I

S . Similarly, S is compatible with T , written S � T , i� A I
S \ A O

T =
; = A O

S \ A I
T .

We can now give the formal de�nition for satisfaction of an AG speci�cation
by a component.

De�nition 8 (AG satisfaction). A componentP satis�es the AG speci�cation
S, written P j= S, i�:

S1. P � S
S2. A I

S � A I
P

S3. A O
P � A O

S
S4. R S \ TP � G S \ FP .

By output-extension closure of assumptions, condition S4 is equivalent to
checkingR S \ TP � G S \ FE(P ) , which involves the most general safe representa-
tion E(P) of P (see De�nition 2). The following lemma shows that this de�nition
of satisfaction is preserved under the component-based re�nement corresponding
to safe-substitutivity, subject to compatibility.

Lemma 1. Let P and Q be components, and letS be an AG speci�cation. If
P j= S, Q v imp P and Q � S , then Q j= S.

3 Model-checking components against AG speci�cations would force us to restrict the
properties we can encode and check. In this setting, we would naturally restrict to
the regular safety properties, which can be encoded by �nite-state automata.
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3.1 Re�nement

There is a natural hierarchy on AG speci�cations respecting the satisfaction
rule de�ned in De�nition 8. From this we can de�ne a re�nement relation on
AG speci�cations that corresponds to implementation containment. But �rst,
we introduce the shorthand: violations(X ) , f t 2 A �

X : 9t0 2 (A I
X ) � � tt 0 2

R X \ GX gA �
X .

De�nition 9 (AG re�nement). Let S and T be AG speci�cations. S is said
to be a re�nement of T , written S v T , i�:

R1. S � T
R2. A I

T � A I
S

R3. A O
S � A O

T
R4. violations(T ) \ A �

S � violations(S)
R5. R T \ A �

S � R S [ violations(S).

It is our intention that S v T i� the implementations of S are contained
within the implementations of T (subject to compatibility). Conditions R1-R3
are the bare minimum to uphold this principle. For condition R4, any component
having a trace t 2 violations(T ) \ A �

S cannot be an implementation of T , so it
should not be an implementation of S. For this to be the case, the component
must violate the guarantee onS, i.e., t 2 violations(S). Condition R5 deals with
inconsistent traces. If a component has an inconsistent tracet 2 R T \ A �

S , then
this cannot be an implementation of T . Consequently, the component must not
be an implementation of S, so either t must violate the guarantee of S, i.e.,
t 2 violations(S), or t must be in R S , so that the component cannot satisfyS.

Lemma 2. Re�nement respects implementation containment:

S v T () fP : P j= S and P � T g � fP : P j= T g:

In [15], Larsen et al. give a sound and complete characterisation of their
re�nement relation (which corresponds to implementation containment, as for
us) by means of conformance tests. The de�nition assumes equality of interfaces,
so does not need to deal with issues of compatibility or the complexities of both
covariant and contravariant inclusion of inputs and outputs respectively (i.e.,
conditions R1-R3). Thus, their de�nition largely corresponds to condition R4.
Condition R5 is not necessary in that setting, as implementation models are
required to be input-enabled.

Re�nement can be shown to be a preorder, provided that we add the minor
technical condition that compatibility of components is maintained, as the next
lemma shows.

Lemma 3 (Weak transitivity). For AG speci�cations S, T and U, if S v T ,
T v U and S � U , then S v U .

As an aside, component-based re�nementv imp is a preorder because, in
re�ning a component P to a component Q, it is possible to transform some
of P's outputs into inputs of Q, as this preserves safe-substitutivity. However,
this transformation of action types does not make sense with AG speci�cations,
which talk explicitly about the behaviour of the environment.
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3.2 Inferring Components from AG Speci�cations

Given a speci�cation for a component, we require a way for developers to con-
struct an actual component that satis�es the requirements of the speci�cation.
In the following de�nition, we show how to infer the least re�ned component
that satis�es a given speci�cation.

De�nition 10 (Inferred component). Let S be an AG speci�cation. Then the
least re�ned implementation of S is the componentI (S) = hAI

S ; A O
S ; TI (S) ; FI (S) i ,

de�ned only when � 2 TI (S) , where:

{ TI (S) = pre(f t 2 R S \ G S : 8t0 2 (A I
S ) � � tt 0 2 R S [ G S g) [ FI (S)

{ FI (S) = f tit 0 : t 2 R S \ G S , i 2 A I
S and ti 62 RS g [ f t 2 A �

S : � 62 RS g.

The following lemma shows that the obtained component model really is
least re�ned with respect to the re�nement preorder v imp on implementations.

Lemma 4. Let S be an AG speci�cation, and let P be a component. Then:

{ � 62TI (S) implies S is non-implementable;
{ � 2 TI (S) implies I (S) j= S; and
{ P j= S i� P v imp I (S).

3.3 Characteristic AG Speci�cation of a Component

One may be interested in the most general AG speci�cation that satis�es a com-
ponent, which we refer to as the characteristic AG speci�cation of the component.
This can be found by examining the component's safe traces.

De�nition 11 (Characteristic AG speci�cation). The characteristic AG
speci�cation for the component P is an AG speci�cation AG(P) = hAI

P ; A O
P ;

R AG (P ) ; GAG (P ) i , where R AG (P ) = A �
P n FE(P ) and GAG (P ) = TP n FE(P ) .

The largest assumption safe for componentP is the set of all non-inconsistent
traces, while the guarantee is the set of traces ofE(P) that are non-inconsistent.
As the following lemma demonstrates, the characteristic AG speci�cation satis-
�es the desired properties.

Lemma 5. Let P be a component and letS be an AG speci�cation. Then:

{ P j= AG(P); and
{ P j= S i� AG(P) v S .

The �nal point in the previous lemma shows that satisfaction of a speci�-
cation by a component is equivalent to checking whether the characteristic AG
speci�cation of the component is a re�nement of the speci�cation. This means
that implementability of speci�cations built up compositionally follows immedi-
ately from compositionality results on AG speci�cations, as we will see in the
subsequent sections.

We are now in a position to present sound and complete AG rules for inferring
properties of composite systems from the properties of their sub-components.
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3.4 Parallel Composition

The AG rule for parallel composition is based on the well-established theorem
of Abadi and Lamport [7], which has appeared in several forms [19,20,21]. In-
tuitively, the guarantee of any component must not be allowed to violate the
assumptions of the other components. Such reasoning seems circular, but the
circularity can be broken up in our setting as a safety property cannot be simul-
taneously violated by two or more components. This is due to an output being
under the control of at most one component.

Notation. To assist in our de�nition, we introduce the following shorthands:

{ R(SP ; SQ ) , (R SP * A SP jjS Q ) \ (R SQ * A SP jjS Q )
{ G(SP ; SQ ) , (GSP * A SP jjS Q ) \ (GSQ * A SP jjS Q )
{ G+ (SP ; SQ ) , (GSP � A SP jjS Q ) \ (GSQ � A SP jjS Q ).

De�nition 12. Let SP and SQ be AG speci�cations such thatA O
SP

\ A O
SQ

= ; .
If SP and SQ are both implementable, thenSP jj SQ is an AG speci�cation
hAI

SP jjS Q
; A O

SP jjS Q
; R SP jjS Q ; GSP jjS Q i de�ned by:

{ A I
SP jjS Q

= ( A I
SP

[ A I
SQ

) n (A O
SP

[ A O
SQ

)
{ A O

SP jjS Q
= A O

SP
[ A O

SQ

{ R SP jjS Q � A �
SP jjS Q

is the largest pre�x closed set satisfying
R SP jjS Q (A O

SP jjS Q
) � \ G + (SP ; SQ ) � R (SP ; SQ )

{ GSP jjS Q = R SP jjS Q \ G (SP ; SQ ).

If at least one of SP or SQ is non-implementable, thenSP jj SQ = hAI
SP jjS Q

;
A O

SP jjS Q
; A �

SP jjS Q
; ;i

SP jj SQ yields the strongest speci�cation satis�able by the parallel com-
position of any two components that satisfy SP and SQ . The speci�cation only
guarantees what can be assured by bothSP and SQ , thus it is the strongest com-
position. The assumption is the largest collection of environmental behaviours
that cannot violate either of the guaranteesGSP or GSQ , and moreover does not
permit a component implementing one of the speci�cations to violate the other
speci�cation's assumption. Ignoring di�erences in alphabets, this can loosely be
phrased asR SP jjS Q \ G SP � R SQ and R SP jjS Q \ G SQ � R SP , which is akin
to the presentation in [7]. However, as implementations are not required to be
input-enabled, this must be reformulated asR SP jjS Q \G + (SP ; SQ ) � R (SP ; SQ ).

The set G+ (SP ; SQ ) extends G(SP ; SQ ) by a single input on each ofGSP and
GSQ , and also includes� . This has the e�ect of ensuring that, if t 2 G+ (SP ; SQ ) \
R(SP ; SQ ) and ta 62 G+ (SP ; SQ ), then whatever the action type of a, wlog
t � A SP 2 R SP \ GSP or ta � A SP 2 R SP \ GSP . Thus, any implementation
of SP must have suppressed an output at some stage along the traceta � A SP ,
implying the parallel composition of any two implementations of SP and SQ will
suppress an output alongta. Thus, R SP jjS Q contains only traces within GSP jjS Q

and traces not reachable by any pair of implementations ofSP and SQ .
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Subject to suitable constraints on the alphabets of AG speci�cations, it can
be shown that the parallel composition operator on AG speci�cations is composi-
tional under the AG re�nement relation, as the following theorem demonstrates.

Theorem 1. Let SP , S0
P , SQ and S0

Q be AG speci�cations such that A O
SP

\
A O

SQ
= ; , S0

P jj S 0
Q � S P jj SQ , A I

S0
P

\ A O
S0

Q
� A I

SP
\ A O

SQ
, A O

S0
P

\ A I
S0

Q
�

A O
SP

\ A I
SQ

and A I
S0

P
\ A I

S0
Q

\ A I
SP jjS Q

� A I
SP

\ A I
SQ

. If S0
P v S P and S0

Q v S Q ,

then S0
P jj S 0

Q v S P jj SQ .

The condition A O
SP

\A O
SQ

= ; ensures that the parallel composition of the AG
speci�cations is de�ned, while S0

P jj S 0
Q � S P jj SQ meansS0

P jj S 0
Q and SP jj SQ

are comparable under re�nement. The remaining three conditions are standard
for compositionality of parallel composition. From this compositionality result,
it is easy to give a sound and complete AG rule.

Theorem 2. Let P and Q be components, and letSP , SQ and S be AG speci-
�cations such that P jj Q � S , A I

P \ A O
Q � A I

SP
\ A O

SQ
, A O

P \ A I
Q � A O

SP
\ A I

SQ

and A I
P \A I

Q \A I
SP jjS Q

� A I
SP

\A I
SQ

. Then the following AG rule is both sound
and complete:

Parallel
P j= SP Q j= SQ SP jj SQ v S

P jj Q j= S
:

3.5 Conjunction

In this section we de�ne a conjunctive operator on AG speci�cations for combin-
ing independently developed requirements. From this we show that the operator
is both compositional and corresponds to the meet operation on the re�nement
relation. This allows us to formulate a sound and complete AG rule.

The conjunction of AG speci�cations SP and SQ is only de�ned when A I
SP

[
A I

SQ
is disjoint from A O

SP
[A O

SQ
, in which case we saySP and SQ are composable.

The composability constraint is necessary, as otherwise it is not possible to �nd
an interface that can re�ne both SP and SQ .

De�nition 13. Let SP and SQ be AG speci�cations composable for conjunc-
tion. Then SP ^S Q is an AG speci�cation hAI

SP ^S Q
; A O

SP ^S Q
; R SP ^S Q ; GSP ^S Q i

de�ned by:

{ A I
SP ^S Q

= A I
SP

[ A I
SQ

{ A O
SP ^S Q

= A O
SP

\ A O
SQ

{ R SP ^S Q = ( R SP [ R SQ ) \ A �
SP ^S Q

{ GSP ^S Q is the intersection of the following sets:
� R SP ^S Q \ (GSP [ G SQ )
� pre(R SP [ G SP ) " � (A I

SQ
n A I

SP
)

� pre(R SQ [ G SQ ) " � (A I
SP

n A I
SQ

).
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The assumption R SP ^S Q is constrained to be within at least one ofR SP or
R SQ . On the other hand, the guaranteeGSP ^S Q must be within at least one of
GSP or GSQ , and must ensure that, if the assumption for one of the speci�cations
is satis�ed, then the corresponding guarantee cannot have been violated.

The next two theorems show that our de�nition of conjunction corresponds to
the meet operator on the re�nement relation, and is compositional under re�ne-
ment. Consequently, the set of implementations forSP ^ S Q is the intersection
of the implementation sets for SP and SQ .

Theorem 3. Let SP and SQ be AG speci�cations such that SP and SQ are
composable for conjunction. Then:

{ SP ^ S Q v S P

{ SP ^ S Q v S Q

{ SR v S P and SR v S Q implies SR v S P ^ S Q .

Theorem 4. Let SP , SQ , S0
P and S0

Q be AG speci�cations such that S0
P and

S0
Q are composable for conjunction,S0

P � S Q and S0
Q � S P . If S0

P v S P and
S0

Q v S Q , then S0
P ^ S 0

Q v S P ^ S Q .

From these strong algebraic properties, we can formulate an AG rule for
conjunction that is both sound and complete.

Theorem 5. Let P and Q be components composable for conjunction, and let
SP and SQ be AG speci�cations such that P � S Q , Q � S P and P ^ Q � S .
Then the following AG rule is both sound and complete:

Conjunction
P j= SP Q j= SQ SP ^ S Q v S

P ^ Q j = S
:

3.6 Quotient

The AG rule for parallel composition in Theorem 2 makes use of the composition
SP jj SQ . To support incremental development, we need a way of decomposing
the composition to �nd SQ given SP . We can do this using a quotient operator.

De�nition 14. Let SP and SW be AG speci�cations. Then the quotientSW =SP

is an AG speci�cation hAI
SW =SP

; A O
SW =SP

; R SW =SP ; GSW =SP i , de�ned only when
A O

SP
� A O

SW
, where A I

SW =SP
= A I

SW
n A I

SP
, A O

SW =SP
= A O

SW
n AO

SP
and:

{ If SP is implementable, and� 2 R SW implies � 2 R SP , then:
� R SW =SP = [ R SW \ (GSP � A SW )(A O

SW
) � ] � A SW =SP

� GSW =SP = R SW =SP \ (X � A SW =SP ), where X is the largest pre�x closed
set satisfying X (A I

SP
) � \ R SW � pre(GSW [ GSP * A SW )\

pre((R SP * A SW ) [ GSP � A SW ).
{ If SP is implementable and� 2 R SW \ R SP , then R SW =SP = A �

SW =SP
and

GSW =SP = ; .
{ If SP is non-implementable, thenR SW =SP = GSW =SP = ; .
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Although not immediately obvious, the assumption in the previous de�nition
is closed under output-extensions. Before explaining the de�nition, we introduce
the following theorem, which shows that the quotient operator on AG speci�ca-
tions yields the weakest decomposition of the parallel composition.

Theorem 6. Let SP and SW be AG speci�cations. Then there exists an AG
speci�cation SQ such that SP jj SQ v S W i� the following properties hold:

{ The quotient SW =SP is de�ned
{ SP jj (SW =SP ) v S W

{ SQ v S W =SP .

To make sense of the de�nition for quotient (in the di�cult case of SP being
implementable and � 2 R SW implies � 2 R SP ), it is necessary to consider the
�nal two results in Theorem 6. For these, we need to show that: (i) R SW �
R SP jj (SW =SP ) ; and (ii) R SW \ GSW � violations(SP jj (SW =SP )). Clause (i)
amounts to showingR SW \G + (SP ; SW =SP ) � R (SP ; SW =SP ), i.e., the condition
for parallel composition. Thus, the assumptionR SW =SP is the smallest output-
closed set such thatt 2 R SW and t 2 GSP � A SW implies t 2 R SW =SP * A SW .
The cases oft 62 RSP * A SW or t 62 GSW =SP � A SW are handled byGSW =SP .

Considering the guaranteeGSW =SP , it is obvious that it need only be con-
tained within the assumption R SW =SP . Moreover, it is safe to havet 2 GSW =SP �
A SW if t 62 GSP � A SW or t 2 R SP * A S P

A SW ; this is equivalent to requiring
t 2 pre((R SP * A SW ) [ GSP � A SW ). For requirement (ii), if t 2 GSW =SP * A SW ,
then it must be the case that t 62 GSW implies t 62 GSP * A SW . This is equivalent
to requiring t 2 pre(GSW [ GSP * A SW ). Piecing these conditions together yields
a de�nition of quotient that is correct by construction.

Theorem 7. Let SP and SW be AG speci�cations such thatP ranges over com-
ponents having the same interface asSP , and Q is a component having the same
interface as SW =SP . If SW =SP is de�ned (i.e., A O

SP
� A O

SW
), then the following

AG rule is sound and complete:

Quotient
8P � P j= SP implies P jj Q j= SW

Q j= SW =SP
:

The restriction on P and SP having the same interface, andQ and SW =SP

having the same interface, is necessary, because the parallel operator is only
compositional under certain restrictions on the interfaces (cf Theorem 1).

3.7 Decomposing Parallel Composition

The following corollary shows how we can revise the AG rule for parallel compo-
sition so that it makes use of quotient on AG speci�cations when we know the
global speci�cation S. This is useful for system development, as we will often
have the speci�cation of a global system, rather than the speci�cations of the
systems to be composed.
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Corollary 1. Let P and Q be components such thatA I
P \ A I

Q = ; , and let SP ,
SQ and S be AG speci�cations. If A O

SP
\ A O

SQ
= ; , P jj Q � S , A I

P \ A O
Q �

A I
SP

\ A O
SQ

and A O
P \ A I

Q � A O
SP

\ A I
SQ

, then the following rule is both sound
and complete:

Parallel-Decompose
P j= SP Q j= SQ SQ v S =SP

P jj Q j= S
:

This rule, based on Theorem 2, di�ers in having the premiseSQ v S =SP

in place of SP jj SQ v S . This substitution is permitted by the results of
Theorem 6. The condition A I

P \ A I
Q = ; is necessary in order to show that

SP jj SQ v S P jj (S=SP ), given the constraints on parallel compositionality, and
the fact that A I

SP
and A I

S=SP
are always disjoint.

4 A Printing Example

We illustrate our assume-guarantee framework on a simple example of component-
based design for a system concerned with printing a document. The system as
a whole is composed of a job scheduler, a printer controller and the physical
printer itself. Intuitively, the scheduler decides when a print job can start , and
expects to be informed when the job hasf inish ed. The controller, on the other
hand, waits for the start signal from the scheduler, after which it instructs the
printer to print the document, and awaits con�rmation from the printer that the
document hasprinted . At this stage, the controller will signal to the scheduler
that the job has f inish ed. The printer accepts aprint command, after which it
will start to print the document, and will signify when the document is printed .

We iteratively derive a design by successively applying AG rules and con-
structions. We start by making use of two speci�cations for the combined e�ect
of the scheduler and printer controller:

1. Spec1: If the number of jobs sent to print is equal to or one greater than the
number of jobs printed , then the number of job start s must be equal to or
one greater than the number of requests sent toprint .

2. Spec2: If the number of jobs sent to print is equal to or one greater than the
number of jobsprinted , then a job must beprinted before it can bef inished ,
and no two jobs can be consecutivelyf inished without a document being
printed in between.

Spec1and Spec2can be represented by the AG speci�cationshRSpec; GSpec1i
and hRSpec; GSpec2i respectively, where the assumptions and guarantees are de-
picted in Figure 1. For simplicity, we represent sets of traces by means of �nite
automata, and annotate states with an F to indicate that a trace becomes in-
consistent. The combined e�ect of Spec1and Spec2is given by the conjunctive
speci�cation Spec1^ Spec2 = hRSpec; GSpec1̂ Spec2i , the guarantee of which is
presented in Figure 2.
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R Spec

print !

printed ?

print !

start ! start ! start !
f inish ! f inish ! f inish !

print !
error ?

GSpec1

start !

print !
f inish ! f inish !

printed ? printed ?

GSpec2

printed ?

f inish !
start ! start !
print ! print !

printed ?

Fig. 1. Assumption and guarantees for Spec1and Spec2

GSpec1̂ Spec2

start ! print ! start ! print !
start !

print !

print !
start !

print !

f inish ! f inish !

start ! print ! start !

f inish ! f inish ! f inish ! f inish !

printed ?printed ?

printed ?

printed ?

Fig. 2. The guarantee for Spec1^ Spec2

F

start ! print ! start !

start ! print ! start !

f inish ! f inish ! f inish ! f inish !

printed ?printed ?

printed ?

printed ?

printed ?

printed ?

start !
f inish !
print !

printed ?

printed ?

printed ?

Fig. 3. The most general implementation of Spec1^ Spec2
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R Sched

start ?

f inish ?

GSched

start ?

f inish ?

Fig. 4. Speci�cation of a scheduling constraint Sched

R ( Spec1̂ Spec2) =Sched

print !

printed ?

print !
print !
error ?

print !

printed ?

print !
print !
error ?

start ! :: :: :: :: f inish !

f inish ! f inish ! f inish !

f inish !

start !
print !

f inish !

start !
print !

f inish !

start !
print !

start ! start ! start !

start !
print !

f inish !

start !
print !

f inish !

start !
print !

f inish !

G( Spec1̂ Spec2) =Sched

start !

print !

printed ?

f inish !

Fig. 5. Speci�cation for ( Spec1^ Spec2)=Sched

To demonstrate compositional AG reasoning, by De�nition 10 we can �nd
implementations I (Spec1) and I (Spec2) of Spec1and Spec2respectively, which
by Theorem 5 allows us to deriveI (Spec1) ^ I (Spec2) j= Spec1̂ Spec2. Accord-
ing to Lemma 4, this means that I (Spec1) ^ I (Spec2) v imp I (Spec1̂ Spec2).
Now by Theorem 3, we knowSpec1̂ Spec2v Spec1, so from Lemma 2 we obtain
I (Spec1̂ Spec2) j= Spec1, and from Lemma 4 we deriveI (Spec1̂ Spec2) v imp

I (Spec1). By similar reasoning it can be shown that I (Spec1̂ Spec2) v imp

I (Spec2), hence by Theorem 2 of [4] we acquireI (Spec1̂ Spec2) v imp I (Spec1)^
I (Spec2). Mutual re�nement of components in our framework corresponds to
equality of models, soI (Spec1̂ Spec2) = I (Spec1) ^ I (Spec2). Such an imple-
mentation is shown in Figure 3. Note how this component is unwilling to print
after encountering two start requests not separated by a job beingprinted . This
is becauseR Spec can issue anerror after such an occurrence, but this is not ac-
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cepted by GSpec1̂ Spec2. Moreover, this implementation is able to start and print
an unbounded number of jobs without ever having tof inish one of them.

We now propose an alternative derivation based on quotient, by making use
of a constraint speci�cation Sched = hRSched; GSchedi that requires start and
f inish to alternate (shown in Figure 4). We wish to �nd an implementation for
the printer controller, let it be called Controller, such that Controlleris an imple-
mentation of Spec1̂ Spec2subject to the constraints imposed bySched. This
is equivalent to requiring Controllerj= ( Spec1̂ Spec2)=Sched. The speci�cation
(Spec1̂ Spec2)=Schedis exhibited in Figure 5, and the most general implemen-
tation is obtained from G(Spec1̂ Spec2)=Sched by appending all non-enabled inputs
as inconsistent traces. In contrast toI (Spec1̂ Spec2), the constraints imposed
by Schedon Spec1̂ Spec2means that any candidate implementation for Con-
troller will ensure that there can be at most one outstanding job that has not
f inish ed.

5 Conclusion

We have presented a complete speci�cation theory for reasoning about safety
properties of component behaviours with an explicit separation of assumptions
from guarantees. Our theory supports re�nement based on traces, which relates
speci�cations by implementation containment. We de�ne compositional oper-
ations of parallel composition, as well as { for the �rst time in this setting
{ conjunction and quotient, directly on AG speci�cations. We give sound and
complete AG reasoning rules for the three operators, which preserve safety and
enable the reasoning about, e.g., safe substitutivity of components synthesised
at run-time. The theory can be extended with disjunction and hiding, as well
as liveness through the introduction of quiescence. The AG rules can also be
fully automated, as they are based on simple set-theoretic operations and do not
require the learning of assumptions. The re�nement is linear-time, and hence
amenable to automata-theoretic approaches.

Acknowledgments. The authors are supported by EU FP7 project CON-
NECT and ERC Advanced Grant VERIWARE.
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Revisiting Timed Speci�cation Theories:
A Linear-Time Perspective

Chris Chilton, Marta Kwiatkowska, and Xu Wang

Department of Computer Science, University of Oxford, UK

Abstract. We consider the setting of component-based design for real-
time systems with critical timing constraints. Based on our earlier work,
we propose a compositional speci�cation theory for timed automata with
I/O distinction, which supports substitutive re�nement. Our theory pro-
vides the operations of parallel composition for composing components at
run-time, logical conjunction/disjunction for independent development,
and quotient for incremental synthesis. The key novelty of our timed
theory lies in a weakest congruence preserving safety as well as bounded
liveness properties. We show that the congruence can be characterised by
two linear-time semantics, timed-traces and timed-strategies, the latter of
which is derived from a game-based interpretation of timed interaction.

1 Introduction

Component-based design methodologies can be encapsulated in the form of com-
positional speci�cation theories, which allow the mixing of speci�cations and
implementations, admit substitutive re�nement to facilitate reuse, and provide
a rich collection of operators. Several such theories have been introduced in the
literature, but none simultaneously address the following requirements: support
for asynchronous input/output (I/O) communication with non-blocking outputs
and non-input receptiveness; linear-time re�nement preorder, so as to interface
with automata and learning techniques; substitutivity of re�nement, to allow
for component reuse at runtime without introducing errors; and strong algebraic
and compositionality properties, to enable o�ine as well as runtime reasoning.

Previously [1], we developed a linear-time speci�cation theory for reason-
ing about untimed components that interact by synchronisation of I/O actions.
Models can be speci�ed operationally by means of transition systems augmented
by an inconsistency predicate on states, or declaratively using traces. The the-
ory admits non-determinism, a substitutive re�nement preorder based on traces,
and the operations of parallel composition, conjunction and quotient. The re�ne-
ment is strictly weaker than alternating simulation and is actually the weakest
pre-congruence preserving freeness of inconsistent states.

In this paper we target component-based development for real-time systems
with critical timing constraints, such as embedded system components, the mid-
dleware layer and asynchronous hardware. Amongst notable works in the liter-
ature, we surveyed the theory of timed interfaces [2] and the theory of timed

A.2 Revisiting Timed Speci�cation Theories: A Linear-Time Per-
spective
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speci�cations [3]. Though both support I/O distinctions, their re�nement rela-
tions are not linear time: in [2], re�nement (compatibility) is based on timed
games, and in [3] it is a timed version of the alternating simulation originally
de�ned for interface automata [4]. Consequently, it is too strong for determin-
ing when a component can be safely substituted for another. As an example,
consider the transition systemsP and Q in Figure 3: these should be equivalent
in the sense of substitutivity under any environment, and are equivalent in our
formulation (De�nition 5), but they are not so according to timed alternating
simulation.

Contributions. We formulate an elegant timed, asynchronous speci�cation the-
ory based on �nite traces which supports substitutive re�nement, as a timed
extension of the linear-time speci�cation theory of [1]. We allow for both op-
erational descriptions of components, as well as declarative speci�cations based
on traces. Our operational models are a variant of timed automata with I/O
distinction (although we do not insist on input-enabledness, cf [5]), augmented
by two special states: theinconsistent state ? represents safety and bounded-
liveness errors, while thetimestop state > is a novel addition representing either
unrealisable output (if the component is not willing to produce that output) or
unrealisable time-delay (if the delay would violate the invariant on that state).

Timestop models the ability to stop the clock and has been used before
in embedded system and circuit design [6, 7]. It is notationally convenient, ac-
counting for simpler de�nitions and a cleaner formalism. By enhancing the au-
tomata with the notion of co-invariant , we can, for the �rst time, distinguish
the roles of input/output guards and invariant/co-invariants as specifying safety
and bounded-liveness timed assumptions/guarantees. We emphasise that this is
achieved with �nite traces only; note that in the untimed case it would be nec-
essary to extend to in�nite traces to model liveness. In addition to timed-trace
semantics, we presenttimed-strategy semantics, which coincides with the former
but relates our work closer to the timed-game frameworks used by [3] and [2],
and could in future serve as a guide to implementation of the theory. Finally,
the substitutive re�nement of our framework gives rise to the weakest congruence
preserving ? -freeness, which is not the case in the formalism of [3].

Related work. Our work can be seen as an alternative to the timed theories of [2,
3]. Being linear-time in spirit, it is also a generalisation of [8], an untimed theory
inspired by asynchronous circuits, and Dill's trace theory [9]. The speci�cation
theory in [3] also introduces parallel, conjunction and quotient, but uses timed
alternating simulation as re�nement, which does not admit the weakest pre-
congruence. An advantage of [3] is the algorithmic e�ciency of branching-time
simulation checking as well as the implementation reported in [10]. We brie
y
mention other related works, which include timed modal transition systems [11,
12], the timed I/O model [5, 13] and asynchronous circuits and embedded sys-
tems [14, 15]. A more detailed comparison based on the technical details of our
work is included in Section 5. A full version of this paper including an even
greater comparison with related work, in addition to proofs, is available as [16].
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2 Formal Framework

In this section we introduce timed I/O automata, timed I/O transition systems
and a semantic mapping from the former to the latter. Timed I/O automata are
compact representations of timed I/O transition systems. We also present an
operational speci�cation theory based on timed I/O transition systems, which
are endowed with a richer repertoire of semantic machinery than the automata.

2.1 Timed I/O Automata

Clock constraints. Given a setX of real-valued clock variables, aclock constraint
over X , cc : CC(X ), is a boolean combination of atomic constraints of the form
x ./ d and x � y ./ d where x; y 2 X , ./ 2 f� ; <; = ; >; �g , and d 2 N.

A clock valuation over X is a map t that assigns to each clock variablex in
X a real value from R� 0. We say t satis�es cc, written t 2 cc, if cc evaluates to
true under valuation t . t + d denotes the valuation derived fromt by increasing
the assigned value on each clock variable byd 2 R� 0 time units. t [rs 7! 0]
denotes the valuation obtained from t by resetting the clock variables in rs to
0. Sometimes we use 0 for the clock valuation that maps all clock variables to 0.

De�nition 1. A timed I/O automaton (TIOA) is a tuple (C ; I ; O; L; l 0; AT ;
Inv ; coInv), where:

{ C � X is a �nite set of clock variables
{ A ( = I ] O) is a �nite alphabet, consisting of inputs I and outputs O
{ L is a �nite set of locations and l0 2 L is the initial location
{ AT � L � CC(C) � A � 2C � L is a set of action transitions
{ Inv : L ! CC(C) and coInv : L ! CC(C) assign invariants and co-

invariants to states, each of which is a downward-closed clock constraint.

We usel ; l 0; li to range overL and usel
g;a ;rs
����! l 0 as a shorthand for (l ; g; a; rs;

l 0) 2 AT . g : CC(C) is the enabling guard of the transition, a 2 A the action,
and rs the subset of clock variables to be reset.

Our TIOAs are timed automata that distinguish input from output and in-
variant from co-invariant. They are similar to existing variants of timed automata
with input/output distinction, except for the introduction of co-invariants and
non-insistence on input-enabledness. While invariants specify the bounds be-
yond which time may not progress, co-invariants specify the bounds beyond
which the system will time-out and enter error states. It is designed for the as-
sume/guarantee speci�cation of timed components, in order to specify both the
assumptions made by the component on the inputs and the guarantees provided
by the component on the outputs, with respect to timing constraints.

Guards on output transitions expresssafety timing guarantees, while guards
on input transitions express safety timing assumptions. On the other hand, in-
variants (urgency) express liveness timing guaranteeson the outputs at the
locations they decorate, while co-invariants (time-out) expressliveness timing
assumptionson the inputs at those locations.
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Inv: x <= 100
Co:  true

Inv: y<=1
Co:  true

finish?

x:=0

5 <= x <= 8

start! x:=0

y==1
print!
y:=0

finish!
y<=5

Inv: y<=5
Co:  true

Inv: true
Co:  y<=10

A B

1 2

34

start?   y:=0

printed?   y:=0

Scheduler Printer_controller

Fig. 1. Job scheduler and printer controller.

When two components are composed, the parallel composition automatically
checks whether the guarantees provided by one component meet the assumptions
required by the other. For instance, the unexpected arrival of an input at a
particular location and time (indicated by a non-enabled transition) leads to a
safety error in the parallel composition. The non-arrival of an expected input at
a location before its time-out (speci�ed by the co-invariant) leads to a bounded-
liveness error in the parallel composition.

Example. Figure 1 depicts TIOAs representing a job scheduler together with a
printer controller. The invariant at location A of the scheduler forces a bounded-
liveness guarantee on outputs in that location. As time must be allowed to
progress beyondt = 100, the start action must be �red within the range 0 � t �
100. After start has been �red, the clockx is reset to 0 and the scheduler waits
(possibly inde�nitely) for the job to �nish . If the job does �nish, the scheduler is
only willing for this to take place between 5 � t � 8 after the job started (safety
assumption), otherwise an unexpected input error will be thrown.

The controller waits for the job to start , after which it will wait exactly 1
time unit before issuing print (forced by the invariant y � 1 on state 2 and
the guard y = 1). The controller now requires the printer to indicate the job is
printed within 10 time units of being sent to the printer, otherwise a time-out
error on inputs will occur (co-invariant y � 10 in state 3 as liveness assumption).
After the job has �nished printing, the controller must indicate to the scheduler
that the job has �nish ed within 5 time units.

Notation. For a set of input actions I and a set of output actions O, de�ne
tA = I ] O ] R> 0 to be the set of timed actions, tI = I ] R> 0 to be the set of
timed inputs, and tO = O ] R> 0 to be the set of timed outputs. We use symbols
like � , � , etc. to range overtA .

A timed word (ranged over by w; w0; wi etc.) is a �nite mixed sequence of
positive real numbers (R> 0) and visible actions such that no two numbers are
adjacent to one another. For instance, h0:33; a; 1:41; b; c; 3:1415i is a timed word
denoting the observation that action a occurs at 0:33 time units, then another
1:41 time units lapse before the simultaneous occurrence ofb and c, which is
followed by 3:1415 time units of no event occurrence.� denotes the empty word.

Concatenation of timed words w and w0 is obtained by appendingw0 onto
the end of w and coalescing adjacent reals (summing them). Pre�x/extension
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are de�ned as usual by concatenation. We writew � tA 0 for the projection of w
onto timed alphabet tA 0, which is de�ned by removing from w all actions not
inside tA 0 and coalescing adjacent reals.

2.2 Semantics as Timed I/O Transition Systems

The semantics of TIOAs are given as timed I/O transition systems, which are a
special class of in�nite labelled transition systems.

De�nition 2. A timed I/O transition system (TIOTS) is a tuple P = hI ; O; S;
s0; !i , where I and O are the input and output actions respectively, S= ( L �
RC ) ] f? ; >g is a set of states, s0 2 S is the designated initial state, and
!� S � (I ] O ] R> 0) � S is the action and time-labelled transition relation.

The states of the TIOTS for a TIOA capture the con�guration of the automa-
ton, i.e. its location and clock valuation. Therefore, each state of the TIOTS is a
pair drawn from L � RC , which we refer to as the set ofplain states. In addition,
we introduce two special states? and > , which are required for the semantic
mapping of disabled inputs/outputs, invariants and co-invariants. In the rest of
the paper, we usep; p0; pi to range overP = L � RC while s; s0; si range overS.

? is the so-calledinconsistent state, arising through assumption/guarantee
mismatches, i.e. safety and bounded-liveness errors.> is the so-calledtimestop
state, representing the magic moment from which time stops elapsing and no
error can occur. We assume that> re�nes plain states, which in turn re�ne
? . For technical convenience (e.g. ease of de�ning time additivity and trace
semantics), we require that > and ? are a chaotic states, i.e. states having
self-loops for each� 2 tA .

On TIOTSs, a disabled input in a state p is equated to an input transition
from p to ? , while a disabled output/delay in p is equated to an output/delay
from p to > . The intuition here comes from the I/O game perspective. The
component controls output and delay, while the environment controls input. ?
is the losing state for the environment, so an input transition from p to ? is
a transition that the environment tries to avoid at all cost (unless there is no
choice). > is the losing state for the component, so an output/delay transition
from p to > is a transition that the component tries to avoid at any cost. Thus
we can have two semantic-preserving transformations on TIOTSs.

The ? -completion of a TIOTS P, denotedP? , adds ana-labelled transition
from p to ? for every p 2 P (= L � RC ) and a 2 I s.t. a is not enabled at p.1

The > -completion, denoted P> , adds an � -labelled transition from p to > for
every p 2 P and � 2 tO s.t. � is not enabled at p.

Now, the transition relation ! of the TIOTS is derived from the execution
semantics of the TIOA.

De�nition 3. Let P be a TIOA. The execution semantics ofP is a TIOTS
hI ; O; S; s0; !i , where:

1 ? -completion will make a TIOTS input-receptive, i.e. input-enabled in all states.
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6 Chris Chilton, Marta Kwiatkowska, and Xu Wang

{ S = ( L � RC ) ] f? ; >g
{ s0 = > providing 0 =2 Inv (l 0), s0 = ? providing 0 2 Inv (l 0) ^ : coInv(l 0)

and s0 = ( l 0; 0) providing 0 2 Inv (l 0) ^ coInv(l 0),
{ ! is the smallest relation satisfying:

1. If l
g;a ;rs
����! l 0, t 0 = t [rs 7! 0], t 2 Inv (l ) ^ coInv(l ) ^ g, then:

(a) plain action: ( l ; t ) a�! (l 0; t 0) providing t 0 2 Inv (l 0) ^ coInv(l 0)
(b) error action: (l ; t ) a�! ? providing t 0 2 Inv (l 0) ^ : coInv(l 0)
(c) magic action: (l ; t ) a�! > providing t 0 2 : Inv (l 0) and a 2 I .

2. plain delay: (l ; t ) d�! (l ; t + d) if t ; t + d 2 Inv (l ) ^ coInv(l )

3. time-out delay: (l ; t ) d�! ? if t 2 Inv (l ) ^ coInv(l ), t + d =2 coInv(l ) and
9 0 < � � d : t + � 2 Inv (l ) ^ : coInv(l ).

Note that our semantics tries to minimise the use of transitions leading to
> =? states. Thus there are no delay or output transitions leading to> . However,
there areimplicit timestops, which we capture using the concept ofsemi-timestop
(i.e. semi-> ). We say a plain state p is a semi-> i� 1) all output transitions
enabled in p and all of its time-passing successors lead to the> state, and 2)

there exists d 2 R> 0 s.t. p d�! > or d is not enabled in p. Thus a semi-> is a
state in which it is impossible for the component to avoid the timestop without
suitable inputs from the environment.

The introduction of timestop ( > ), which can model the operation of stopping
the system clock, is an unconventional aspect of our semantics. Certain real-world
systems have an inherent ability to stop the clock, e.g. [6, 7], which are related
to embedded systems and circuit design. When the suspension of clocks is not
meaningful, it is necessary to remove timestop in order to leave the so-called
realisable behaviour. Timestop is useful even for timestop free systems, as it can
signi�cantly simplify operations, such as quotient and conjunction.

TIOTS terminology. We say a TIOTS is deterministic i� s ��! s0 ^ s ��! s00

implies s0 = s00, and is time additive providing p d1 + d2����! s0 i� p d1�! s and

s d2�! s0 for somes. In the sequel, we only consider time-additive TIOTSs.
Given a TIOTS P, a timed word can be derived from a �nite execution of

P by extracting the labels in each transition and coalescing adjacent reals. The
timed words derived from such executions are calledtraces of P. We usett ; tt 0; tt i

to range over traces and writes0 tt=) s to denote a �nite execution producing tt
and leading to s.

2.3 Operational Speci�cation Theory

In this section we develop a compositional speci�cation theory for TIOTSs based
on the operations of parallel compositionk, conjunction ^ , disjunction _ and
quotient %. The operators are de�ned via transition rules that are a variant on
synchronised product.

Parallel composition yields a TIOTS that represents the combined e�ect
of its operands interacting with one another. The remaining operations must
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Table 1. State representations under composition operators.

k > p0 ?
> > > >
p1 > p0� p1 ?
? > ? ?

^ > p0 ?
> > > >
p1 > p0� p1 p1

? > p0 ?

_ > p0 ?
> > p0 ?
p1 p1 p0� p1 ?
? ? ? ?

% > p0 ?
> ? ? ?
p1 > p0� p1 ?
? > > ?

be explained with respect to a re�nement relation, which corresponds to safe-
substitutivity in our theory. A TIOTS is a re�nement of another if it will work
in any environment that the original worked in without introducing safety or
bounded-liveness errors. Conjunction yields the coarsest TIOTS that is a re�ne-
ment of its operands, while disjunction yields the �nest TIOTS that is re�ned
by both of its operands. The operators are thus equivalent to the join and meet
operations on TIOTSs2. Quotient is the adjoint of parallel composition, meaning
that P0%P1 is the coarsest TIOTS such that (P0%P1)kP1 is a re�nement of P0.

Let Pi = hI i ; Oi ; Si ; s0
i ; ! i i for i 2 f 0; 1g be two TIOTSs that are both ?

and > -completed, satisfying (wlog) S0 \ S1 = f? ; >g . The composition of P0

and P1 under the operation 
 2 fk ; ^ ; _ ; %g, written P0 
 P 1, is only de�ned
when certain composability restrictions are imposed on the alphabets of the
TIOTSs. P0 k P1 is only de�ned when the output sets of P0 and P1 are disjoint,
because an output should be controlled by at most one component. Conjunction
and disjunction are only de�ned when the TIOTSs have identical alphabets(i.e.
O0 = O1 and I0 = I1). This restriction can be relaxed at the expense of more
cumbersome notation, which is why we focus on the simpler case in this paper.
For the quotient, we require that the alphabet of P0 dominates that of P1 (i.e.
A1 � A0 and O1 � O0), in addition to P1 being a deterministic TIOTS. As
quotient is a synthesis operator, it is di�cult to give a de�nition using just
state-local transition rules, since quotient needs global information about the
transition systems. This is why we insist onP1 being deterministic3.

De�nition 4. Let P0 and P1 be TIOTSs composable under
 2 fk ; ^ ; _ ; %g.
Then P0 
 P 1 = hI ; O; S; s0; !i is the TIOTS where:

{ If 
 = k, then I = ( I0 [ I1) n O and O = O0 [ O1

{ If 
 2 f^ ; _g, then I = I0 = I1 and O = O0 = O1

{ If 
 = %, then I = I0 [ O1 and O = O0 n O1

{ S = ( P0 � P1) ] P0 ] P1 ] f> ; ?g
{ s0 = s0

0 
 s0
1

{ ! is the smallest relation containing ! 0 [ ! 1, and satisfying the rules:

p0
��! 0s0

0 p1
��! 1s0

1

p0
 p1
��! s0

0
 s0
1

p0
a�! 0s0

0 a =2A1

p0
 p1
a�! s0

0
 p1

p1
a�! 0s0

1 a =2A0

p0
 p1
a�! p0
 s0

1

2 As we write A v B to mean A is re�ned by B , our operators ^ and _ are reversed
in comparison to the standard symbols for meet and join.

3 Technically speaking, the problem is a consequence of state quotient being right-
distributive but not left-distributive over state disjunction (cf Table 1).
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We adopt the notation of s0 
 s1 for states, where the associated interpretation
is supplied in Table 1. Furthermore, given two plain states pi = ( li ; t i ) for i 2
f 0; 1g, we de�ne p0 � p1 = (( l0; l1); t0 ] t1).

Table 1 tells us how states should be combined under the composition oper-
ators. For parallel, a state is magic if one component state is magic, and a state
is error if one component is error while the other is not magic. For conjunction,
encountering error in one component implies the component can be discarded
and the rest of the composition behaves like the other component. The conjunc-
tion table follows the intuition of the join operation on the re�nement preorder.
Similarly for disjunction. Quotient is the adjoint of parallel composition. If the
second component state does not re�ne the �rst, the quotient will try to rescue
the re�nement by producing > (so that its composition with the second will
re�ne the �rst). If the second component state does re�ne the �rst, the quotient
will produce the least re�ned value so that its composition with the second will
not break the re�nement.

An environment for a TIOTS P is any TIOTS Q such that the alphabet of Q
is complementary to that of P, meaning IP = OQ and OP = IQ . Re�nement in
our framework corresponds to contextual substitutability, in which the context
is an arbitrary environment.

De�nition 5. Let Pimp and Pspec be TIOTSs with identical alphabets.Pimp

re�nes Pspec , denoted Pspec v P imp , i� for all environments Q, Pspec k Q is
? -free implies Pimp k Q is ? -free. We say Pimp and Pspec are substitutively
equivalent, i.e. Pspec ' P imp , i� Pimp v P spec and Pspec v P imp .

It is obvious that ' induces the weakest equivalence on TIOTSs that pre-
serves? -freeness. In the sequel, we give two concrete characterisations of' and
show it to be a congruence w.r.t. the operators of the speci�cation theory.

The operational de�nition of quotient requires P1 to be deterministic. For any
TIOTS P, a semantically-equivalent deterministic component can be obtained,
denoted PD , by means of a modi�ed subset construction acting on (P? )> . For
any subsetS0 of states reachable by a given trace, we only keep those which are
minimal w.r.t. the state re�nement relation. So if the current state subset S0

contains ? , the procedure reducesS0 to ? ; if ? =2 S0 6= f>g , it reduces S0 by
removing any potential > in S0.4

Proposition 1. For any TIOTS P, it holds that P ' P D .

Equipped with determinisation, quotient is a fully de�ned operator on any
pair of TIOTSs. Furthermore, we can give an alternative (although substitutively
equivalent) formulation of quotient as the derived operator (P :

0 k P1): , where :
is a mirroring operation that �rst determinises its argument, then interchanges
the input and output sets, as well as the> and ? states.

4 A detailed de�nition of transforming untimed non-deterministic systems into
substitutively-equivalent deterministic ones is contained in De�nition 4.2 of [8].
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Inv: y<=1
Co:  true

y==1
print!
y:=0

finish!
5 <= x <= 8
and y<=5

Inv: y<=5
Co:  true

Inv: true
Co:  y<=10

A1 B2

B3B4

start!   x,y:=0

printed?   y:=0

Inv: x <= 100
Co:  true

Scheduler || Printer_controller

not (5 <= x <= 8)
and y<=5

finish!

Fig. 2. Parallel composition of the job scheduler and printer controller.

Example. Figure 2 shows the parallel composition of the job scheduler with the
printer controller. In the transition from B 4 to A1, the guard combines the e�ects
of the constraints on the clocksx and y. As �nish is an output of the controller,
it can be �red at a time when the scheduler is not expecting it, meaning that a
safety error will occur. This is indicated by the transition to ? when the guard
constraint 5 � x � 8 is not satis�ed.

3 Timed I/O Game

Our speci�cation theory can be seen as an I/O game between acomponent and
an environment that uses acoin to break ties. The speci�cation of a component
(in the form of a TIOA or TIOTS) is built to encode the set of strategies possible
for the component in the game (just like an NFA encodes a set of words).

{ Given two TIOTSs P and Q with identical alphabets, we say P is a partial
unfolding [17] of Q if there exists a function f from SP to SQ s.t. 1) f maps
> to > , ? to ? , and plain states to plain states, 2) f (s0

P ) = s0
Q , and 3)

p ��! P s ) f (p) ��! Q f (s).
{ We say an acyclic TIOTS is a tree if 1) there does not exist a pair of tran-

sitions in the form of p a�! p00and p0 d�! p00, 2) p a�! p00^ p0 b�! p00 implies

p = p0 and a = b and 3) p d�! p00^ p0 d�! p00implies p = p0.
{ We say an acyclic TIOTS is a simple path if 1) p a�! s0 ^ p ��! s00 implies

s0 = s00and a = � and 2) p d�! s0^ p d�! s00implies s0 = s00.
{ We say a simple pathL is a run of P if L is a partial unfolding of P.

Strategies. A strategy G is a deterministic tree TIOTS s.t. each plain state in G is
ready to accept all possible inputs by the environment, but allows a single move
(delay or output) by the component, i.e. ebG(p) = I ] mvG(p) s.t. mvG(p) = f ag
for somea 2 O or mvG(p) � R> 0, whereebG(p) denotes the set of enabled timed
actions in state p of LTS G, and mvG(p) denotes the unique component move
allowed by G at p.

A TIOTS P contains a strategy G if G is a partial unfolding of (P? )> . The
set of strategies contained inP is denotedstg(P). Since it makes little sense to
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a! a!

b!
f?e?

c!

a!

b! c!

b!
f? f?

c!
e? e?

f?
a!

f?
a!

a!

b!
f?

a!

f?
c!

e? e?

f?e? f?e?

a!

b!
f?

a!

f?
c!

e? e?

f?e? f?e?e?e?

P (1) (2) (3) (4)

Q (A) (B)

Fig. 3. Strategy example.

distinguish strategies that are isomorphic, we will freely use strategies to refer
to their isomorphism classes and writeG = G0 to mean G and G0 are isomorphic.

Figure 3 illustrates the idea of strategies. For simplicity, we use two un-
timed transition systems P and Q with identical alphabets I = f e; f g and
O = f a; b; cg. The transition systems use solid lines, while strategies use dotted
lines. Plain states are unmarked, while the> and ? states are labelled as such5.
A subset of the strategies forP and Q are shown on the right hand side of the
respective components. Note that strategies 3 and 4 arise through> -completion.

Comparing strategies. When the game is played, the component tries to avoid
reaching> , while the environment tries to avoid reaching? . Strategies instg(P)
vary in their e�ectiveness to achieve this objective, which induces a hierarchy
on strategies that closely resemble one another. We sayG and G0 are a�ne if
s0

G
tt=) p and s0

G0
tt=) p0 implies mvG(p) = mvG0(p0). Intuitively, it means G and

G0 propose the same move at the `same' states. For instance, the strategies 1, 3
and A in Figure 3 are pairwise a�ne and so are the strategies 2, 4 andB .

Given two a�ne strategies G and G0, we say G is more aggressivethan G0,
denoted G � G 0, if 1) s0

G0
tt=) ? implies there is a pre�x tt0 of tt s.t. s0

G
tt 0=) ? and

2) s0
G

tt=) > implies there is a pre�x tt0 of tt s.t. s0
G0

tt 0=) > . Intuitively, it means G
can reach? faster but > slower than G0. � forms a partial order over stg(P), or
more generally, over any set of strategies with identical alphabets. For instance,
strategy A is more aggressive than 1 and 3, while strategyB is more aggressive
than 2 and 4.

When the game is played, the componentP prefers to use the maximally
aggressive strategies instg(P)6. Thus two components that di�er only in non-
maximally aggressive strategies should be equated. We de�ne thestrategy se-
mantics of component P to be [P]s = fG0 j 9 G 2 stg(P) : G � G 0g, i.e. the
upward-closure ofstg(P) w.r.t. � .
5 For simplicity, we allow multiple copies of > and ? , which are assumed to be chaotic.
6 This is because our semantics is designed to preserve? rather than > .
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Game rules. When a component strategyG is played against an environment
strategy G0, at each game state (i.e. a product statepG � pG0) G and G0 each
propose a move (i.e.mvG(pG) and mvG0(pG0)). If one of them is a delay and
the other is an action, the action will prevail. If both propose delay moves (i.e.
mvG(pG); mvG0(pG0) � R> 0), the smaller one (w.r.t. set containment) will pre-
vail.7

Since a delay move proposed at a strategy state is the maximal set of possible
delays enabled at that state, the next move proposed at the new state after �ring
the set must be an action move (due to time additivity). Thus a play cannot
have two consecutive delay moves.

If, however, both propose action moves, there will be a tie, which will be
resolved by tossing the coin. For uniformity's sake, the coin can be treated as a
special component. A strategy of the coin is a functionh from tA � to f 0; 1g. We
denote the set of all possible coin strategies asH .

A play of the game can be formalised as a composition of three strategies,
one each from the component, environment and coin, denotedGP kh GQ . At a
current game statepP � pQ , if the prevailing action is � and we havepP

��! s0
P

and pQ
��! s0

Q , then the next game state issP k sQ . The play will stop when it
reaches either> or ? . The composition will produce a simple path L that is a
run of P k Q. SinceP k Q gives rise to aclosed system(i.e. the input alphabet
is empty), a run of P k Q is a strategy of P k Q.

Thus, strategy composition of P and Q is closely related to their parallel
composition: stg(P k Q) = fGP kh GQ j GP 2 stg(P); GQ 2 stg(Q) and h 2 H g.

Parallel composition. Strategy composition, like component parallel composi-
tion, can be generalised to any pair of componentsP and Q with composable
alphabets. That is, OP \ OQ = fg . For suchP and Q, GP kh GQ gives rise to a tree
rather than a simple path TIOTS. That is, at each game state pP � pQ , besides
�ring the prevailing � 2 tOP [ tOQ , we need also to �re 1) all the synchronised in-
puts, i.e. e 2 IP \ IQ , and reach the new game statesP k sQ (assumingpP

e�! sP

and pQ
e�! sQ ) and 2) all the independent inputs, i.e. e 2 (IP [ IQ ) n(AP \ AQ ),

and reach the new game statesP � pQ or pP � sQ . It is easy to verify that
GP kh GQ is a strategy of P k Q.

Conjunction/disjunction. Strategy conjunction (&) and strategy disjunction (+)
are binary operators de�ned only on pairs of a�ne strategies, by G&G0 = G ^ G0

and G+ G0 = G _G0. If G and G0 are not a�ne, G ^G0 and G _G0 may not produce
a strategy. From Figure 3, the disjunction of strategies 1 and 2 will produce a
transition system that stops to output after the a transition.

Re�nement. Equality of strategies induces an equivalence on TIOTSs:P and
Q are strategy equivalent i� [ P]s = [ Q]s . However, strategy equivalence is too
�ne for the purpose of substitutive re�nement (cf De�nition 5). For instance,

7 Note that all invariants and co-invariants are downward-closed. Thus a delay move
can be respresented as a time interval from 0 to somed 2 R� 0 .
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transition systems P and Q in Figure 3 are substitutively equivalent, but are
not strategy equivalent, because 1, 2, 3 and 4 are strategies ofQ (due to upward-
closure w.r.t. � ), while A and B are not strategies ofP.

However, we demonstrate thatsubstitutive equivalence is reducible to strategy
equivalenceproviding we perform disjunction closure on strategies.

Lemma 1. Given a pair of a�ne component strategies G0 and G1, G0 kh G and
G1 kh G are ? -free for a pair of environment and coin strategiesG and h i�
G0 + G1 kh G is ? -free.

We say � + is a disjunction closure of set of strategies� i� it is the least
superset of� s.t. G+ G0 2 � + for all pairs of a�ne strategies G; G0 2 � + . It is
easy to see disjunction closure preserves upward-closedness of strategy sets.

Proposition 2. Disjunction closure is determinisation: [PD ]s = [ PD ]+s = [ P]+s .

Lemma 2. For any TIOTS P, [P : ]+s = fGP : j 8 GP 2 [P]+s ; h 2 H : GP : kh
GP is ? -freeg.

Theorem 1. Given TIOTSs P and Q, P v Q i� [Q]+s � [P]+s .

Looking at Figure 3, the disjunction of strategies 1 and 3 producesA, while
the disjunction of strategies 2 and 4 producesB . Thus [P]+s = [ Q]+s .

Relating operational composition to strategies.The operations of parallel compo-
sition, conjunction, disjunction and quotient de�ned on the operational models
of TIOTSs (Section 2.3) can be characterised by simple operations on strategies
in the game-based setting.

Lemma 3. For k-composable TIOTSsP and Q, [P k Q]+s = fGPkQ j 9 GP 2
[P]+s ; GQ 2 [Q]+s ; h 2 H : GP kh GQ � G PkQ g.

Lemma 4. For _-composable TIOTSsP and Q, [P _ Q ]+s = ([ P]+s [ [Q]+s )+ .

Lemma 5. For ^ -composable TIOTSsP and Q, [P ^ Q ]+s = [ P]+s \ [Q]+s .

Lemma 6. For %-composable TIOTSsP and Q, [P%Q]+s = fGP %Q j 8 GQ 2
[Q]+s ; h 2 H : GP %Q kh GQ 2 [P]+s g.

Thus, conjunction and disjunction are the join and meet operations, and
quotient produces the coarsest TIOTS s.t. (P0%P1)kP1 is a re�nement of P0.

Theorem 2. ' is a congruence w.r.t. k, _ , ^ and % subject to composability.

Summary. Strategy semantics has given us a weakest? -preserving congruence
(i.e. [P]+s ) for timed speci�cation theories based on operators for (parallel) com-
position, conjunction, disjunction and quotient. Strategy semantics captures
nicely the game-theoretical nature as well as the operational intuition of the
speci�cation theory. In the next section, we give a more declarative characteri-
sation of the equivalence by means of timed traces.

CONNECT 231167 71/94



Revisiting Timed Speci�cation Theories: A Linear-Time Perspective 13

4 Declarative Speci�cation Theory

In this section, we develop a compositional speci�cation theory based on timed
traces. We introduce the concept of a timed-trace structure, which is an abstract
representation for a timed component. The timed-trace structure contains essen-
tial information about the component, for checking whether it can be substituted
with another in a safety and liveness preserving manner.

Given any TIOTS P = hI ; O; S; s0; !i , we can extract three sets of traces
from (P? )> : TP a set of timed traces leading to plain states;TE a set of timed
traces leading to the error state? ; and TM a set of timed traces leading to the
magic state > . TE and TM are extension-closed as> and ? are chaotic, while
TP is pre�x-closed. Due to > =? -completion, it is easy to verify TE [ TP [ TM
gives rise to the full set of timed tracestA � ; thus TP and TE are su�cient.

However,TP and TE contain more information than necessary for our substi-
tutive re�nement, which is designed to preserve? -freeness. For instance, adding
any trace tt 2 TE to TP should not change the semantics of the component.
Based on a slight abstraction of the two sets, we can thus de�ne atrace structure
T T(P) as the semantics ofP.

De�nition 6 (Trace structure). T T(P) := ( I ; O; TR ; TE ), where TR :=
TE [ TP the set of realisable traces. Obviously, TR is pre�x-closed.

From hereon let P0 and P1 be two TIOTSs with trace structures T T(Pi ) :=
(I i ; Oi ; TR i ; TE i ) for i 2 f 0; 1g. De�ne �i = 1 � i .

The substitutive re�nement relation v in Section 2.3 can equally be charac-
terised by means of trace containment. Consequently,T T(P0) can be regarded
as providing an alternative encoding of the set [P0]+s of strategies.

Theorem 3. P0 v P 1 i� TR 1 � TR0 and TE1 � TE0.

We are now ready to de�ne the timed-trace semantics for the operators of
our speci�cation theory. Intuitively, the timed-trace semantics mimic the syn-
chronised product of the operational de�nitions in Section 2.3.

Parallel composition. The idea behind parallel composition is that the projection
of any trace in the composition onto the alphabet of one of the components
should be a trace of that component.

Proposition 3. If P0 and P1 are k-composable, thenT T(P0 k P1) = ( I ; O; TR ;
TE ) where I = ( I0 [ I1) n O, O = O0 [ O1 and the trace sets are given by:

{ TE = f tt j tt � tA i 2 TE i ^ tt � tA �i 2 TR �i g � tA �

{ TR = TE ] f tt j tt � tA i 2 (TR i n TE i ) ^ tt � tA �i 2 (TR �i n TE �i )g

The above saystt is an error trace if the projection of tt on one component is
an error trace, while the projection of tt on the other component is a realisable
trace. tt is a realisable trace if tt is either an error trace or a (strictly) plain
trace. tt is a (strictly) plain trace if the projections of tt on to P0 and P1 are
(strictly) plain traces.
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Disjunction. From any composite state in the disjunction of two components,
the composition should only be willing to accept inputs that are accepted by
both components, but should accept the union of outputs. After witnessing an
output enabled by only one of the components, the disjunction should behave like
that component. Because of the way that? and > work in Table 1, this loosely
corresponds to taking the union of the traces from the respective components.

Proposition 4. If P0 and P1 are _-composable, thenT T(P0 _ P 1) = ( I ; O;
TR0 [ TR1; TE0 [ TE1), where I = I0 = I1 and O = O0 = O1.

Conjunction. Similarly to disjunction, from any composite state in the con-
junction of two components, the composition should only be willing to accept
outputs that are accepted by both components, and should accept the union of
inputs, until a stage when one of the component's input assumptions has been
violated, after which it should behave like the other component. Because of the
way that both ? and > work in Table 1, this essentially corresponds to taking
the intersection of the traces from the respective components.

Proposition 5. If P0 and P1 are ^ -composable, thenT T(P0 ^ P 1) = ( I ; O;
TR0 \ TR1; TE0 \ TE1), where I = I0 = I1 and O = O0 = O1.

Quotient. Quotient ensures its composition with the second component is a
re�nement of the �rst. Given the synchronised running of P0 and P1, if P0 is in
a more re�ned state than P1, the quotient will try to rescue the re�nement by
taking > as its state (so that its composition with P1 's state will re�ne P0 's). If
P0 is in a less or equally re�ned state thanP1, the quotient will take the worst
possible state without breaking the re�nement.

Proposition 6. If P0 dominatesP1, then T T(P0%P1) = ( I ; O; TR ; TE ), where
I = I0 [ O1, O = O0 n O1, and the trace sets satisfy:

{ TE = TE0 [ f tt j tt � tA 1 62TR1g � tA �

{ TR = TE ] f tt j tt 2 (TR0 n TE0) ^ tt � tA 1 2 (TR1 n TE1)g.

The above saystt is an error trace if either tt is an error trace in P0 or the
projection of tt on P1 is not a realisable trace. A strictly plain trace must have
strictly plain projections onto P0 and P1.

Mirroring of trace structures is equally straightforward: T T(P0): = ( O0; I0;
tA � nTE0; tA � nTR0). Consequently, quotient can also be de�ned as the derived
operator (T T(P0): k T T(P1)) : .

5 Comparison with Related Works

Our framework can be seen as a linear-time alternative to the timed speci�cation
theories of [2] and [3], albeit with signi�cant di�erences. The speci�cation theory
in [3] also introduces parallel, conjunction and quotient, but uses timed alternat-
ing simulation as re�nement, which does not admit the weakest precongruence.
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An advantage of [3] is the algorithmic e�ciency of branching-time simulation
checking and the implementation reported in [10].

The work of [2] on timed games also bears conceptual similarities, although
they do not de�ne conjunction and quotient. We adopt most of the game rules
in [2], except that, due to our requirement that proposed delay moves are
maximal delays allowed by a strategy, a play cannot have consecutive delay
moves. This enables us to avoid the complexity of time-blocking strategies and
blame assignment, but does not ensure non-Zenoness8. Secondly, we do not
use timestop/semi-timestop to model time errors (i.e. bounded-liveness errors).
Rather, we introduce the explicit inconsistent state ? to model both time and
immediate (i.e. safety) errors. This enables us to avoid the complexity of having
two transition relations and well-formedness of timed interfaces.

Based on linear time, our timed theory owes much to the pioneering work of
trace theories in asynchronous circuit veri�cation, such as Dill's trace theory [9].
Our mirror operator is essentially a timed extension of the mirror operator from
asynchronous circuit veri�cation [15]. The de�nition of quotient based on mir-
roring (for the untimed case) was �rst presented by Verhoe� as his Factorisation
Theorem [14].

In comparison with our untimed theory [1], our timed extension requires new
techniques (e.g. those related to timestop) to handle delay transitions since time
can be modelled neither as input nor as output. In the timed theory, the set of
realisable traces (TR ) is not required to be input-enabled, which is necessary
for the set of untimed traces in [1]. Thus, the domain of trace structures is
signi�cantly enlarged. Furthermore, the timed theory supports the modelling of
liveness assumptions/guarantees, with the checking of such violations reducing
to ? -reachability. Therefore, �nite traces su�ce to model and verify liveness
properties, whereas in contrast, the untimed theory must employ in�nite traces
to treat liveness in a proper way.

We brie
y mention other related works, which include timed modal transition
systems [11, 12], the timed I/O model [5, 13] and embedded systems [18, 19].

6 Conclusions

We have formulated a rich compositional speci�cation theory for components
with real-time constraints, based on a linear-time notion of substitutive re�ne-
ment. The operators of hiding and renaming can also be de�ned, based on our
previous work [8]. We believe that our theory can be reformulated as a timed
extension of Dill's trace theory [9]. Future work will include an investigation of
realisability and assume-guarantee reasoning.

Acknowledgments.The authors are supported by EU FP7 project CONNECT,
ERC Advanced Grant VERIWARE and EPSRC project EP/F001096.

8 Zeno behaviours (in�nite action moves within �nite time) in a play are not regarded
as abnormal behaviours in our semantics.
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Abstract—Ubiquitous and pervasive computing promotes the
creation of an environment where Networked Systems (NSs) eter-
nally provide connectivity and services without requiring explicit
awareness of the underlying communications and computing
technologies. In this context, achieving interoperability among
heterogeneous NSs represents an important issue. In order to me-
diate the NSs interaction protocol and solve possible mismatches,
connectors are often built. However, connector development is a
never-ending and error-prone task and prevents the eternality
of NSs. For this reason, in the literature, many approaches
propose the automatic synthesis of connectors. However, solving
the connector synthesis problem in general is hard and, when
possible, it results in a monolithic connector hence preventing its
evolution. In this paper, we de�ne a method for the automatic
synthesis of modular connectors, each of them expressed as the
composition of independent mediators. A modular connector, as
synthesized by our method, supports connector evolution and
performs correct mediation.

I. I NTRODUCTION

The near future envisions an ubiquitous and pervasive
computing environment that enables heterogeneous Networked
Systems (NSs) to provide and access software services without
requiring an explicit awareness of the underlying communica-
tions and computing technologies [1]. In such an environment,
a problem that arises when integrating and composing different
NSs is related to the problem of achieving interoperability
among heterogeneous NSs by solving possible protocol mis-
matches. They can occur while the NSs interact with each
other to accomplish some common task.

A widely used technique to cope with this problem is
to build connectors [2], [3] that bridge the communication
among heterogenous protocols and coordinate their interaction.
However, due to the potentially in�nite number of different
available protocols, connector development is a never-ending
and error-prone task and prevents the eternality of NSs.
Nowadays, the ef�cacy of integrating and composing NSs is

This work has been partially supported by the FET project CONNECT No
231167.

proportional to the level of interoperability of the systems'
respective underlying technologies. For this reason, in the
literature, starting from the pioneering work in [4], many
approaches propose the automatic synthesis of connectors,
see [5]–[8] just to cite a few.

As a matter of fact, in general, the connector synthesis
problem is hard in the sense that not all possible protocol
mismatches are solvable. For instance, building a connector
that reconciles the component interaction by reordering certain
sequences of exchanged messages can lead to unbounded
executions. As shown in [9], a suitable termination crite-
rion can be de�ned with the aim of under-approximating
unbounded interactions by means of bounded ones whenever a
pattern of behaviour indicating potential in�nity occurs. Thus,
practical solutions can only deal with a combination of speci�c
mediation patterns that correspond to tractable protocol mis-
matches [10]–[13]. However, these solutions eventually result
in a monolithic connector hence preventing evolution, and
making synthesis and maintenance of the connector code a
dif�cult task.

In this paper, we de�ne a method for the automatic synthesis
of modular connectors. A modular connector is represented
as a suitable composition of independentmediators. Each
mediator can be seen as a basic (sub-)connector that realizes a
speci�c mediation pattern, which corresponds to the solution
of a recurring protocol mismatch. The advantage of our
connector decomposition is twofold: (i) it iscorrect, i.e., as
for its monolithic version, the mediation logic performed by a
modular connector is free from possible mismatches; and (ii) it
promotes connectorevolution, hence also easing the synthesis
and maintenance of its implementation code. To show (i),
we formally de�ne the semantics of protocols (as well as
of mediators and connectors) by using a revised version of
the Interface Automata(IA) theory described in [14]. Then,
we prove that a modular connector for two protocolsP and
R enjoys the same correctness properties of the monolithic
connector obtained by expressing the synthesis problem as a

A.3 Automatic Synthesis of Modular Connectors via Composition
of Protocol Mediation Patterns

CONNECT 231167 76/94



quotientproblem betweenP and R [15]. Concerning the set
of considered mediation patterns and, hence, connector mod-
ularization, our synthesis method relies on a revised version
of the connector algebra described in [16]. It is an algebra for
reasoning about protocol mismatches where basic mismatches
can be solved by suitably de�ned primitives, while complex
mismatches can be settled by composition operators that build
connectors out of simpler ones. We revise the original algebra
by adding an iterator operator and by giving its semantics
in terms of our revised IA theory. For (ii), we make use
of a case study in the e-commerce domain to illustrate that
relevant changes can be applied on a modular connector by
simply acting on its constituent mediators, without entirely
re-synthesizing its protocol.

The paper is organized as follows. SectionII puts the bases
for the de�nition of our synthesis method by discussing our
revised version of both the IA theory in [14] and the connector
algebra in [16]. SectionIII introduces thepurchase order
mediation scenariothat we use as case study in the sequel of
the paper. In SectionIV, we formalize our synthesis method
and illustrate it at work on the case study. In SectionV,
we state correctness of our method and, by means of the
case study, we show how it supports connector evolution.
SectionVI discusses related work, and SectionVII provides
�nal remarks and future research directions.

II. PREAMBLE ON THE SYNTHESIS METHOD

At connector synthesis stage, we assume that a NS comes
together with a IA-based speci�cation of its interaction pro-
tocol. The interaction protocol of a NS expresses the order in
which input and output actions are performed while the NS
interacts with environment. In our setting, actions are used to
abstract messages that can be sent (outputs) or received (in-
puts) by a NS. Inputs are received from and controlled by the
environment, whereas outputs are controlled and emitted by
the NS. A NS can perform alsohiddenactions corresponding
to internal computation.

In this section, we instantiate some de�nitions from the
IA theory in [14] to our context and, when needed for the
purposes of automated connector synthesis, we also add new
ones.

De�nition 1 ( Interaction Protocol Speci�cation)
An Interaction Protocol Speci�cation(IPS) P is a tuple
(A I

P ; AO
P ; AH

P ; SP ; s0
P ; � P ), whereA I

P , AO
P , AH

P are disjoint
sets referred to asinput, output, and hidden actions (the
union of which we denote byAP ), SP is a �nite set of
stateswith s0

P 2 SP being the designatedinitial state, and
� P : SP � AP ! SP is the partial transition function.

Intuitively, from a state, the NS may either emit any output
that is enabled according to its IPS or perform internal com-
putation. If the environment supplies an input that is enabled,
the reaction of the NS is according to its IPS. If the input is
not enabled, this causes aninconsistency.

Let a be an action, we denote witha its complement. If a
is an input action thena is the corresponding output action,

and vice versa. Whena is a hidden action,a is hidden as well
and its label is the one ofa followed by `;'. Abusing notation,
we extend the complement also to IPSs. That is, letP be an
IPS, thenP denotes its complement and it isP where all
input, output, and hidden actions have been complemented.
Furthermore, we consider a special kind of IPS denoted byI
and calledidentity. It is de�ned as the IPS(; ; ; ; ; ; f s0

I g; s0
I ; ; ).

To give the possibility to express IPSs that take a message as
input and forward the same message as output, given an action
a, we consider also the actiona0 as semantically equivalent
to a (yet syntactically different). We writes a�! P s0 to denote
that � P (s; a) = s0 (or, equivalently, that(s; a; s0) 2 � P ). An
actiona is enabledin s, if � P (s; a) is de�ned.AP (s) denotes
the set of actions inP that are enabled ins. We denote
with s a=) P s0 a sequence of internal actions starting from
s, terminating tos0, and with an observable actiona in some
point in the middle of the sequence. We writes a P to denote
that, from s, P can perform a sequence of hidden actions
terminating with the observable actiona. Abusing notation,
 P (s; a) denotes the set of states, inP, that are reachable
from s by performing a sequence of hidden actions terminating
with the observable actiona.

De�nition 2 ( Traces of an IPS)
Let P = ( A I

P ; AO
P ; AH

P ; SP ; s0
P ; � P ) be an IPS, atraceof P

is a tP 2 ((A I
P [ AO

P ) � [ f � g) de�ned in such a way that
tP = � _ 9n > 0; sP

0 ; : : : ; sP
n 2 SP : tP = a1a2 : : : an ^

sP
0

a1=) : : :
an=) sP

n , where� denotes the so calledempty trace.

We denote withA t P the set of actionsin tP , and withjtP j
the length oftP . Furthermore, we denote withtP (a) the �rst
position of the actiona in tP . Finally, we denote withT r (P)
the set of tracesof P.

From hereon letP = ( A I
P ; AO

P ; AH
P ; SP ; s0

P ; � P ) and
R=( A I

R ; AO
R ; AH

R ; SR ; s0
R ; � R ) be two IPSs.P and R may

only be composed if their action sets are compatible with
each other. IPSsP and R are composableif AH

P \ AR = ; ,
AP \ AH

R = ; , A I
P \ A I

R = ; , andAO
P \ AO

R = ; . We denote
with common(P; R) the setAP \ AR of common actions.
Note that ifP andR are composable thencommon(P; R) =
(A I

P \ AO
R ) [ (AO

P \ A I
R ). To de�ne the parallel composition

of composable IPSs, we use aproductoperation that accounts
for possible semantically equivalent actions.

De�nition 3 ( Product of two IPSs)
The product of P and R is an IPS P 
 R =
(A I

P 
 R ; AO
P 
 R ; AH

P 
 R ; SP � SR ; (s0
P ; s0

R ); � P 
 R ), where:
� A I

P 
 R = ( A I
P [ A I

R ) n common(P; R);
� AO

P 
 R = ( AO
P [ AO

R ) n common(P; R);
� AH

P 
 R = AH
P \ AH

R \ common(P; R);
� (p; r) a�! P 
 R (p0; r 0) ,

– p
a (resp:; a 0)
��������! P p0 ^ � R (r; a0) ( resp.,� R (r; a)) is not

de�ned ^ r = r 0 ^ a (resp.,a0) =2 common(P; R);
– p = p0 ^ � P (p; a0) ( resp.,� P (p; a)) is not de�ned^

r
a (resp:; a 0)
��������! R r 0 ^ a (resp.,a0) =2 common(P; R);
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– p
a (resp:; a 0)
��������! P p0 ^ r

a (resp:; a 0)
��������! R r 0 ^

a (resp.,a0) 2 common(P; R);

– p
a (resp:; a 0)
��������! P p0 ^ r

a0 ( resp:; a )
��������! R r 0.

Unfortunately, the product can introduce a number of
inconsistencies when one of the two protocols is willing
to offer an output action in the common alphabet, but the
second is not able to offer, possibly after a sequence of
hidden actions, the corresponding input action (accounting
also for possible semantically equivalent actions). We denote
with Inconsistencies (P; R) the set of states in the product
P 
 R from which inconsistencies can arise. The kernel of
the inconsistencies inP 
 R, with P and R composable,
is the set of states(p; r) for which: either (i) there is some
a 2 common(P; R) (resp.,a0 2 common(P; R)) such that
one of p and r can make ana-labelled (resp.,a0-labelled)
output transition, but the other cannot match it with the
corresponding input transition; or (ii) one ofp and r can
make ana-labelled (resp.,a0-labelled) output transition, but the
other cannot match it with the semantically equivalent input
transition. Inconsistencies (P; R) is then the set of those
states in the kernel, plus those that can reach a state in the
kernel by a sequence of transitions labelled by either output
or hidden actions.

De�nition 4 ( Composition of two IPSs)
The compositionof two composable IPSsP and R, written
as PjjR, is de�ned to beP 
 R after pruning all states in
Inconsistencies (P; R), providing the initial state(sP

0 ; sR
0 )

is contained within the remaining automaton. Otherwise, the
composition is unde�ned.

As formally proven in [14],jj is a compositionaloperator
meaning that, given three composable IPSsP, Q, andR, then
(PjjQ)jjR = Pjj (QjjR).

As it will be clear in SectionV, to state correctness of our
synthesis method, we use a notion ofre�nement based on a
version ofalternating simulation[17] that accounts for both
hidden actions and semantically equivalent ones. Informally,R
re�nes P if all input steps ofP can be simulated byR, and all
the output steps ofR can be simulated byP, considering that
internal steps ofP andR are independent and an observable
step can be simulated by a semantically equivalent one. We
make use of a “semantic” inclusion operator, denoted by� sem ,
between sets of actions. Its meaning is the same as� , but
it accounts also for semantically equivalent actions. That is,
given two sets of actionsS andS0, if S � S0 thenS � sem S0

and, given an actiona, either(f ag [ S) � sem (f a0g [ S0) or
(f a0g [ S) � sem (f ag [ S0).

De�nition 5 ( Re�nement between IPSs)
R re�nes P, denoted byP � R if the following conditions
hold:

� A I
P � sem A I

R ^ AO
R � sem AO

P ;
� there exists analternating simulationas a binary relation

�� SP � SR such that for all statess 2 SP andr 2 SR ,
with s � r , the following conditions hold:

(ii.1) f xjs x P ^ x 2 A I
P g � sem f yjr

y
 R ^ y 2 A I

R g;
(ii.2) f yjr

y
 R ^ y 2 AO

R g � sem f xjs x P ^ x 2 AO
P g;

(ii.3) 8z 2 f xjs x P ^ x 2 A I
P g [ f yjr

y
 R ^ y 2 AO

R g,
r 0 2  R (r; z ) : 9s0 2  P (s; z) : s0 � r 0;

� s0
P � s0

R .

Re�nement between IPSs is apreorder (i.e., re�exive and
transitive). Note thatP and P are always composable and,
under re�nement,P jjP andI are equivalent, i.e.,P jjP � I and
I � P jjP . The same holds forP jj I andP, i.e., P � P jj I and
Pjj I � P . Furthermore, letP0 andR0 be two IPSs, re�nement
is compositionalmeaning thatP jjP0 � RjjR0, if both P � R
andP0 � R0.

As already mentioned in SectionI, in order to reason about
protocol mismatches, we consider a revised version of the
connector algebra described in [16]. In the following, we
report only the portion of the algebra that is relevant for the
purposes of this work.

From hereon letA be the universal set of actions. The
primitives of the connector algebraAP (A), corresponding to
speci�c protocol mismatches, are described below.

1) Extra send: it concerns the possibility for a NS to
generate either a redundant or an additional messagea.
Such a mismatch can be solved by means of a mediator
that consumesa. It is modeled by the primitiveCons(a)
that takesa as input.

2) Missing send: it occurs when a NS expects either a
redundant message or a messagea that is not sent by
another NS. It can be solved by introducing a mediator
that generatesa. It is modeled by the primitiveP rod(a)
that producesa as output.

3) Signature mismatch: two messagesa and b of two
different NSs can be functionally compatible yet syntac-
tically inconsistent. A mediator that performs the needed
translation can solve this mismatch, i.e.,T rans(a; b)
that takesa as input and producesb as output.

4) Split message mismatch:a NS may expect to receive a
messagea as a sequence of fragments ofa. If messagea
can be decomposed intoa1; : : : ; an , then the mismatch
can be solved bySplit (a; [a1; : : : ; an ]) which takesa
as input and produces an ordered sequencea1; : : : ; an

as output.
5) Merge message mismatch:it is symmetric to the

previous one. The mismatch can be solved by the prim-
itive Merge([a1; : : : ; an ]; a) which takes an ordered
sequencea1; : : : ; an as input, and producesa as output.

6) Reordering mismatch: a NS expects to receive mes-
sages in an order different from the order used by
the sending NS. It can be solved by a reordering
primitive Order ([a1; : : : ; an ]; �; [a0

1; : : : ; a0
n ]), where�

is a permutation off 1; : : : ; ng. The primitive takes as
input the ordered sequencea1; : : : ; an from one NS ,
and produces the ordered sequencea0

� (1) ; : : : ; a0
� (n ) as

output for another NS.
The syntax of a termt in AP (A) is given by:

t ::= t � t j t � j (t) j p
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should be reordered.

De�nition 12 ( Coordination Mismatches Resolution)
Let W be the set of synthesized communication mediators for
protocolsP and R, and valid protocol ontologyO. Let k be
the bound considered for the length of possible loops/cycles
in P/W and R/W . The algorithm for thecoordination
mismatches resolutionstep (i.e., the automatic synthesis of
coordination mediators) is as follows:

procedure CoordinationMismatchesResolution
input: P/W , R/W , k
output: CoordMediators
1: CoordMediators := ;
2: for each(tP /W ; tR /W ) 2 �( P/W ; R /W ; k) do
3: computes the difference pair(t0

P /W
; t0

R /W
) of (tP /W ; tR /W )

4: for eacha 2 (A t 0
P /W

n A t 0
R /W

) [ (A t 0
R /W

n A t 0
P /W

) do
5: CoordMediators := CoordMediators [

f T hirdP arty (a)g
6: removea from eithert0

P /W
or t0

R /W
7: end for
8: if jt0

P /W
j 6= jt0

R /W
j then

9: for eacha 2 A t 0
P /W

[ A t 0
R /W

that appears more than once

in either t0
P /W

or t0
R /W

do
10: CoordMediators := CoordMediators [

f ExtraOrMissing (a)g
11: removea from eithert0

P /W
or t0

R /W
12: end for
13: end if
14: if t0

P /W
6= t0

R /W
then

15: CoordMediators := CoordMediators [
f Reorder(a; t0

P /W
; t0

R /W
)g

16: CoordMediators := CoordMediators [
f Reorder(a; t0

R /W
; t0

P /W
)g

17: end if
18: end for
19: for each(tP /W ; tR /W ) =2 �( P/W ; R /W ; k) do
20: CoordMediators := CoordMediators [

Discard (tP /W ; tR /W ; P/W ; R /W )
21: end for
22: return CoordMediators

where theThirdP arty , ExtraOrMissing , Reorder, and
Discard (sub-)procedures are de�ned as follows:

procedure ThirdParty
input: a
output: Mediator
1: Mediator := JT rans (a; a0) � K
2: return Mediator

procedure ExtraOrMissing
input: a
output: Mediator
1: if a is an input actionthen
2: Mediator := JP rod(a) � K
3: else
4: Mediator := JCons(a) � K
5: end if
6: return Mediator

procedure Reorder
input: a, t0

P /W
, t0

R /W
output: Mediator
1: aList := []

2: pT uple := ()
3: for eacha 2 A t 0

P /W
do

4: if a is an output actionthen
5: add a as last element ofaList
6: add t0

R /W
(a) as last element ofpT uple

7: end if
8: end for
9: Mediator := Order (aList; pT uple; aList 0), where

aList 0 = [ a0
1 ; : : : ; a0

n ] and aList = [ a1 ; : : : ; an ]
10: Mediator := JMediator � K
11: return Mediator

procedure Discard
input: tP /W , tR /W , P/W , R /W

output: Mediators
1: for eacha 2 A t P /W

[ A t R /W
^ a 2 AO

P /W
[ AO

R /W
do

2: Mediators := Mediators [ f JCons(a) � Kg
3: end for
4: return Mediators

Coming back to our case study, the synthesized coordination
mediators are:

M 6= JT rans (P ayT hirdP arty; P ayT hirdP arty 0) � K;
M 7= JOrder ([Conf irmItem; CloseOrder ];

(2; 1);
[Conf irmItem 0; CloseOrder 0]) � K;

M 8= JOrder ([SelectItem; SetItemQuantity ];
(2; 1);
[SelectItem 0; SetItemQuantity 0]) � K;

M 9= J(P rod(SelectItem )) � K;
M 10 = J(P rod(SetItemQuantity )) � K;
M 11 = J(Cons(Conf irmItem )) � K.

By referring to De�nition 4, the modular connector for
our case study is given by the following composition of
coordination mediators:M = M 6jj : : : jjM 11; plus the set
W = f M 1; : : : ; M 5g of communication mediator used for the
alphabet alignment. As formally shown in the next section,
under alphabet alignment,M is a correct connector meaning
that bothP/W � M jj (R/W ) andR/W � (P/W )jjM hold.

V. CORRECTNESS ANDCONNECTOREVOLUTION

By taking into account hidden actions and denying broad-
cast communication (as done in [14]), the IA theory described
in [15] can be used to synthesize, via aquotient operator
=, a monolithic connectorM such thatG � PjjM jjR, i.e.,
M = G=(PjjR). The formal de�nition of G is out of the
scope of this work. For the purposes of this section, it is
suf�cient to say thatG is an IPS, representing theconnected
system goal, which explicitly models three crucial conditions
for correct communication and coordination: (c1) PjjM jjR is
not permitted to generate any inconsistencies; (c2) PjjM jjR is
only permitted to deadlock when allP, M , andR deadlock;
and (c3) PjjM jjR must satisfy the constraints imposed by the
given protocol ontology.

Stating correctness of our synthesis method means showing
that a modular connectorM synthesized for protocolsP
and R is such thatc1, c2, and c3 hold, under alphabet
alignment. However, note thatc2 and c3 trivially hold by
construction. In fact, when composing in parallel protocols,
the only possibility to have “sink” states concerns scenarios
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in which none of the protocols is willing to perform any action
(c2); and communication mediators ensure alphabet alignment
(c3). Thus, in this section, by consideringW as the set of
synthesized communication mediators, we focus on proving
that P/W jjM jjR/W is free from inconsistencies, i.e., it is
de�ned (c1). To do this, we can exploit De�nition5, hence
checking bothP/W � M jjR/W andR/W � P jjM /W .

Theorem 1 (Correctness under alphabet alignment)
Let M be a modular connector synthesized for aligned pro-
tocolsP/W and R/W , then the following properties hold:(1)
P/W � M jjR/W , and (2) R/W � P jjM /W .
Proof: To prove (1), we must prove that(i) A I

P /W
� sem

A I
M jj R /W

^ AO
M jj R /W

� sem AO
P /W

, and (ii) there is an
alternating simulation fromM jjR/W to P/W , with s0

P /W
�

s0
M jj R /W

. By construction,A I
M = AO

P /W
[ AO

R /W
and AO

M �
A I

P [ A I
R . Furthermore,common(M; R /W ) is given by the

union set ofAO
R /W

and a subset ofA I
R /W

. Thus, by de�ni-
tion of complement operator for IPSs, it follows that both
A I

P /W
� sem A I

M jj R /W
and AO

M jj R /W
� sem AO

P /W
hold.

To prove (ii), we have to show that ii.1, ii.2, and ii.3 of
De�nition 5 hold, whereP and R have been replaced with
P/W and M jjR/W , respectively. Let us assume that ii.1 does
not hold. This means thatP / W would perform an output
action x that is not consumed byM . This is a contradiction
since by constructionM always consumes output actions from
both P / W and R / W . Analogously, if ii.2 would not hold,
then M jjR/W would produce an output action that does not
match any input action ofP /W . Again, this is a contradiction
becauseM jjR/W produces output actions only when there is
the need to match an input fromR/W with an input fromP/W .
ii.3 directly follows from the previous considerations hence
recursively propagating the alternating simulation relation
from M jjR/W to P/W . The proof of(2) is analogous and
hence, for space reasons, we omit it.�

Concerning the ability, for modular connectors, to evolve in
response of possible changes, the most interesting scenario is
related to changes at the level of the protocol ontology. In fact,
syntactic changes at the level of the NSs' interface directly
correspond to a relabeling of mediator inputs/outputs, and
related concepts in the ontology. We recall that the synthesis
of coordination mediators deals with sets of traces. Thus,
changes at the protocol level imply to re-iter the synthesis
step on the affected traces only, hence accordingly changing
the corresponding mediators. However, in the worst case, i.e.,
all the traces of a protocol share at least one action, the entire
synthesis step must be repeated.

As an example of a possible change at the level of the
protocol ontology, let us go back to our case study and
apply the following modi�cation to the ontologyO shown in
Figure 3: SO = SO [ f (AddItemT oOrder; SelectItem );
(AddItemT oOrder; SetItemQuantity )g and AO = AO

n f (AddItemT oOrder; SelectItem; SetItemQuantity )g.
Although simple, this change highlights the effectiveness
of our decomposition with respect to supporting connector

evolution. In fact, to address the applied change, it is suf�cient
to reason compositionally at the level of the algebra-based
description of the modular connectorM and related set
W of communication mediators, instead of reasoning in
terms of its underlying IA-based monolithic representation.
In particular, by just looking at the mediators' interface,
one can easily recognize that the communication mediator
affected by the proposed change isM 3, while M 8, M 9, and
M 10 are the affected coordination mediators. Due to the fact
that the aggregation tuple(AddItemT oOrder; SelectItem;
SetItemQuantity ) has been removed byAO , M 3 is removed
as well. In place of it two communication mediators,M 3:1 =
J(Split (SelectItem; [AddItemT oOrder; z ]) � Cons(z)) � K
andM 3:2 = J(Split (SetItemQuantity; [AddItemToOrder;
k]) � Cons(k)) � K, are synthesized due to the addition
to SO of the above considered subsumption tuples.
Furthermore, we recall that the IPS ofBS has been
modi�ed in order to align its alphabet to the one of
MC . To re�ect the change on the performed alphabet
alignment, a trace inT r (MC )

k
that containsSelectItem

and/or SetItemQuantity is modi�ed by considering the
following substitution: f AddItemToOrder=SelectItem;
AddItemToOrder=SetItemQuantity g. Analogously,
a trace in T r (BS)

k
that contains either the sequence

hSelectItem SetItemQuantity i or hSetItemQuantity
SelectItemi is modi�ed by replacing any of these sequences
with AddItemT oOrder . According to the new alphabet
alignment,M 8 is removed and in place of bothM 9 andM 10

the coordination mediatorJ(P rod(AddItemToOrder )) � K
is synthesized. Note that, in the monolithic connector,
SelectItem and SetItemQuantity would always appear
one after the other and modifying the connector according
to the applied change would mean to solve again the entire
quotient problem.

VI. RELATED WORK

Interoperability and mediation have been investigated in
several contexts, among which integration of heterogeneous
data sources [13], architectural patterns [22], patterns of con-
nectors [12], Web services [10], [11], and algebra to solve
mismatches [23]. For space reasons, we discuss only the
works, from the different contexts, closest to our method.

The interoperability/mediation of protocols have received at-
tention since the early days of networking. Indeed many efforts
have been done in several directions including for example
formal approaches to protocol conversion, like in [24], [25].

The seminal work in [4] is strictly related to the notions of
mediator presented in this paper. Compared to our connector
synthesis, this work does not allow to deal with ordering mis-
matches and different granularity of the languages (solvable
by the split and merge primitives).

Recently, with the emergence of web services and advocated
universal interoperability, the research community has been
studying solutions to the automatic mediation of business
processes [26], [27]. However, most solutions are discussed
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informally, making it dif�cult to assess their respective advan-
tages and drawbacks.

In [12] the authors present an approach for formally specify-
ing connector wrappers as protocol transformations, modular-
izing them, and reasoning about their properties, with the aim
to resolve component mismatches. In [28] the authors present
an algebra for �ve basic stateless connectors that are symme-
try, synchronization, mutual exclusion, hiding and inaction.
They also give the operational, observational and denotational
semantics and a complete normal-form axiomatization. The
presented connectors can be composed in series and in parallel.
Although these formalizations supports connector modulariza-
tion, automated synthesis is not treated at all hence keeping
the focus only on connector design and speci�cation.

In [8], the authors use a game theoretic approach for
checking whether incompatible component interfaces can be
made compatible by inserting a converter between them which
satis�es speci�ed requirements. This approach is able to auto-
matically synthesize the converter. In contrast to our method,
their method needs as input a deadlock-free speci�cation of
the requirements that should be satis�ed by the adaptor, by
delegating to the user the non-trivial task of specifying that.

In other work in the area of component adaptation [7], it
is shown how to automatically generate a concrete adaptor
from: (i) a speci�cation of component interfaces, (ii) a partial
speci�cation of the components interaction behavior, (iii) a
speci�cation of the adaptation in terms of a set of correspon-
dences between actions of different components and (iv) a
partial speci�cation of the adaptor. The key result is the setting
of a formal foundation for the adaptation of heterogeneous
components that may present mismatching interaction behav-
ior. Assuming a speci�cation of the adaptation in terms of a set
of correspondences between methods (and their parameters)
of two components requires to know many implementation
details (about the adaptation) that we do not want to consider
in order to synthesize a connector.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we formalized a method for the automated
synthesis of modular connectors. A modular connector is
structured as a composition of independent mediators, each
of them corresponding to the solution of a recurring protocol
mismatch. We have proven that our connector decomposition
is correct and, by means of a case study, we have shown
how it promotes connector evolution. An overall advantage
of our approach with respect to the work in the state of the
art (SectionVI) is that our connectors have a modular soft-
ware architecture organized as a composition of fundamentals
mediation primitives. This supports connector evolution and
automated generation of the connector's implementation code.
In particular, we have recently released a �rst implementation
(http://code.google.com/p/otf-connector/) of both the algebra
primitives and the plugging operator. This implementation is
based on the use ofEnterprise Integration Patterns(http:
//www.eaipatterns.com/) and is developed through theApache
Camel framework (http://camel.apache.org/). Because of the

way a modular connector is structured, the automatic genera-
tion of its actual code written in terms of our algebra imple-
mentation is viable and can be achieved with little effort. We
have started to show, through its application to the real world
case study presented in this paper, that our method supports
connector evolution. As future work, we intend to carry out a
rigorous empirical investigation to con�rm the results reported
in this paper. Another future research direction concerns the
ability to infer the needed ontological information, out of the
interface description of the two protocols, rather than assuming
it as given.
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B Quantitative extension: computation of con-
straints

In this appendix, we brie�y give the derivation of the constraints imposed on guards, invariants and
co-invariants by means of the ? -backpropagation technique. This procedure is applied to the product
automaton shown in Figure 2.8.

The ? -backpropagation procedure in our theory is implemented symbolically using assertional rea-
soning techniques (e.g. weakest pre-condition calculation). The idea is that we �rst identify the set of
initial auto-? and semi-? states in the automaton, which are given by constraints, say � . Then we back-
propagate � through output transitions and delay transitions in order to calculate new auto-? and semi-?
states.

• For action transitions (say a!), which are used to �nd new auto- ? states, weakest pre-condition
calculation suf�ces; it returns a constraint � 0 s.t. any state satisfying � 0 can take the a! transition and
go to another state satisfying � .

• For delay transitions, which are used to �nd new semi- ? states, in addition to the weakest pre-
condition requirement, the calculation of � 0 also needs to guarantee that no input is enabled in any
state of � 0. Thus, a state s satisfying � 0 can delay-transit into another state s0 satisfying � , and
all delay successors of s before reaching s0 must have all inputs disabled. The disabled inputs
are calculated using an implicit ? -removal sub-procedure (implemented as weakest precondition
calculation on input transitions) interwoven into the ? -backpropagation.

In our case study, initially we only have semi-? states. For instance, location BV T3ZN (i.e. the
product state in which the component automata are in locations B , V , T, 3, Z , N resp.) is waiting for the
input play frame which must arrive before x0 reaching 2 (speci�ed by its co-invariant). For BV T3ZN , the
set of semi-? states is characterised as the constraint x0 > y + 1& x0 > x &x0 > z � 8&bf == 0& b == f f ,
which say that clock x0 can reach 2 faster than any of x, y and z reaching 2, 1 and 10 resp. Thus, the
co-invariant of BV T3ZN will be violated before the violation of its invariant, which leads to ? . Similarly
we have x0 > x &x0 > z � 8&buf; bf == 0 as � for BV S3Y N.

Based on x0 > y + 1& x0 > x &x0 > z � 8&bf == 0& b == f f as � , we can do ? -elimination on input?
by calculating the weakest pre-condition, which is x0 > 1&x0 > x &x0 > z � 8&bf == 0& b == f f &buf > 0
as � 0. Obviously all states satisfying � 0 can delay-transit into the violation of the BV S3Y N co-invariant
(i.e. before the invariant violation) and no play frame? is enabled along the way. Thus � 0 captures a set
of new semi-? states. We can combine � 0 and � for BV S3Y N and get the new constraints x0 > 1&x0 >
x&x0 > z � 8&bf == 0& b == f f .

In this way, we propagate the constraints through the graph of the product automaton, �nding new auto-
? /semi-? states and weakening the constraints at locations accordingly until the �xed-point is reached.
The detailed step-by-step illustration of the constraint-based ? -backpropagation for our case study is
given in Figures B.2, B.3 and B.4.

The four key locations we are interested in are BV S3Y N, BV T3ZN , BUS3Y N and BUT 3ZN . Our
strategy �rst iterates over BV S3Y N and BV T3ZN to reach the local �xed-point, i.e. constraints (0)&(6)
and (d)&( g). Then, locations BUS3Y N and BUT 3ZN are added and the iteration (over all four states)
continues until the global �xed-points are reached, i.e. constraints F P 1, F P 2, F P 3, F P 4 in Figure B.1.
The �xed-point constraint backpropagation in Figures B.2, B.3 and B.4 is done manually for illustrative
purposes, but it is easy to see that the procedure can be automated in a relatively straightforward manner.

Once the �xed-points have been reached, we can:

1. strengthen the co-invariants for locations BV S3Y N, BV T3ZN , BUS3Y N and BUT 3ZN in Fig-
ure 2.8 by removing those states characterised by the corresponding �xed-points F P 1, F P 2, F P 3
and F P 4 in Figure B.1; and

2. perform ? -elimination, and modify the guard on the start play? transitions to be G1, G2, G3 and G4
in Figure B.1 (so that proper delay can be observed before the playback is started).

After this, the inputs and outputs, along with invariants and co-invariants should be exchanged on the
resulting automaton, in order to obtain the timed quotient.
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FP1::= OR{A,E,J,P,N,[a],[f],[l],[o]}

FP2::= OR{I,II,XII,VI,VIII,[1],[3],[6],[8]}

FP3::= OR{7,9,III,IV,V,VII,IX,X,[2],[4],[5],[7],[9]}

FP4::= OR{n,s,D,H,O,L,M,Q,[e],[i],[j],[k],[n]}

G1::=  u==0& (bf+5*r)>=5   or    u==1&r<=1& bf+5*r>=10   or   u==1&r>=2&bf>=4

G2::=   u==0&y>0& (bf+5*r)>=4   or    u==0&y==0& bf+5*r>=5  or 
             u==1&y>0&r<=1& (bf+5*r)>=9   or    u==1&y==0&r<=1& bf+5*r>=10   or   u==1&r>=2&bf>=4

G3::=   b==tt&y>0& z+2*(bf+5*r)>=18   or    b==tt&y==0& z+2*(bf+5*r)>=20  or 
             b==ff&y>0&r<=1& z+2*(bf+5*r)>=18   or    b==ff&y==0&r<=1& z+2*(bf+5*r)>=20   or   b==ff&r>=2&z+2*bf>=8

G4::=  b==tt& z+2*(bf+5*r)>=20   or    b==ff&r<=1& z+2*(bf+5*r)>=20   or   b==ff&r>=2&z+2*bf>=8

Fixpoints:

Guards on the incoming `start_play?' transitions:

Figure B.1: The �xed-points and guards
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BVT3ZN

x'>y+1&x'>x&x'>z-8&bf==0&b==ff     (1)

x'>1&x'>x&x'>z-8&bf==0&b==ff&buf>0

be:input?+bp:semi-bot

x'>1&x'>x&x'>z-8&bf==0&b==ff

bp:semi_bot

x'>z-(8-2*bf)&b==ff   (9)

......

+(a)

x'>y+1&x'>x&x'>z-8&bf==0&b==tt     (6)

bp:frame_loss!

bp:semi-bot

x'>1&x'>x&x'>z-8&bf==0&b==ff&y<=1

x'>y&x'>x&x'>z-8&bf==0&b==ff

x'>0&x'>x&x'>z-8&bf==0&b==ff&buf>0

be:input?+bp:semi-bot

x'>x&x'>z-8&bf==0&b==ff     (b)

+(a)

bp:send_frame!

x'>y+1&x'>0&x'>z-8&bf==0&b==tt&x==2

bp:semi-bot

x>=x'>y+1&x'>z-8&bf==0&b==tt

+(6)

x'>y+1&x'>z-8&bf==0&b==tt    (7)

be:input?

x'>1&x'>z-8&bf==0&b==tt&buf>0

+(a)

x'>1&x'>x&x'>z-8&bf==0&b==tt    (i)

bp:send_frame!

x'>1&x'>0&x'>z-8&bf==0&b==tt&x==2

bp:semi-bot

x>=x'>1&x'>z-8&bf==0&b==tt

+(i)

x'>1&x'>z-8&bf==0&b==tt     (n)

x'>x&x'>z-8&buf,bf==0      (a)

BVS3YN

bp:semi_bot

 [h]

x'>z-6&bf==1&b==ff&x'>x,1   (k)

(r)
......

x'>z-(8-2*bf)&b==ff    (s)

BVT3ZN

bp:semi_bot

bp:frame_loss!

x'>z-8&bf==0&b==ff    (3)

bp:send_frame!

x'>0&x'>z-8&bf==0&b==ff&x>=x',y+1

x'>0&x'>z-8&bf==0&b==ff&x==2

bp:semi-bot

+(b)

x'>0&x'>z-8&bf==0&b==ff    (f)

bp:semi-bot + (2)

x<2&x'>z-8&bf==0&b==ff   (g)

bp:send_frame!

x==2&x'>z-8&bf==0&b==ff

+(g)

x'>z-8&bf==0&b==ff    (h)

be:play_frame?+bp:semi-bot + (j)

bp:send_frame!

+(k)

be:input?

x'>z-6&bf==1&b==ff&x'>1&buf>0    (j)

x'==2&0>z-8&bf==1&b==ff&x<2&y<1

be:play_frame?+bp:semi-bot

bp:frame_loss!

x'>x&x'>z-8&bf==0&b==ff

be:input?

x'>0&x'>z-8&bf==0&b==ff&x>=x',1&buf>0    (c)

(b)

bp:send_frame!

x'>0&x'>z-8&bf==0&b==ff&x>=x',1

x'>0&x'>z-8&bf==0&b==ff&x==2     (d)

bp:semi-bot+ (c)

bp:frame_loss!

x'>0&x'>z-8&bf==0&b==ff&x>=x',1&y<=1

x'>0&x'>z-8&bf==0&b==ff&x>=x',y

be:input?

(d)

bp:semi-bot+ (e)

x'>0&x'>z-8&bf==0&b==ff&x>=x'

bp:semi-bot

x'>z-6&bf==1&b==ff&x'>x,y+1    (4)

bp:semi-bot

bp:send_frame!

x'>z-6&bf==1&b==ff&x'>0,y+1&x==2

bp:semi-bot

x'>z-6&bf==1&b==ff&x>=x'>0,y+1

+(4)

x'>z-6&bf==1&b==ff&x'>y+1

x'>z-6&bf==1&b==ff&x'>1&x==2

bp:semi-bot + (j)

x'>z-6&bf==1&b==ff&x>=x'>1

x'>z-6&bf==1&b==ff&x'>1   (l)

bp:frame_loss!

x'>z-6&bf==1&b==ff&x'>1&y<=1

bp:semi-bot

x'>z-6&bf==1&b==ff&x'>y&x<x'+1   (5)

bp:send_frame!

x'>z-6&bf==1&b==ff&x'>y&0<x'+1&x==2

bp:semi-bot

x'>z-6&bf==1&b==ff&x>=x'>y

+(5)

x'>z-6&bf==1&b==ff&x'>y

be:input?

x'>z-6&bf==1&b==ff&x'>0&buf>0     (m)

(l)

bp:semi-bot + (m)

x'>z-6&bf==1&b==ff&x'>0&x<x'+1     (o)

bp:send_frame!

x'>z-6&bf==1&b==ff&x'>0&x==2

bp:semi-bot + (m)

x'>z-6&bf==1&b==ff&x>=x'>0

+(o)

x'>z-6&bf==1&b==ff&x'>0      (p)

bp:frame_loss!

x'>z-6&bf==1&b==ff 

x<2&x'>z-6&bf==1&b==ff   (q)

bp:send_frame!

x==2&x'>z-6&bf==1&b==ff

+(q)

x'>z-6&bf==1&b==ff    (r)

bp:frame_loss!

x'>0&x'>z-8&bf==0&b==ff

bp:semi-bot

x<2&x'>z-8&bf==0&b==ff    (2)

 (f)

bp:frame_loss!

x'>0&x'>z-6&bf==1&b==ff

bp:semi-bot

x<2&x'>z-8&bf==1&b==ff     (8)

bp:semi-bot + (8)

 (p)

Figure B.2: Local �xed-point calculation
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bp:tau_unreliable!

x'>z-(8-2*bf)&u==1&z==0 

x'>2*(bf-4)&u==1&z==10&b==tt

(9)

x'>2*(bf-4)&u==1&z==0    (I)

bp:frame_recv!

bp:semi-bot

x'>z+2*(bf-9)&u==1&z>=y+9&b==tt

x'>z+2*(bf-9)&u==1&z>=9&b==tt    (C)

x'>z+2*(bf-8)&u==1&z>=9&b==tt&y<=1

bp:semi-bot

x'>z+2*(bf-8)&u==1&z-8>=y&b==tt

be:input?+bp:semi-bot + (B)

be:input?+bp:semi-bot + (C)

x'>z+2*(bf-8)&u==1&z>=8&b==tt

......
x'>z+2*(bf-[z-y])&u==1&b==tt   (III)

bp:tau_unreliable!

x'>z-(8-2*bf)&u==1&z==0

(s)

bp:tau_periodic!

x'>z-(8-2*bf)&u==r==0&z==0

bp:tau_slotFin! + strengthening

x'>2*(bf-4)&u==r==0&z==10&b==tt&y<=1

(I)

bp:tau_periodic!

bp:frame_recv!

bp:semi-bot

x'>z+2*(bf-9)&u==r==0&z>=y+9&b==tt

x'>z+2*(bf-9)&u==r==0&z>=9&b==tt   (G)

x'>z+2*(bf-8)&u==r==0&z>=9&b==tt&y<=1

bp:semi-bot

x'>z+2*(bf-8)&u==r==0&z-8>=y&b==tt

be:input?+bp:semi-bot + (F)

be:input?+bp:semi-bot + (G)

x'>z+2*(bf-8)&u==r==0&z>=8&b==tt

......

x'>z+2*(bf-[z-y])&u==r==0&b==tt    (IV)

x'>2*(bf-4)&u==r==0&z==0    (II)

bp:tau_reliable!

x'>z+2*(bf-[z-y])&(r>=1&u==1)&z==0

bp:tau_slotFin!

x'>2*(bf-[0-y])&(r>=1&u==1)&z==0

x'>0&bf==0&y==0&(r>=1&u==1)&z==0

subsumed by (I)

...... ([10]=9)

x'>z+2*(bf-[z])&u==1&b==tt   (D)

......

x'>z+2*(bf-[z])&u==r==0&b==tt     (H)

bp:tau_reliable!

x'>z+2*(bf-[z-y])&(r==1&u==0)&z==0

x'>2*(bf-[0-y])&(r==1&u==0)&z==0

x'>0&bf==0&y==0&(r==1&u==0)&z==0

x'>2*(bf-4)&u==1&z==0    (A) x'>2*(bf-4)&u==r==0&z==0    (E)

(IV)

bp:tau_reliable!

x'>z+2*(bf-[z])&(r==1&u==0)&z==0

x'>2*bf&(r==1&u==0)&z==0

(III)

bp:tau_reliable!

x'>z+2*(bf-[z])&(r>=1&u==1)&z==0

x'>2*bf&(r>=1&u==1)&z==0

subsumed by (A)

bp:tau_slotFin!

x'>2*(bf-4)&u==r==0&z==10    (F)

(A)

bp:tau_slotFin!

x'>2*(bf-4)&u==1&z==10&b==tt    (B)

+XI

x'>0&bf==0&(r==1&u==0)&z==0    (J)

bp:frame_loss!

x'>0&bf==0&(r==1&u==0)&z==0&b==ff  (XI)

x'>0&bf==0&(y==0 or b==ff)     (XII)
   &(r==1&u==0)&z==0

x'>0&bf==0&(r>=1&u==1)&z==0

bp:tau_slotFin! + strengthening

x'>2*(bf-4)&u==r==0&z==10&b==ff&y<=1

bp:frame_loss!

bp:semi-bot

x'>z+2*(bf-9)&u==r==0&z>=y+9&b==ff

x'>z+2*(bf-9)&u==r==0&z>=9&b==ff   (K)

x'>z+2*(bf-9)&u==r==0&z>=9&b==ff&y<=1

bp:semi-bot

x'>z+2*(bf-9)&u==r==0&z-8>=y&b==ff

be:input?+bp:semi-bot + (F)

be:input?+bp:semi-bot + (K)

x'>z+2*(bf-9)&u==r==0&z>=8&b==ff

......

x'>z+2*(bf-9)&u==r==0&b==ff    (VII)

(II)

......
x'>z+2*(bf-9)&u==r==0&b==ff     (L)

bp:tau_unreliable!

x'>z+2*(bf-9)&(u==1&r==0)&z==0

(L)

bp:tau_unreliable!

x'>z+2*(bf-9)&(u==1&r==0)&z==0

x'>2*(bf-9)&(u==1&r==0)&z==0     (VIII)

x'>2*(bf-9)&(u==1&r==0)&z==0    (N)

......

x'>z+2*(bf-[z-y]-4)&(u==1&r==0)&b==tt   (IX)

......

x'>z+2*(bf-[z]-4)&(u==1&r==0)&b==tt   (M)

bp:tau_reliable!

x'>z+2*(bf-[z]-4)&(r==1&u==1)&z==0

x'>2*(bf-4)&(r==1&u==1)&z==0

subsumed by (A)

(IX)

bp:tau_reliable!

x'>z+2*(bf-[z-y]-4)&(r==1&u==1)&z==0

x'>2*(bf-[-y]-4)&(r==1&u==1)&z==0

subsumed by (I)

bp:tau_slotFin! + strengthening

x'>0&bf==0&b==ff&(r==1&u==0)&z==10

bp:semi-bot ...

2>z-8>=x'&bf==0&b==ff&(r==1&u==0)

be:play_frame?+bp:semi-bot ...

x'>z-8&bf==1&b==ff&(r==1&u==0)

x'>z-(10-2*bf)&b==ff&(r==1&u==0)    (V)

......

x'>z-(10-2*bf)&b==ff&(r==1&u==0)   (O)

......

bp:tau_unreliable!

x'>2*(bf-5)&(r==1&u==1)      (VI)

bp:tau_unreliable!

x'>2*(bf-5)&(r==1&u==1)     (P)

......

x'>z+2*(bf-[z-y]-1)&(u==1&r==1)&b==tt   (X)
......

x'>z+2*(bf-[z]-1)&(u==1&r==1)&b==tt   (Q)

bp:tau_reliable!

x'>z+2*(bf-[z]-1)&(r==2&u==1)&z==0

x'>2*(bf-1)&(r==2&u==1)&z==0

subsumed by (A)

(X)

bp:tau_reliable!

x'>z+2*(bf-[z-y]-1)&(r==2&u==1)&z==0

x'>2*(bf-[-y]-1)&(r==2&u==1)&z==0

subsumed by (I)

(VI)

Figure B.3: Global �xed-point calculation I
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 bp:tau_reliable!+tau_periodic!
+(XII)+(II)+(I)+strengthening

(7)

x'>y+1&z==0&bf==0&(r>=2&u==0)&b=ff   [1]

bp:tau_reliable!+tau_periodic!+strengthening

x'>1&z==0&bf==0&(r>=2&u==0)    [a]

(n)

 x'>y+1&(r>=2&u==0)&z==10&bf==0&b==ff

bp:tau_slotFin!

bp:semi-bot ....

 z-8>=x'>y+1&(r>=2&u==0)&bf==0&b==ff

bp:tau_slotFin! + strengthening

x'>1&z==10&bf==0&b==ff&(r>=2&u==0)   [b]

 z-8>=x'>1&(r>=2&u==0)&bf==0&b==ff   [c]

be:input?+bp:semi-bot + [b]

bp:frame_loss!

 z-8>=x'>1&(r>=2&u==0)&bf==0&b==ff

x'+1>2*(bf-4)>=x'&(r>=2&u==1 
   or r==u==0)&z==0                        [3]

bp:semi-bot

 x'+1>z-8>=x'>y&(r>=2&u==0)&bf==0&b==ff

x'==2&1>z-8>=0&(r>=2&u==0)&bf==1
        &b==ff&x<2&y<1

be:play_frame?+bp:semi-bot

......

x'+1>z-6>=x'&(r>=2&u==0)&bf==1&b==ff
......

x'+1>z-(8-2*bf)>=x'&(r>=2&u==0)&b==ff   [2]

......

x'+1>z+2*(bf-4)>=x'&(r>=2&u==0)&b==ff    [e]

x'+1>2*(bf-4)>=x'&(r>=2&u==1 
     or r==u==0)&z==0                     [f]

 x'+1>z-8>=x'>0&(r>=2&u==0)&bf==0&b==ff    [d]

be:input?+bp:semi-bot + [c]

bp:frame_loss!

 x'+1>z-8>=x'>0&(r>=2&u==0)&bf==0&b==ff

x'+1>2*(bf-4)>=x'&
(r,u==2,1 or 0,0)&b==tt&z==10

bp:frame_recv!

bp:semi-bot

x'+1>z+2*(bf-9)>=x'&
(r,u==2,1 or 0,0)&z>=y+9&b==tt

x'+1>z+2*(bf-9)>=x'&
(r,u==2,1 or 0,0)&z>=9&b==tt   [h]

x'+1>z+2*(bf-8)>=x'&
(r,u==2,1 or 0,0)&z>=9&b==tt&y<=1

bp:semi-bot

x'+1>z+2*(bf-8)>=x'&
(r,u==2,1 or 0,0)&z-8>=y&b==tt

be:input?+bp:semi-bot + [g]

be:input?+bp:semi-bot + [h]

x'+1>z+2*(bf-8)>=x'&
(r,u==2,1 or 0,0)&z>=8&b==tt

......

x'+1>z+2*(bf-[z-y])>=x'&
(r,u==2,1 or 0,0)&b==tt     [4]

bp:tau_reliable!

x'+1>z+2*(bf-[z-y])>=x'&(r,u==3,1 or 1,0)&z==0

bp:tau_slotFin!+strengthening

x'+1>2*(bf-[0-y])>=x'&(r,u==3,1 or 1,0)&z==0

subsumed by (I)

......

x'+1>z+2*(bf-[z])>=x'&
(r,u==2,1 or 0,0)&b==tt   [i]

[4]

bp:tau_reliable!

x'+1>z+2*(bf-[z])>=x'&
(r,u==3,1 or 1,0)&z==0

x'+1>2*bf>=x'&(r,u==3,1 or 1,0)&z==0

subsumed by (A)

x'>0&bf==0&(r,u==3,1 or 1,0)&z==0
or  x'>1&bf==1&(r,u==3,1 or 1,0)&z==0

[3]

bp:tau_unreliable!+tau_periodic!

bp:tau_unreliable!+tau_periodic!

x'+1>2*(bf-4)>=x'&(r,u==0,0)&b==ff&z==10

bp:tau_slotFin!+strengthening

[3]

bp:semi-bot...

x'+1>z+2*(bf-9)>=x'&(r,u==0,0)&b==ff   [5]

......

x'+1>z+2*(bf-9)>=x'&(r,u==0,0)&b==ff   [j]

bp:tau_unreliable!

x'+1>2*(bf-9)>=x'&(r,u==0,1)&z==0    [6]

bp:tau_slotFin!

x'+1>z+2*(bf-14)>=x'&(r,u==0,1)&b==tt&z==10

......

x'+1>z+2*(bf-14)>=x'&(r,u==0,1)&z-8>=y&b==tt

......
x'+1>z+2*(bf-[z-y]-6)>=x'&(r,u==0,1)&b==tt   [7]

......

x'+1>z+2*(bf-[z]-6)>=x'&(r,u==0,1)&b==tt    [k]

bp:tau_reliable!

x'+1>2*(bf-6)>=x'&(r,u==1,1)&z==0   [l]

bp:tau_reliable!

x'+1>z+2*(bf-[z-y]-6)>=x'&(r,u==1,1)&z==0

x'+1>2*(bf-[-y]-6)>=x'&(r,u==1,1)&z==0   [8]

[7]

x'+1>2*(bf-[-y]-6)>=x'&(r,u==1,1)&b==tt&z==10

bp:tau_slotFin!

bp:semi-bot

x'+1>z+2*(bf-[-y]-11)>=x'&
(r,u==1,1)&z>=y+9&b==tt

x'+1>z+2*(bf-11)>=x'&
(r,u==1,1)&z>=9&b==tt

be:input?+bp:semi-bot + [m]

bp:frame_recv!

x'+1>z+2*(bf-11)>=x'&
(r,u==1,1)&z>=9&b==tt

bp:semi-bot

x'+1>z+2*(bf-11)>=x'&
(r,u==1,1)&z-8>=y&b==tt

......

x'+1>z+2*(bf-[z-y]-3)>=x'&
(r,u==1,1)&b==tt                   [9]

......

x'+1>z+2*(bf-[z]-3)>=x'&(r,u==1,1)&b==tt    [n]

bp:tau_reliable!

x'+1>z+2*(bf-[z]-3)>=x'&(r,u==2,1)&z==0

x'+1>2*(bf-3)>=x'&(r,u==2,1)&z==0

subsumed by (A)

bp:tau_reliable!

x'+1>z+2*(bf-[z-y]-3)>=x'&(r==2&u==1)&z==0

x'+1>2*(bf-[-y]-3)>=x'&(r==2&u==1)&z==0

subsumed by (I)

[9]

bp:semi-bot

 x'+1>z-8>=x'>=0&(r>=2&u==0)&bf==0&b==ff

[f]

bp:tau_slotFin!+strengthening

x'+1>2*(bf-4)>=x'&
(r,u==2,1 or 0,0)&z==10    [g]

bp:tau_slotFin!

x'+1>2*(bf-6)>=x'&(r,u==1,1)&z==10   [m]

Figure B.4: Global �xed-point calculation II
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