
HAL Id: hal-00805608
https://inria.hal.science/hal-00805608

Submitted on 28 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automating Verification of Non-functional Properties
Chris Chilton, Lukas Holik, Paola Inverardi, Bengt Jonsson, Marta

Kwiatkowska, Hongyang Qu, Massimo Tivoli, Xu Wang

To cite this version:
Chris Chilton, Lukas Holik, Paola Inverardi, Bengt Jonsson, Marta Kwiatkowska, et al.. Automating
Verification of Non-functional Properties. [Research Report] 2012. �hal-00805608�

https://inria.hal.science/hal-00805608
https://hal.archives-ouvertes.fr

ICT FET IP Project

Deliverable D2.4

Automating Verification of
Non-functional Properties

http://www.connect-forever.eu

Project Number : 231167

Project Title : CONNECT – Emergent Connectors for Eternal Software Inten-

sive Networked Systems

Deliverable Type : Report

Deliverable Number : D2.4

Title of Deliverable : Automating Verification of Non-functional Properties
Nature of Deliverable : R

Dissemination Level : Public

Internal Version Number : 1.5

Contractual Delivery Date : 01 December 2012

Actual Delivery Date : 01 December 2012

Contributing WPs : WP2

Editor(s) : Massimo Tivoli (UNIVAQ)

Author(s) : Chris Chilton (UOXF), Lukáš Holı́k (UU), Paola Inverardi

(UNIVAQ), Bengt Jonsson (UU), Marta Kwiatkowska (UOXF),

Hongyang Qu (UOXF), Massimo Tivoli (UNIVAQ), Xu Wang

(UOXF)

Reviewer(s) : Bernhard Steffen (TUDO)

CONNECT 231167 3/94

Abstract

In this deliverable, we document the progress of WP2 during the fourth year of the CONNECT project.

Following the last reviews’ recommendations, the work is organized into two main streams. One stream

concerns a quantitative extension of the compositional specification theory devised during the previous

two years, while the other integrates the WP2 CONNECTor algebra with the specification theory so as

to support WP3 CONNECTor synthesis. In particular, the assume-guarantee reasoning framework de-

veloped for the compositional specification theory ensures that a CONNECTed system preserves global

safety properties by just checking the local properties of its constituent components. The proposed

quantitative extension of the compositional specification theory allows the modeling of the real-time

performance of networked systems, in addition to enabling the synthesis of CONNECTors that are com-

patible with both the functional behavior and timing constraints of their environments. Finally, in order

to integrate the CONNECTor algebra with the specification theory so as to support WP3 synthesis, we

defined a method for the automated synthesis of modular CONNECTors. We prove that the behavior of

such a CONNECTor is equivalent to the behaviour of a monolithic WP3 CONNECTor. All of the work is

evaluated through an application to relevant CONNECT scenarios, e.g., the GMES (Global Monitoring

for Environment and Security) scenario.

Keyword List

Specification theory, quotient, synthesis, assume-guarantee, data, quantitative verification, functional

and non-functional requirements, mediators, compositional connectors, mediation patterns, interface

automata.

CONNECT 231167 4/94

Document History

Version Type of Change Author(s)

1.0 initial version Massimo Tivoli
(UNIVAQ)

1.1 writing of Section 2.3 Massimo Tivoli
(UNIVAQ)

1.2 writing of Section 2.1 UOXF
1.3 writing of Section 2.2 UOXF
1.4 finalization for the internal revision Massimo Tivoli

(UNIVAQ)
1.5 final CONNECT-official version Massimo Tivoli

(UNIVAQ) and
UOXF

CONNECT 231167 5/94

Table of Contents

LIST OF FIGURES . 9

1 INTRODUCTION . 11
1.1 The role of work package WP2 . 11

1.2 WP2 progress during the fourth year . 11

1.3 Review recommendations . 12

1.4 Outline . 14

2 YEAR 4 WORK . 15
2.1 Safe assume-guarantee reasoning framework for the compositional specification theory 15

2.1.1 Primer on the specification theory . 15

2.1.2 Assume-guarantee reasoning framework . 16

2.1.3 Evaluation . 18

2.2 Quantitative extension of the compositional specification theory and its application 19

2.2.1 Component model. 20

2.2.2 Semantic model . 21

2.2.3 Refinement . 22

2.2.4 Compositional operations . 22

2.2.5 Realisability . 23

2.2.6 Evaluation . 23

2.3 Connecting the specification theory with the Connector algebra to support WP3 synthesis. . . 27

2.3.1 An informal overview on the automated synthesis of modular Connectors 28

2.3.2 Evaluation: correctness and Connector evolution . 33

3 EVALUATION OF WP2 RESULTS . 37

4 CONCLUSION . 39

A PUBLISHED WORK . 41
A.1 Assume-Guarantee Reasoning for Safe Component Behaviours . 42

A.2 Revisiting Timed Specification Theories: A Linear-Time Perspective . 60

A.3 Automatic Synthesis of Modular Connectors via Composition of Protocol Mediation Patterns 76

B QUANTITATIVE EXTENSION: COMPUTATION OF CONSTRAINTS 87

BIBLIOGRAPHY . 93

CONNECT 231167 7/94

List of Figures

Figure 2.1: Assumption and guarantees for Spec1 and Spec2. 19

Figure 2.2: The guarantee for Spec1 ∧ Spec2 . 19

Figure 2.3: The most general implementation of Spec1 ∧ Spec2 . 20

Figure 2.4: Specification of a restrictive detector constraint Detect . 20

Figure 2.5: Specification for (Spec1 ∧ Spec2)/Detect . 20

Figure 2.6: Video streaming services . 24

Figure 2.7: Specification of the services . 25

Figure 2.8: The product automaton with its transitions/invariants/co-invariants specified below 26

Figure 2.9: Overview of the intra-WP2 and inter-WP2-WP3 integration . 27

Figure 2.10: Overview of the automated synthesis of modular Connectors . 28

Figure 2.11: Interface automaton of the W1 communication mediator . 29

Figure 2.12: Interface automaton of the W2 communication mediator . 30

Figure 2.13: Interface automaton of P . 30

Figure 2.14: Interface automaton of W1 (uppermost and left-hand side), P (uppermost and right-
hand side), and “P wrapped by W1” (lowermost side) . 31

Figure 2.15: Interface automaton of P wrapped by W1 and, in turn, wrapped by W2 31

Figure 2.16: IA for P (left-hand side) and R (right-hand side) . 32

Figure 2.17: (tP , tR): a pair of semantically related traces for P and R . 32

Figure 2.18: Difference pair for (tP , tR) . 33

Figure B.1: The fixed-points and guards . 88

Figure B.2: Local fixed-point calculation . 89

Figure B.3: Global fixed-point calculation I . 90

Figure B.4: Global fixed-point calculation II . 91

CONNECT 231167 9/94

1 Introduction
The CONNECT project aims to develop a revolutionary approach to the seamless networking of digital sys-

tems by synthesizing, on-the-fly, the CONNECTors via which heterogeneous Networked Systems (NSs)

communicate. The role of Work Package 2 (WP2) is to investigate the foundations and verification meth-

ods for composable CONNECTors, so that support is provided for composition of NSs, whilst enabling

automated learning, reasoning and synthesis.

This document provides an overview of the work undertaken by WP2 in the fourth year of the project.

The work is organized into two streams: (i) a quantitative extension of the compositional specification the-

ory defined during the third year [12], with an application to a CONNECT case study, and (ii) the integration

of the connector algebra, defined during the second year [11], with the specification theory and its support

for WP3 synthesis. These two work streams were explicitly mentioned in the reviewers’ recommenda-

tions from the last review (see Section 1.3), hence we considered them as a priority for this deliverable.

Furthermore, the first work stream addresses the main topics of D2.4, as planned in the CONNECT DoW,

i.e., “Investigate a quantitative assume-guarantee framework” and “Develop scalable techniques for timed

systems based on approximation and abstraction”.

In this chapter, we introduce the two mentioned work streams. Section 1.1 recalls the role of WP2

within the CONNECT project by highlighting the WP2 tasks and objectives. Then, in Section 1.2, we

describe how the work undertaken during the fourth year fits the WP2 tasks/objectives. Section 1.3

highlights how this work addresses the last reviewers’ recommendations, while Section 1.4 provides an

outline for the remainder of the deliverable.

1.1 The role of work package WP2

We recall that the role of WP2 is to investigate the foundations and verification methods for composable

connectors, so that support is provided for composition of NSs, whilst enabling automated learning, rea-

soning and synthesis. The expected outcomes are formalisms, methods and software tools that can be

used for the specification, design and development of connectors, allowing for both functional and non-

functional properties to be expressed and verified. WP2 thus provides the theoretical underpinning for

the work carried out in the other work packages, in the sense that connectors specified in WP2 can be

instantiated in WP3 (synthesis), WP4 (learning) and WP5 (dependability analysis).

The remit of WP2 is to develop compositional specification and verification techniques to the extent

that they can be successfully applied to the modeling and reasoning of connector behaviours in a compo-

sitional manner. To achieve this goal, WP2 is structured into the four tasks:

• Task 2.1. Capturing functional and non-functional connector behaviours. This task aims to guide

the project by formalizing the notions of connector and component, characterizing the types of inter-

action and identifying a verification approach, capable of capturing non-functional properties.

• Task 2.2. Compositional connector operators. The main thrust here is to formulate a compositional

modeling and reasoning framework for components and connectors.

• Task 2.3. Rephrasing interoperability in terms of connector behaviours. The aim is to formulate

techniques for interoperability checking, in the presence of dynamic behaviours and non-functional

properties.

• Task 2.4. Reasoning toolset. The focus here is on a quantitative verification framework for connec-

tors and components, capable of handling dynamic scenarios and non-functional properties, which

includes algorithms and prototype implementations.

1.2 WP2 progress during the fourth year

Work in the fourth year has focused on completing the remaining objectives of Tasks 2.3 and 2.4, in

addition to addressing the recommendations from the third review. Consequently, we have organized this

work into two main streams.

CONNECT 231167 11/94

One stream of work concerns the integration of the defined Compositional Specification Theory [12]

with the devised Assume-Guarantee-based Quantitative Verification Framework [12], and an application of

it to a CONNECT case study. As suggested by the reviewers, to address this issue, we have been working

on (i) an assume-guarantee framework for reasoning compositionally about the safety properties satisfied

by specifications of components; (ii) the formulation of a quantitative extension to the specification theory;

and (iii) the identification of a suitable CONNECT scenario to demonstrate the overall applicability of our

verification framework to the objectives of CONNECT. We briefly remark on each strand below:

• The work of (i) has allowed us to develop sound and complete assume-guarantee rules for inferring

the strongest safety properties satisfied by a collection of components (modelling e.g., networked

systems and connectors) under the full collection of composition operators on the specification the-

ory. Such compositional techniques are required in order to improve the efficiency with which the

behaviour of a connector can be verified, which is of key importance when connectors are to be

synthesised on the fly. Details are provided in Section 2.1.

• From (ii) we have developed a real-time extension of the specification theory [12] that allows us

to model the real-time performance of networked systems. From this, we have formulated a tech-

nique based on quotient for synthesising connectors that are not only functionally compatible with

their environment, but that are also responsive to the timing demands of the systems to be made

interoperable. Details are provided in Section 2.2.

• Finally, strand (iii) has allowed us to test the suitability of our framework in meeting the objectives of

CONNECT. We have developed an example based on the GMES scenario, for which we synthesise

connectors in order to allow successful communication between a number of networked systems.

This example has been applied to both the non-quantitative assume-guarantee framework for safety

properties, as well as the real-time extension of the specification theory.

The second stream of work highlights intra- and inter-WP integration. We have clarified how the for-

malized Connector Algebra [11] relates to the specification theory (intra-WP2 integration), and we have

demonstrated how this relationship correlates with the mediator patterns and the associated CONNECTor

synthesis approach developed within WP3 [13] (inter-WP2-WP3 integration). In particular, we have con-

nected the specification theory with the connector algebra so as to support WP3 synthesis. To this aim,

we have provided a synthesis algorithm that produces a modular CONNECTor in terms of the primitives of

the algebra and its composition operators. The modular CONNECTor is equivalent to its monolithic version

as produced by the specification theory via quotient. An important aspect of our CONNECTor decompo-

sition concerns the ability for it to be reflected in terms of constraints for the mapping-driven synthesis

in WP3. Furthermore, the CONNECTed system, composed by the synthesized modular CONNECTor plus

the considered NSs, satisfies a general goal representing crucial conditions for correct communication

and coordination. These conditions can be considered as the intent of the synthesized CONNECTor or,

equivalently, of the CONNECTed system. Details are provided in Section 2.3.

1.3 Review recommendations

The following list recalls the reviewers’ recommendations for the work done within WP2 after the third year

of the project. For each recommendation, the reactions of the WP2 participants are reported.

• ...There seem to be some inconsistencies between the synthesis approaches of WP2 and WP3.

Deliverable D3.3 says that the connectors generated there are more specific and more concise than

those of WP2. This needs to be explained better. Also ontology alignment in WP3 looks different

from the one in WP2. This needs to be clarified...

We have integrated the specification theory with the connector algebra so as to support WP3 syn-

thesis. In particular, we have provided an algorithm for the automated synthesis of modular CON-

NECTors, each of them expressed as the composition of independent mediators. A modular CON-

NECTor, as synthesized by our method, supports CONNECTor evolution and performs correct medi-

ation.

CONNECT 231167 12/94

To show correctness, we have formally defined the semantics of protocols (as well as of mediators

and CONNECTors) by using a revised version of the usual Interface Automata (IA) theory. Then,

we have proved that a modular CONNECTor for two protocols P and R enjoys the same correctness

properties of the monolithic CONNECTor obtained by expressing the synthesis problem as a quotient

problem between P and R, as specified by the WP2 specification theory. Concerning the set of

considered mediation patterns and, hence, CONNECTor modularization, our synthesis method relies

on a revised version of the WP2 CONNECTor algebra. We have revised the original algebra by

adding an iterator operator and by giving its semantics in terms of our revised IA theory.

To show how modular CONNECTors support evolution, we have used a case study in the e-

commerce domain to illustrate that relevant changes can be applied on a modular CONNECTor by

simply acting on its constituent mediators, without entirely re-synthesizing its protocol.

• At the last review, this work package presented the draft of a connector algebra and a compositional

approach based on assume-guarantee reasoning for probabilistic liveness and reward properties.

The reviewers recommended at that review that the relationship between the calculus developed in

WP2 and its application and usefulness to the other work packages be clarified and asked specifi-

cally how synthesis is supported by the calculus. Some further comments about the ability to deal

with mismatches were made.

At this review, the work package presented a compositional specification theory for connector behav-

ior and composition which is based on some of the earlier ideas and directions but which essentially

replaces the earlier draft connector algebra. Deliverable D2.3 includes a description of a quotient

operator and its application to synthesis. In addition, the theory includes actions and states that have

data parameters. These elements permit the theory to provide an underlying basis for the mediator

synthesis in WP3, the extended LTS in WP3 and the register automata in WP4. The specification

theory enables a general description of mismatches as constraints, which address comments on the

limited set of mismatch situations that could be dealt with previously.

At the previous review, WP2 reported considerable progress in the area of Quantitative Composi-

tional Verification based on assume-guarantee reasoning, and the reviewers commended this but

commented on the relatively weak proof rules. In this review period, this work stream reported im-

provements and extensions to the learning framework for assume-guarantee reasoning that go some

way towards addressing the reviewers’ comments. In addition, work on a new assume-guarantee

framework is reported. The verification performance of this new framework is as yet uncompetitive

in relation to previous work. Furthermore, it is unclear where the contract-based verification which

has been developed in the second year comes into play in that context.

...

In summary, work stream (i) has developed a compositional specification theory that can underpin

synthesis work in the rest of the project and in doing so has clearly addressed recommendations

made in the last review. Work stream (ii) has addressed the reviewers’ comments with respect to

proof rules. However, there is very little evidence that relevance to the rest of the project is being

addressed.

The next phase of WP2 has a goal to integrate work streams (i) and (ii) through a quantitative

extension of the specification theory and we would recommend that this be treated as a priority

together with the need to demonstrate application of the Quantitative Compositional Verification to a

problem drawn from the CONNECT case studies.

In an effort to bridge workstreams (i) and (ii), we have formulated an assume-guarantee reasoning

framework for safety properties based on the compositional component specification theory devel-

oped in D2.3. Component specifications are expressed as pairs of prefix-closed sets, an assumption

and a guarantee. We define the notion of satisfaction between components and AG specifications,

as well as substitutive refinement that preserves implementation containment. The refinement pre-

order is linear-time, to also align with WP4. We also give compositional rules on AG specifications

for the operations of parallel composition, conjunction and quotient, and apply the framework to a

case study from the systems domain, where we demonstrate how components can be inferred at

CONNECT 231167 13/94

run-time from their specifications and substituted without introducing errors. An extension of the AG

framework with liveness properties (via quiescence) is envisaged.

Additionally, we have developed a quantitative, real-time extension of the component specification

theory in order to integrate workstreams (i) and (ii) and to align with WP5 (latency). The framework

is capable of reasoning about safety and bounded-liveness properties and admits as a refinement

relation the largest pre-congurence preserving absence of safety and bounded-liveness errors. It

supports the operators of parallel composition, conjunction, disjunction and quotient, which are com-

positional. The framework relies on the notion of time-lock, which corresponds to the stopping of

the global system clock and results in strong algebraic properties. We apply the formalism to a case

study from the systems domain, demonstrating how components can be synthesized from real-time

specifications as in WP3, including also at runtime.

Continuing the work on a quantitative, real-time extension of the specification theory, we have for-

mulated a realizable variant which is restricted to systems that are free of time-lock. The formalism

includes the operators of parallel, conjunction, disjunction and quotient, and enjoys strong algebraic

properties, as well as offering strong potential for implementability.

As the first step towards obtaining a quantitative, probabilistic and real-time, specification theory,

which fully integrates workstreams (i) and (ii), we formulate the notion of refinement for a specifica-

tion theory based on abstract probabilistic timed automata. These correspond to abstract specifica-

tions of components that exhibit both probability as well as real-time behaviour. Refinement in this

setting is based on modal may/must specifications, rather than linear time. We develop the opera-

tors of parallel composition and conjunction and prove their compositionality properties. As future

work, we intend to formulate disjunction and quotient.

1.4 Outline

This deliverable is organized as follows. In Chapter 2, we briefly discuss the work undertaken by WP2 in

the fourth year of the project, and highlight the significance of the devised formalisms/theories with respect

to their support for WPs 3-5. The work of Year 4 integrates, extends and finalizes previous WP2 work,

meaning Chapter 2 should be interpreted as a chapter highlighting the contributions of the work package

as a whole. In Chapter 3, we report an overall evaluation of the WP2 results with respect to the objectives

and assessment criteria discussed in Deliverable D6.3 [14], hence refining the preliminary evaluation

contained in that deliverable. The key conclusions of our work are stated in Chapter 4. Appendix A

contains peer-reviewed papers related to the discussed work, hence providing more details with respect

to the overview given in Chapter 2. Appendix B briefly reports the technical details for computing the

⊥-backpropagation technique discussed in Section 2.2.

CONNECT 231167 14/94

2 Year 4 work
In this chapter, we provide a brief overview of the two work streams undertaken by WP2 in the fourth

year of the project. A detailed description of these works can be found in Appendix A, where the re-

lated CONNECT papers are reported. We recall that the discussed work integrates, extends and finalizes

the WP2 work undertaken during the previous years of the project, meaning that this chapter highlights

the contributions of WP2 overall. Outlining this chapter, Section 2.1 begins by introducing an assume-

guarantee framework for reasoning about safety properties satisfied by components modelled using the

specification theory, while Section 2.2 defines a real-time quantitative extension of the specification theory.

In Section 2.3, we provide an overall discussion of how we connected the specification theory with the

connector algebra so as to support WP3 synthesis, along with an informal description of the underlying

algorithm used for the automated synthesis of modular CONNECTors.

2.1 Safe assume-guarantee reasoning framework for the composi-

tional specification theory

In this section, we outline the development of a compositional assume-guarantee (AG) reasoning frame-

work for the preservation of safety properties satisfied by components modelled using the specification

theory reported in Years 2 and 3 of the project [9]. We begin by briefly recalling the essential concepts

of the specification theory for modelling components, highlight the key features of the assume-guarantee

reasoning framework, and conclude by evaluating our framework against the objectives of CONNECT by

means of a small case-study/example.

In the context of CONNECT, the purpose of developing such an AG reasoning framework is strongly

related to the necessity of ensuring that connected systems satisfy safety properties, e.g., a communica-

tion mismatch will never occur. For complex systems of considerable size, inferring such properties on the

whole state-space is infeasible, due to issues of scalability. Instead, we need a compositional framework

in which properties can be checked on the components of the system, and from which global properties

can be deduced under a collection of sound and complete AG rules.

2.1.1 Primer on the specification theory

Recall from D2.3 [12] that a component model encodes the temporal ordering of interactions between the

component and the environment. Interactions in the specification theory correspond to synchronisation

of input and output actions, with the understanding that outputs are non-blocking. The input/output (I/O)

type of an action is indicated by the interface of the component. We introduced a trace-based formalism

for components, referred to as declarative specifications, and an operational representation referred to as

Logic IOLTSs (I/O labelled transition systems). Component models are not required to be input-enabled

(as in the I/O automata due to Lynch and Tuttle [26], and Jonsson [23]), making our formalism conceptually

similar to the interface automata of De Alfaro and Henzinger [17, 18], which place assumptions on the

behaviour of the environment.

To support a full specification theory, we introduced a refinement preorder corresponding to safe sub-

stitutivity. A declarative specification Q is a refinement of declarative specification P, written Q ⊑dec P,

iff for any environment E composable with P, if P and E can exist without introducing communication

mismatches (i.e., P and E will never issue an output when the other is unwilling to receive it), then Q and

E must not generate communication mismatches. Naturally, this definition of refinement is the weakest

preorder preserving substitutivity. A similar notion of refinement can be defined on Logic IOLTSs (say

P, Q), which we denote by ⊑op. By giving a semantic preserving mapping J·K∗ from Logic IOLTSs to

declarative specifications respecting P ⊑op Q iff JPK
∗ ⊑dec JQK

∗
, it is sufficient to consider only declarative

specifications, which have more elegant algebraic properties. Henceforth, we will talk only of declarative

specifications, and refer to such models as components.

Let P, Q and R be components. The specification theory comes equipped with a range of composi-

tional operators for constructing new components:

CONNECT 231167 15/94

• Parallel composition P || Q. This operator is used for examining the structural behaviour of P and

Q. Communication mismatches arising between P and Q are explicitly represented in P || Q.

• Conjunction P ∧ Q. The conjunctive operation is the meet operator on the refinement preorder,

meaning P∧Q ⊑dec P, P∧Q ⊑dec Q, and R ⊑dec P and R ⊑dec Q implies R ⊑dec P∧Q. As a result,

P∧Q is a component that does not introduce communication mismatches in any environment safe for

P or Q. Consequently, conjunction supports independent development by combining requirements.

• Quotient R/P. Given R and a sub-component P, if there exists Q such that P || Q ⊑dec R, then

P || (R/P) ⊑dec R and Q ⊑dec R/P. Thus, quotient can be thought of as the adjoint of parallel

composition, and has applications to incremental development in the form of component synthesis.

• Disjunction as the dual of conjunction can also be added in a straightforward manner, as can hiding

of actions, which supports abstraction and hierarchical development. In the case of the latter, the

definition of the hiding operator depends on the I/O type of the action to be hidden.

For each of these operations, we prove a range of compositionality results, and highlight their algebraic

properties. Besides the formal definition of a component, this level of detail is sufficient to understand

the subsequent sections of this report, although a more detailed exposition is contained in [9]. Before

concluding this section, we briefly state the definition of a component.

Definition 2.1 A component P is a tuple 〈AI
P ,AO

P , TP , FP〉, where AI
P and AO

P are the inputs and outputs

respectively, which make up the interface of P, and TP and FP are sets of traces over (AI
P ∪AO

P), referred

to as the observable traces and inconsistent traces respectively, satisfying the following properties:

• TP is prefix closed

• TP(AI
P)∗ ⊆ TP i.e., TP is closed under input extensions

• FP(AP)∗ ⊆ FP i.e., FP is closed under all extensions

• FP ⊆ TP i.e., any inconsistent trace is also a permissible trace.

TP contains all observable interactions between the environment and P. As inputs are issued by the

environment, P cannot prevent them from being observed, meaning that TP must be receptive on inputs.

To cater for the unwillingness of P to accept a particular input from the environment, we treat traces with

a non-enabled input as being inconsistent. Once an inconsistency has been encountered, the resultant

behaviour is unspecified, so we allow for chaotic observations, which is why FP is closed under arbitrary

extensions.

2.1.2 Assume-guarantee reasoning framework

Based on the specification theory outlined in the previous section, we devised an assume-guarantee (AG)

framework for reasoning about the safety properties satisfied by components. For this framework, we

prove a number of sound and complete AG rules that allow one to infer the strongest safety property

satisfied by the composition of any two components under the operations of the specification theory. The

motivation for such a theory is heavily geared towards combatting issues of complexity and state space

explosion during system development and verification.

The primitive objects of the framework are AG specifications (or contracts), which we write as a tuple

〈AI ,AO,R,G〉, where AI and AO make up the interface of the specification (i.e., specifies the inputs and

outputs that the specification deals with), and R and G are prefix closed sets of traces over AI ∪ AO,

referred to as the assumption and guarantee respectively. A specification represents a collection of com-

ponents, precisely those components that satisfy the specification, which are said to be implementations.

A component P is an implementation of the specification S = 〈AI
S ,AO

S ,RS ,GS〉, written P |= S, just if

(leaving interfaces aside) any permissible trace of the component that is contained within the assumption

is also contained within the guarantee, and does not allow the component to become inconsistent (i.e.,

R∩ TP ⊆ G ∩ FP , where TP corresponds to all of P ’s traces, while FP is all of P ’s inconsistent traces).

CONNECT 231167 16/94

Given the definition of satisfaction, we say that specification S is a refinement of specification T ,

written S ⊑ T , just if the implementations of S are a subset of T ’s i.e., {P : P |= S} ⊆ {P : P |= T }.

Equipped with refinement, we define the compositional operators of the specification theory directly on

AG specifications. Below, we explain the intuition behind these operators.

Parallel composition. The parallel composition of two specifications is the strongest specification sat-

isfying independent implementability. That is to say:

• For each P, Q: P |= S and Q |= T implies P || Q |= S || T .

• For each P, Q: if P |= S and Q |= T implies P || Q |= X, then S || T ⊑ X.

The actual definition of the operator is included in CJK12, as reported in Appendix A, and is based on

the well-known result due to Abadi and Lamport [1, 2]. At a high-level, the composition will only guarantee

what can be guaranteed by both specifications, and the guarantee of one specification must not violate

the assumption of the other specification. Based on these properties, we have the following sound and

complete AG rule (leaving interfaces aside):

PARALLEL
P |= S Q |= T S || T ⊑ U

P || Q |= U
.

Although the rule in [1] (which is conceptually similar to ours) is sound, it is not complete. We obtain

both soundness and completeness in our framework by the assumption that the outputs of the specifica-

tions to be composed are disjoint, as an output should be controlled by at most one component. Adopting

this convention allows us to break circularity in the AG rule, because a guarantee cannot be simultane-

ously violated by two components.

Conjunction. As for conjunction on components, we wish conjunction on specifications to correspond

to the meet operator, but on ⊑. Consequently, the implementation set of S ∧ T is equal to the intersection

of the implementation sets of S and T . Based on this, we can formulate a sound and complete assume-

guarantee rule for conjunction (disregarding issues with interfaces).

CONJUNCTION
P |= S Q |= T S ∧ T ⊑ U

P ∧Q |= U
.

The definition of conjunction has a straightforward assumption that corresponds to the union of the

assumptions of the specifications to be composed. The guarantee contains the union of the guaran-

tees, but constrained to just those behaviours that do not violate the assumption/guarantee on the other

specification.

Quotient. To mirror the specification theory on components, we also introduce a quotient operator di-

rectly on specifications for decomposing the parallel composition operator. If there exists T such that

S || T ⊑ U , then U/S is defined, S || (U/S) ⊑ U and T ⊑ U/S. From this, we can formulate a sound and

complete AG rule for quotient:

QUOTIENT
∀P · P |= S implies P || Q |= U

Q |= U/S
.

Although we have not considered it is this report (the technical details being in CJK12, contained in

Appendix A), this rule is only sound and complete when satisfaction of a specification by a component

equates interfaces. This is related to the fact that parallel composition is only monotonic under refinement

when certain restrictions are imposed on the interfaces of the components to be composed.

However, based on this definition of quotient, we can rewrite the AG rule for parallel composition to

make use of the decomposition under quotient. This is particularly useful for system development, as

we will often have the specification of a global system, rather than specifications of the systems to be

composed.

CONNECT 231167 17/94

PARALLEL-DECOMPOSE
P |= S Q |= T T ⊑ U/S

P || Q |= U
.

Compared to the rules for parallel composition and conjunction, note that none of the quotient rules

deal with the quotient operator on components. This is not a problem, because when dealing with specifi-

cations and implementations, it does not entirely make sense to talk about the quotient of implementations.

Instead, we should take the quotient of the specifications representing the implementations, and then find

an implementation satisfying the resulting specification, as after all, if we have a component satisfying the

global specification, then there is no need to decompose it.

In CJK12 (reported in Appendix A), we also provide definitions for constructing the most-general com-

ponent that satisfies a specification, and document how to create the characteristic specification for a

component. These transformations are important for moving between models of the AG framework and

models of the compositional specification theory.

2.1.3 Evaluation

We illustrate our AG framework on a simple example concerned with a portion of the GMES (Global

Monitoring for Environment and Security) scenario. For geographical areas prone to fire-risk, it is common

to install battery-powered cameras that can transmit an image of the surrounding area to a central control

centre, where an operator can take appropriate action. This allows fire crews to head directly to the

affected area, which can greatly reduce the spread of fire and its associated destruction.

The system as a whole is composed of a fire detector, system controller and the physical camera

itself. Intuitively, the sensor signals when a fire is detected, and can be reset once the fire has been

acknowledged. The controller, on the other hand, waits for the indication of a fire from the sensor, after

which it instructs the camera to capture an image of the environment, and awaits the resultant photo to be

sent. At this stage, the controller will signal to the sensor that the fire has been acknowledged, and so the

detector may be reset. The camera itself waits for a capture request, after which it will send the photo.

We iteratively derive a design for the connector (corresponding to the system controller) by succes-

sively applying AG rules and constructions. At this stage, we are crafting a specification for the detector

and controller by hand. Later, we will see how the specification can be adapted on-the-fly in order to

handle detectors that expect to be interacted with in different ways. We start by making use of two speci-

fications for the combined effect of the detector and system controller:

1. Spec1: If the number of capture requests is equal to or one greater than the number of photos taken,

then the number of fire detections must be equal to or one greater than the number of capture

requests sent to the camera.

2. Spec2: If the number of capture requests is equal to or one greater than the number of photos

taken, then a photo must be taken before the detector can be reset, and the detector cannot be

consecutively reset without a photo having been taken in between.

Spec1 and Spec2 can be represented by the AG specifications 〈RSpec,GSpec1〉 and 〈RSpec,GSpec2〉 re-

spectively, where the assumptions and guarantees are depicted in Figure 2.1. For simplicity, we represent

sets of traces by means of finite automata, and annotate states with an F to indicate that a trace be-

comes inconsistent. The combined effect of Spec1 and Spec2 is given by the conjunctive specification

Spec1 ∧ Spec2 = 〈RSpec,GSpec1∧Spec2〉, the guarantee of which is presented in Figure 2.2.

We now demonstrate compositional AG reasoning on our specifications (references to definitions,

lemmas and theorems in the following paragraph refer to CJK12, reproduced in Appendix A). By Definition

10 we can find implementations I(Spec1) and I(Spec2) of Spec1 and Spec2 respectively, which by

Theorem 5 allows us to derive I(Spec1) ∧ I(Spec2) |= Spec1 ∧ Spec2. According to Lemma 4, this means

that I(Spec1) ∧ I(Spec2) ⊑imp I(Spec1 ∧ Spec2). Now by Theorem 3, we know Spec1 ∧ Spec2 ⊑ Spec1, so

from Lemma 2 we obtain I(Spec1 ∧ Spec2) |= Spec1, and from Lemma 4 we derive I(Spec1 ∧ Spec2) ⊑imp

I(Spec1). By similar reasoning it can be shown that I(Spec1 ∧ Spec2) ⊑imp I(Spec2), hence by Theorem

2 of [9] we acquire I(Spec1 ∧ Spec2) ⊑imp I(Spec1) ∧ I(Spec2). Mutual refinement of components in

our framework corresponds to equality of models, so I(Spec1 ∧ Spec2) = I(Spec1) ∧ I(Spec2). Such an

CONNECT 231167 18/94

RSpec

capture!

photo?

capture!

fire! fire! fire!

reset! reset! reset!
capture!
error?

GSpec1

fire!

capture!
reset! reset!

photo? photo?

GSpec2

photo?

reset!
fire! fire!

capture! capture!
photo?

Figure 2.1: Assumption and guarantees for Spec1 and Spec2

GSpec1∧Spec2

fire! capture! fire! capture!
fire!

capture!

capture!
fire!

capture!

reset! reset!

fire! capture! fire!

reset! reset! reset! reset!

photo?photo?

photo?

photo?

Figure 2.2: The guarantee for Spec1 ∧ Spec2

implementation is shown in Figure 2.3. Note how this component is unwilling to capture an image after

encountering two fire signals without a photo being taken. This is because RSpec can issue an error after

such an occurrence, but this is not accepted by GSpec1∧Spec2. Moreover, this implementation is able to see

an unbounded number of fire indications that it captures an image for, without ever having to reset the

detector.

We now demonstrate how our theory can be used in the context of CONNECT in order to support

on-the-fly synthesis of connectors. By using quotient on the connector formulated in the previous part

by means of conjunction, we now allow the environment to change by insisting that the detector must

be reset before it can signal any new fires. We do so by making use of a constraint specification

Detect = 〈RDetect,GDetect〉 that requires fire and reset to alternate (shown in Figure 2.4). We wish to

find an implementation for the system controller, let it be called Controller, such that Controller is an

implementation of Spec1 ∧ Spec2 subject to the constraints imposed by Detect. This is equivalent to re-

quiring Controller |= (Spec1 ∧ Spec2)/Detect. The specification (Spec1 ∧ Spec2)/Detect is exhibited in

Figure 2.5, and the most general implementation is obtained from G(Spec1∧Spec2)/Detect by appending all

non-enabled inputs as inconsistent traces. In contrast to I(Spec1 ∧ Spec2), the constraints imposed by

Detect on Spec1∧Spec2 means that any candidate implementation for Controller will ensure that there can

be at most one outstanding fire signal that has not been reset.

2.2 Quantitative extension of the compositional specification the-

ory and its application

A key requirement of CONNECT is to model the QoS aspects of networked systems, in addition to the

functional behaviour. In this section, we focus on a quantitative extension of the compositional specifi-

cation theory, which is capable of modelling the real-time performance of components and connectors.

We define a substitutive refinement preorder that takes into account the timing constraints imposed by

networked systems, and the full collection of compositional operators (as mentioned in Section 2.1.1), in

order to see how the timing constraints of the individual components influence the interactive behaviour

CONNECT 231167 19/94

F

fire! capture! fire!

fire! capture! fire!

reset! reset! reset! reset!

photo?photo?

photo?

photo?

photo?

photo?

fire!
reset!

capture!
photo?

photo?

photo?

Figure 2.3: The most general implementation of Spec1 ∧ Spec2

RDetect

fire?

reset?

GDetect

fire?

reset?

Figure 2.4: Specification of a restrictive detector constraint Detect

R(Spec1∧Spec2)/Detect

capture!

photo?

capture!
capture!

error?

capture!

photo?

capture!
capture!

error?

fire!..reset!

reset! reset! reset!

reset!

fire!
capture!

reset!

fire!
capture!

reset!

fire!
capture!

fire! fire! fire!

fire!

capture!
reset!

fire!

capture!
reset!

fire!

capture!
reset!

G(Spec1∧Spec2)/Detect

fire!

capture!

photo?

reset!

Figure 2.5: Specification for (Spec1 ∧ Spec2)/Detect

of the system as a whole.

2.2.1 Component model

At the heart of our theory are timed I/O automata, an extension of the timed automata of Alur and Dill [3],

in which actions are partitioned into inputs and outputs, and states are annotated with co-invariants in

addition to invariants. While invariants specify the bounds beyond which time may not progress, co-

invariants specify the bounds beyond which the component will time-out and enter an inconsistent state.

CONNECT 231167 20/94

Thus, invariants specify liveness timing guarantees on the outputs in a particular state, while co-invariants

express liveness timing assumptions on the inputs enabled in a state. Similarly, the guard on an input

transition specifies a safety timing assumption, while the guard on an output labelled transition specifies

a safety timing guarantee. Thus, our models allow to capture the AG nature of timed components.

Informally, the parallel composition of two components automatically checks whether the guarantees

provided by one component meet the assumptions required by the other. For instance, the unexpected

arrival of an input at a particular location and time (indicated by a non-enabled transition) leads to a safety

error in the parallel composition. On the other hand, non-arrival of an expected input at a location before

its time-out (specified by the co-invariant) leads to a bounded-liveness error in the parallel composition.

Our formalism differs from the framework due to De Alfaro et al. [19], in that we take as our refinement

relation a weakest preorder corresponding to substitutivity, rather than timed alternating simulation. More-

over, by equating safety and bounded liveness errors with the single notion of inconsistency, we are able

to avoid the necessity of utilising two transition systems. Our framework generalises that of [19] by sup-

plying compositional definitions of conjunction, disjunction and quotient, which are crucial for combining

requirements of networked systems in order to synthesise connectors on-the-fly.

The timed I/O framework due to Larsen et al. [15] also makes use of timed alternating refinement,

which has lower complexity than our relation, but does not admit the weakest pre-congruence for safe

substitutivity. The framework does, however, include definitions for conjunction and quotient. A shortcom-

ing of the framework is that errors must be specified by the user, which means that the compositional

operators and refinement are error-agnostic.

2.2.2 Semantic model

The semantics of our component models are given in terms of timed I/O transition systems (TIOTSs),

which provide an explicit representation for the timed transitions of the automaton. A configuration of a

TIOTS is a location and clock-valuation pair, or one of the special chaotic states ⊥ and ⊤. ⊥ is used

to represent inconsistency (i.e., violation of safety and bounded-liveness properties), while ⊤ represents

timestop (i.e., a point from which time may not progress).

The TIOTS for a timed component is largely generated in the same way as for timed automata, except

that we must give special consideration to the invariant and co-invariant. Let −→S be the standard tran-

sition system for a timed component (i.e., treating the component as a timed automaton), then the TIOTS

representation −→ is the smallest relation such that:

• If (l, t)
a

−→S (l′, t′) and:

– t′ satisfies the invariant and co-invariant on l′, then (l, t)
a

−→ (l′, t′)

– t′ satisfies the invariant, but does not satisfy the co-invariant on l′, then (l, t)
a

−→ ⊥

– t′ does not satisfy the invariant on l′, then (l, t)
a

−→ ⊤

• If (l, t)
d

−→S (l, t + d) and:

– t + d satisfies the invariant and co-invariant on l, then (l, t)
d

−→ (l, t + d)

– there exists 0 < δ ≤ d such that δ satisfies the invariant, but not the co-invariant on l, then

(l, t)
d

−→ ⊥

• If (l, t) 6
a

−→S with a an input, then (l, t)
a

−→ ⊥

• If (l, t) 6
a

−→S with α an output or delay, then (l, t)
α

−→ ⊤.

The initial state of the TIOTS is (l0, 0) if both the invariant and co-invariant hold in this configuration,

is ⊤ if the invariant does not hold on (l0, 0), and is ⊥ otherwise. Note that every state of the TIOTS has

outgoing transitions for each input, output and delay, and also that the TIOTS is time-additive, meaning

that it satisfies the triangle rule on delays.

CONNECT 231167 21/94

Table 2.1: State representations under composition operators

‖ ⊤ p ⊥
⊤ ⊤ ⊤ ⊤
q ⊤ p×q ⊥
⊥ ⊤ ⊥ ⊥

∧ ⊤ p ⊥
⊤ ⊤ ⊤ ⊤
q ⊤ p×q q
⊥ ⊤ p ⊥

∨ ⊤ p ⊥
⊤ ⊤ p ⊥
q q p×q ⊥
⊥ ⊥ ⊥ ⊥

% ⊤ p ⊥
⊤ ⊥ ⊥ ⊥
q ⊤ p×q ⊥
⊥ ⊤ ⊤ ⊥

¬
⊤ ⊥
p p
⊥ ⊤

In many practical applications, including in CONNECT, the presence of timestop (⊤) is an undesirable

feature, as we should never halt the progress of time. Any TIOTS for which there is no strategy of the

component allowing it to avoid ⊤ is said to be unrealisable. For such TIOTSs, it is inevitable that ⊤ will

be reached for some strategy of the environment, and so time will be forced to stop. We develop two

frameworks for timed systems, one where the stopping of time is permitted, and another where time may

not be stopped. The latter builds on the former by using ⊥ and ⊤ back propagation techniques. In the

sequel, we consider the first framework, until we state otherwise.

2.2.3 Refinement

Substitutive refinement of timed components is characterised by a test that checks for preservation of

⊥-presence under every environment. Formally, Q is a refinement of P, written Q ⊑ P, iff for each

environment R of P1, if ⊥ is reachable in Q || R, then ⊥ is reachable in P || R (where || is defined in

Section 2.2.4). It is obvious that such a relation is the weakest preorder corresponding to safe-substitutivity

of components.

In CKW12 (presented in Appendix A), we show that in a game-based interpretation of the specification

theory, refinement corresponds to strategy containment. Similarly, in a trace-based representation of

timed components, refinement is characterised by means of trace containment. Both of these frameworks

avoid the need to quantify over all environments. These different representations for timed components

do not directly concern the modelling of networked systems in CONNECT, so we do not describe them in

this summary. Instead, we focus on a simple operational model based on TIOTSs.

2.2.4 Compositional operations

The compositional operators of the specification theory (consisting of parallell ||, conjunction ∧, disjunction

∨ and quotient %) are defined directly on TIOTSs. Although we have not considered it in CKW12 (see

Appendix A), the operations can be defined on the automata representation by using symbolic techniques

for timing constraints.

Given appropriate alphabetisations of TIOTSs P and Q (as for the non-quantitative specification the-

ory), the composition under ⊗ ∈ {||,∧,∨,%}, written P⊗Q, can be defined in a straightforward manner, as

prescribed by the following definition. Note that for the quotient operator, we require that Q is deterministic,

which can be achieved by a modified subset construction.

Definition 2.2 For suitable alphabetisations of TIOTSs P and Q, P ⊗ Q is the TIOTS with set of states

(SP × SQ) ∪ SP ∪ SQ
2, initial state s0

P ⊗ s0
Q, and transition relation −→, which is the smallest relation

containing −→P and −→Q, and satisfying the following rules (when p ⊗ q 6∈ {⊤,⊥}):

p
α
−→P p′ q

α
−→Q q′

p ⊗ q
α
−→ p′ ⊗ q′

p
a
−→P p′ a /∈ AQ

p ⊗ q
a
−→ p′ ⊗ q

q
a
−→Q q′ a /∈ AP

p ⊗ q
a
−→ p ⊗ q′

,

where p ⊗ q has the interpretation given in Table 2.1, and (lp, tp) × (lq, tq) = ((lp, lq), tp ⊎ tq) for location-

valuation pairs. Note that the clocks of P and Q must be disjoint, so tp ⊎ tq corresponds to the union of

valuation functions having disjoint domains.

1An environment for P is any timed component having a complementary alphabet to P .
2It is assumed that SP ∩ SQ = {⊤,⊥}, where SP and SQ also contain the location-valuation pairs for P and Q.

CONNECT 231167 22/94

The definitions of the compositional operations are simplified by our representation of TIOTSs, in that

every configuration-state has successors for each input, output and timed action (perhaps going to ⊤ or

⊥), in addition to the encoded behaviour in Table 2.1.

As is well known in the literature, quotient can be defined as a derived operator in terms of parallel

composition and mirroring [31, 21, 7], i.e., P%Q = (P¬ || Q)¬. The unary mirroring operator ¬, must first

determinise its argument, then switch the ⊤ and ⊥ states, as reported in Table 2.1. This is equivalent to

interchanging the invariant and co-invariant in the automaton.

In CKW12, we show that the operators of the specification theory satisfy the desired properties, in that

∧ and ∨ are respectively the meet and join operations on the refinement preorder, and quotient is the least

refined component whose parallel composition with Q is a refinement of P.

2.2.5 Realisability

Under substitutive refinement, we have that ⊥ is refined by any location-valuation configuration, which

is in turn refined by ⊤. As previously remarked, ⊤ signifies the stopping of time, which is undesirable

for CONNECT, as components must work continually in real-time. In this section, we remark on how our

theory can be extended to handle only realisable components that will not encounter ⊤.

For any TIOTS P, we can extract the most general TIOTS that is realisable, denoted PR, by means of

⊤-backpropagation. This is achieved by repeatedly equating location-valuation configurations with ⊤ on

the determinised TIOTS PD according to the following rules: p = ⊤ if

• auto-⊤. p
a

−→ ⊤ when a is an input

• semi-⊤. p
d

−→ ⊤, and d′ ≤ d and p
d′

−→
a

−→ p′ when a is an output implies p′ = ⊤.

Note that ⊤-backpropagation treats as ⊤ any state from which the component cannot avoid reaching

⊤ when the environment acts as an adversary. Auto-⊤ states must be marked as ⊤, because of the

possibility that the environment will issue an input leading to ⊤. Semi-⊤ states on the other hand, are

states from which time stop will eventually occur if an output cannot be made by the component to a

non-⊤ state before the time stop occurs.

P is said to be realisable just if PR is not the ⊤-TIOTS, meaning that the component is always able

to avoid reaching ⊤. Refinement of realisable components is defined as previously, except that only

realisable environments are considered. Parallel composition and disjunction, which maintain realisability,

also remain as before. For conjunction, quotient and mirroring, the original definitions are also used, but

it is necessary to first normalise the components to be composed. Normalisation can be thought of as

performing ⊥-backpropagation, which equates a location-valuation state p with ⊥ just if:

• auto-⊥. p
a

−→ ⊥ when a is an output

• semi-⊥. p
d

−→ ⊥, and d′ ≤ d and p
d′

−→
a

−→ p′ when a is an input implies p′ = ⊥.

This means that a state is equivalent to ⊥, if the component can issue a sequence of outputs leading

to ⊥, or if after a delay ⊥ is encountered without the possibility of the environment issuing an input to avoid

reaching this state. For a realisable component P, we denote the normalised version by PN .

Equipped with normalisation, we now define conjunction as (PN ∧QN)R, quotient as (PN%QN)R and

mirroring as (PN)¬, providing the resulting component is not the ⊤-TIOTS. Otherwise, the operations are

undefined. In the following section, we demonstrate how these compositional operators work in practice.

2.2.6 Evaluation

We use the GMES (Global Monitoring for Environment and Security) and Terrorist Alert scenario as the

basis to evaluate and demonstrate the use of timed quotient in the synthesis of connectors with quantita-

tive constraints. In the GMES scenario, one of the most crucial network services is the video streaming

service between video streaming sources and video streaming consumers. The video streaming sources

can be UAV/UGV cameras, fixed or controlled (e.g. PTZ) cameras for traffic monitoring or estate/environ-

ment surveillance, or mobile cameras for patrol. The video streaming consumers can be either staff in the

Command and Control Fire Operations Center or fire fighters at the fire scenes. The video to be streamed

CONNECT 231167 23/94

 start_play?
 x’:=0

1

2

3

req_video!

Video Streaming Consumer

 x’==2
play_frame?
 x’:=0 co:x’<=2

x==2
send_frame!
x:=0

B

inv:x<=2

Video Streaming Source

A

req_video?
 x:=0

Communication Media

z==10
 !
 z:=0

r >0
!
r--;b:=tt

inv:z==0

u >0
 !
u--;b:=ff

 u==r==0
 !
u,r:=1,3

U

y<=1&b==ff
 frame_loss!

S

inv:z<=10

input?
y:=0

inv:y<=1

y<=1&b==tt
frame_recv!

T

V

Figure 2.6: Video streaming services

can be either live or recorded (UAV/UGV or mobile patrol cameras), and encoded in various formats (e.g.

MPEG/H.264).

Due to the unpredictability and volatility of a fire-fighting situation and its organisation (a typical ex-

ample being on-the-scene reinforcement integration from another country), the GMES scenario calls for

dynamic discovery and integration of maximal video resources available, which in turn requires on-the-fly

synthesis and deployment of connectors to overcome the large heterogeneity in the dynamic context with

lots of improvisations. One of the key responsibilities for video streaming connectors is the conversion and

adaptation between different video formats and protocols, covering what we call the qualitative aspect. In

the case study below, we demonstrate that our timed specification theory can synthesise the quantitative

aspects (of the connectors) as well, i.e. the timing constraints employed in the connectors.

Below we abstract away some irrelevant details of the video streaming connectors and focus on the

timing issues. The video streaming source is modelled as a timed automaton (Video Streaming Source,

Figure 2.6) that, after being requested to stream video, sends out one frame every two time units. The

video streaming consumer is modelled by a timed automaton (Video Streaming Consumer, Figure 2.6)

that first sends the video streaming request to the source and then waits for a signal to start playing the

video. Once the playback has started, the consumer expects that one frame will arrive every two time

units (using co-invariants).

However, due to changeability in fire-fighting environments, the communication media between video

streaming sources and consumers can vary greatly in QoS and reliability parameters. For instance, the

communication media can be Wifi, cellular, satellite or wired networks or any hybrid combination of them.

The QoS and reliability parameters of such media can have large variations, which can impact greatly

on the quality and reliability of the streaming service. In order to bridge the variations, and guarantee

the quality of streaming service no matter what communication media is used, the streaming connectors

need to dynamically synthesise their timing constraints/parameters based on the actual QoS parameters

collected from the communication media in use.

In this case study, we use a specific model with a fixed set of parameters for the communication

media. However, both the model and parameters can be dynamically changed since the synthesis of

CONNECT 231167 24/94

send_frame!
 buf++

buf>0
input!

M

frame_recv?
 bf++

bf>0
play_frame!
bf--

Y

frame_recv!
 buf--

Z
frame_loss!

Specification

send_frame!
 buf++

X

req_video! N

frame_recv?
 bf++

start_play!

Figure 2.7: Specification of the services

timing-constraints can be done on-the-fly using arbitrary models and parameter sets.

The communication media is modelled using two timed automata, the combined effect of which we

refer to as Communication Media (Figure 2.6). The factoring of Communication Media into two automata

is solely for the purpose of simplifying the presentation. The left automaton models the fact that our

communication media transmits through different phases of reliability in a periodic manner. We fix a

period to have four time slots (u + r = 4) and each time slot to have ten time units (z = 10). For some

time slots, the communication media is in the reliable mode V , while for others it is in the unreliable mode

U . The users need only supply the ratio of reliable vs unreliable (i.e. u/r), which is 1/3 for our case.

Given a specific slot, its reliability or not (modelled as variable b) is chosen non-deterministically by the

automaton. The right automaton, on the other hand, models the fact that, when a frame has been placed

on the communication media, the outcome will be given at a time-point non-deterministically selected

within one time unit. The outcome can be either frame loss or frame recv depending on the mode of the

communication media. The model of the communication media is the product of the two automata.

The overall specification of the streaming service is given by Specification (Figure 2.7), which is

also factored into two automata, and captures the facts that: 1) the occurrence of actions needs to be

ordered, e.g. send frame after req video and frame loss / frame recv after input; and 2) the number of

frames received shall not exceed the number of frames sent. Note that there will need to be two buffers

in the system, one on the source side buf and the other on the consumer side bf .

If the communication media is put in parallel directly with the video streaming source and consumer,

then the system will not work very well as a whole. For instance, if the current frame buffering on the

consumer side is empty and the communication media is in unreliable mode, then there will be no frame

for the next playback. A possible strategy to work around this problem is to let the connector inform the

consumer to start play only after a proper delay, which is calculated based on the QoS parameters and

current mode of the communication media, so that the consumer side can buffer a number of frames large

enough to tide the consumer over during future unreliability of the communication media. The expected

future behaviour of the communication media is captured in the values like u and r.

In total, our case study consists of six timed automata utilising four clock variables, four integer vari-

ables and one boolean variable. We now give the detailed steps to calculate the quotient:

Specification % (Video Streaming Source ‖ Video Streaming Consumer ‖ Communication Media).

Our calculation is based on the equation P%Q = (P¬ ‖ Q)¬, so we first construct the product

Specification¬ ‖ (Video Streaming Source ‖ Video Streaming Consumer ‖ Communication Media)
(as depicted in Figure 2.8). To obtain the timed quotient automaton, further mirroring is performed on

the product by first computing the ⊥-backpropagation, after which the inputs and outputs, as well as

invariants and co-invariants, must be exchanged. Note that ⊤-backpropagation is not needed here as

the product automaton constructed is automatically realisable. The technical details for computing the

⊥-backpropagation, along with the actual derivation, are included in Appendix B.

CONNECT 231167 25/94

AUS1XM AVS1XM

BUS2YM BVS2YMBUS3YN

BUT2ZM

req_video!

start_play?

BUT3ZN
start_play?

input?
frame_recv!

frame_loss!

input?

frame_recv!

frame_loss!

play_frame?,
send_frame!,
tau_periodic! send_frame!

input?

frame_recv!

frame_loss!

BVT2ZM

send_frame!

BVS3YN

play_frame?,
send_frame!

input? frame_recv!

frame_loss!

BVT3ZN

req_video!

tau_unreliable!,
tau_reliable!

tau_unreliable!:
u >0
u--;b:=ff

tau-periodic!

tau_periodic!:
u==r==0
u,r:=1,3

send_frame!,
tau_periodic!

tau_reliable!:
r >0
r--;b:=tt

tau_unreliable!,
tau_reliable!

start_play?tau_unreliable!,
tau_reliable!

tau_unreliable!,
tau_reliable!

send_frame!,
tau_periodic!

tau_unreliable!,
tau_reliable!

tau_slotFin!:
z==10
z:=0

tau_slotFin!

tau_slotFin!

tau_slotFin!

tau_slotFin!

tau_slotFin!

start_play?

play_frame?,
send_frame!

req_video!:
x:=0

send_frame!:
x==2
x:=0;buf++

input?:
buf>0
y:=0

frame_recv!:
y<=1&b=tt
bf++,buf--

frame_loss!:
y<=1&b==ff

start_play?:
x’:=0

play_frame?:
x’==2&bf>0
bf--, x’:=0

AUS1XM

AVS1XM

BUS3YN

BUS2YM

BVS2YM

BVS3YN

BUT3ZN

BUT2ZM

BVT2ZM

BVT3ZN

inv:z==0

inv:z<=10

inv:x<=2&z==0co:x’<=2

inv:x<=2&z==0

inv:x<=2&z<=10

inv:x<=2&z<=10co:x’<=2

inv:x<=2&z==0&y<=1co:x’<=2

inv:x<=2&z==0&y<=1

inv:x<=2&z<=10&y<=1

inv:x<=2&z<=10&y<=1co:x’<=2

Initially, we have buf,bf:=0 b:=tt u,r:=0, x,y,z,x’:=0,

Global Invariants: 0<=x,x’<=2 0<=z<=10

play_frame?
send_frame!,
tau_periodic!

Figure 2.8: The product automaton with its transitions/invariants/co-invariants specified below

CONNECT 231167 26/94

Although the procedure for performing ⊥-backpropagation has been applied manually in this example,

it should be straightforward to see that it can be automated without much effort. The timing constraints

synthesised are obviously subtle and highly non-trivial, which demonstrates the effectiveness of our quo-

tienting technique for synthesising a connector in the GMES video streaming scenario, and its general

applicability to networked systems with complex timing constraints.

2.3 Connecting the specification theory with the CONNECTor alge-

bra to support WP3 synthesis

In this section, we give an informal overview of a method for the automated synthesis of modular CON-

NECTors. A detailed description of the method can be found in IT12 as reported in Appendix A. A modular

CONNECTor is represented as a suitable composition of independent mediators. Each mediator can be

seen as a basic (sub-)CONNECTor that realizes a specific mediation pattern, which corresponds to the

solution of a recurring protocol mismatch. As mentioned in Section 1.3, our method for the automated

synthesis of modular CONNECTors has been conceived to address two fundamental questions raised in

the last reviews’ recommendations:

Q1 - “how does the CONNECTor algebra relate to the compositional specification theory devised within

WP2?”;

Q2 - “how do the above WP2 work streams integrate with WP3 work on automated CONNECTor syn-

thesis?”.

Figure 2.9: Overview of the intra-WP2 and inter-WP2-WP3 integration

As pictorially sketched in Figure 2.9, our method for the automated synthesis of modular CONNECTors

relies on some fundamental pieces of work developed within both WP2 and WP3, and establishes some

CONNECT 231167 27/94

relationships among them (see the thicker dashed arrows within the circle). In particular, each mediator

synthesized as a basic constituent of a modular CONNECTor is an instance of a specific mediation pattern

(e.g., reordering of messages) from the WP3 theory of mediators. To enable automated reasoning on our

CONNECTor decomposition (e.g., to prove that a modular CONNECTor is equivalent to a WP3 monolithic

CONNECTor, or is free of mismatches), we have formally defined the semantics of protocols, as well

as of mediators and CONNECTors, by using a revised and restricted version of the WP2 compositional

specification theory. It is restricted in the sense that we only consider deterministic protocols. Under this

assumption, the WP2 compositional specification theory largely coincides with the Interface Automata

(IA) theory [16]. Further revisions account for the notions of hidden actions and semantically related

actions (yet syntactically different), which are needed for our synthesis algorithm, the details of which are

contained in IT12 (see Appendix A).

Based on this revised version of the compositional specification theory, we prove that a modular CON-

NECTor for two protocols P and R enjoys the same correctness properties of the monolithic CONNECTor

obtained by expressing the synthesis problem as the quotient problem between P and R [12]. Since, as

described in D2.3 [12], CONNECTors synthesized through quotient generalizes WP3 CONNECTors, this

also means that our modular CONNECTors are equivalent to WP3 CONNECTors and, hence, our synthesis

algorithm supports WP3 CONNECTor synthesis. This answers Q2, as phrased above. To answer Q1,

concerning the set of considered mediation patterns, our synthesis method relies on a revised version of

the WP2 CONNECTor algebra. We recall that it is an algebra for reasoning about protocol mismatches

where basic mismatches can be solved by suitably defined primitives, while complex mismatches can

be settled by composition operators that build CONNECTors out of simpler ones. We revise the original

algebra by adding an iterator operator and by giving its semantics in terms of the restricted and revised

specification theory. Thus, the structure of a modular CONNECTor is expressed by means of the primitives

of the revised algebra and its composition operators.

Beyond addressing the Q1 and Q2 reviewers’ questions and ensuring correctness of the synthesized

CONNECTors, a further contribution of our method is that it promotes CONNECTor evolution, hence easing

the synthesis and maintenance of the CONNECTor’s implementation code. Note that the support for CON-

NECTor evolution is another crucial aspect for the synthesis of CONNECTors. In IT12 (see Appendix A),

we use a slightly revised version of a WP3 case study (borrowed from the work described in [13]) to illus-

trate that some changes can be applied on the synthesized modular CONNECTor by simply acting on its

constituent mediators, without entirely re-synthesizing its protocol.

2.3.1 An informal overview on the automated synthesis of modular CONNECTors

In Figure 2.10, we show the main activities (as rounded-corner rectangles) and input/output artefacts

(as text) respectively performed and manipulated by our method for the automated synthesis of modular

CONNECTors. The numbers denote the order in which the activities are carried out.

Figure 2.10: Overview of the automated synthesis of modular CONNECTors

We recall that a modular CONNECTor is a composition of independent mediators, each of them solving

CONNECT 231167 28/94

a protocol mismatch. A mediator has an input-output behaviour (not necessarily strictly sequential, e.g.,

for allowing reordering of messages), and it is a “reactive” software entity harmonizing the interaction

between heterogeneous NSs by intercepting output messages from one NS and eventually issuing to

another NS the co-related input messages. Message co-relations can be inferred by taking into account

ontological information.

Synthesis of communication mediators

The first activity of our method, “Synthesis of Communication Mediators”, takes as input a domain ontology

DO, for protocols P and R, and automatically synthesizes the set W of the so called communication

mediators. Communication mediators are responsible for solving communication mismatches. These

mismatches concern the semantics and granularity of protocol actions. For instance, by considering

the domain of purchase order systems, it could be the case that P provides a single operation, e.g.,

StartOrder, to authenticate and create an empty order, whereas R expects to use two different operations,

e.g., Login and CreateOrder, one for the authentication and one for the creation of the empty order. As

depicted in the figure, to solve these kind of mismatches it is necessary to assume and use ontology

knowledge (DO) in order to align the two protocols to the same concepts and language.

Typically, ontologies account for two fundamental relations between concepts: subsumption and ag-

gregation [4]. A concept a is subsumed by a concept b, in a given ontology O, if in every model of O the

set denoted by a is a subset of the set denoted by b. A concept a is an aggregate of concepts b1, . . . , bn

if the latter are part of the former. It is worth mentioning that our use of the ontology concept is specific

to the CONNECT project. Thus, in the following, we will exploit these notions to our purposes. That is,

concepts in DO correspond to NS input/output actions. The two relations between concepts are, then,

used to account for the granularity of the data that define the structure of the messages exchanged by

the respective input/output actions. For instance, by continuing the example introduced above, the input

message (for P) associated to the request of StartOrder is an aggregate of the output messages (for

R) associated to the requests of Login and CreateOrder. This means that the message associated to

StartOrder can be built by merging the messages associated to Login and CreateOrder. Thus, a medi-

ator would take Login and CreateOrder as input in any order from R, and send StartOrder as the merge

of Login and CreateOrder to P (plus possible additional data explicitly specified in DO for StartOrder).

As introduced above, a revised version of the CONNECTor algebra is used to express the corresponding

communication mediator as follows:

W1 = JTrans(Login, x1) ⊙ Trans(CreateOrder, x2) ⊙ Prod(x3) ⊙ Merge([x1, x2, x3], StartOrder)K;

whose semantics is the interface automaton shown in Figure 2.11. It is obtained by giving semantics

of the algebra primitives and operators through the restricted and revised version of the compositional

specification theory, and by performing minimization with respect to hidden actions.

Figure 2.11: Interface automaton of the W1 communication mediator

Subsumption ontological relationships are handled analogously. For instance, let us consider two new

actions, CloseOrder of R and PlaceOrder of P . Furthermore, the message associated to CloseOrder
is subsumed by the message associated to PlaceOrder. This means that the set of data constituting

CloseOrder is a subset of those constituting PlaceOrder. Thus, in order to build the message associated

CONNECT 231167 29/94

to CloseOrder, a mediator needs to process the data contained in the message associated to PlaceOrder
first. In other words, the mediator takes PlaceOrder as input from P and sends, as co-related message,

CloseOrder as output to R. Note that, internally, this means consuming the extra data in PlaceOrder
that do not belong to set of data for CloseOrder. The corresponding communication mediator can be

expressed as follows:

W2 = JSplit(PlaceOrder, [CloseOrder, x2]) ⊙ Cons(x2)K;

whose semantics is the interface automaton shown in Figure 2.12.

Figure 2.12: Interface automaton of the W2 communication mediator

Alphabet alignment

Once the set of communication mediators is automatically synthesized, the second activity of our method,

“Alphabet Alignment”, starts by taking as input the two protocols, P and R, and the synthesized set,

{Wi}, of communication mediators. By continuing our running example, for the sake of simplicity3, let us

consider a very simple protocol for P as shown in Figure 2.13.

Figure 2.13: Interface automaton of P

Note that the alphabet of P is represented by the set of actions {StartOrder, P laceOrder}. According

to the discussion above, let us consider as alphabet for R the set {Login, CreateOrder, CloseOrder}.

The aim of this activity is to exploit, as protocol wrappers, the synthesized communication mediators,

W1 and W2, in order to “align” the alphabets of P and R, hence solving all the possible communication

mismatches. Roughly speaking, the goal of this activity is to suitably exploit communication mediators in

order to make two heterogeneous protocols “speak” the same language. In particular, when synthesized

out of subsumption (resp., aggregation), a communication mediator is used as a wrapper for output (resp.,

input) actions of a protocol. Thus, we define a derived composition operator called wrapping. By continu-

ing our running example, in the lowermost side of Figure 2.14, we show the interface automaton resulting

from wrapping the interface automaton of P by the one of W1.

Intuitively, as pictorially highlighted in Figure 2.14 by means of dashed arrows, the wrapping “fuses”,

into a single state, those transitions labeled by common actions (see the gray-colored actions in Fig-

ure 2.14) and their respective source and target states. Furthermore, each common action disappears in

the result of the wrapping. In other words, the wrapping allows to achieve the purposes of the alphabet

alignment activity since it allows to translate an action from an alphabet into a certain sequence of actions

from another alphabet.

3By referring to Appendix A, the case study described in the paper IT12 considers a more complex protocol.

CONNECT 231167 30/94

Figure 2.14: Interface automaton of W1 (uppermost and left-hand side), P (uppermost and right-

hand side), and “P wrapped by W1” (lowermost side)

Going back to our example, in Figure 2.15 we show the interface automaton of P wrapped by W1 and,

in turn, wrapped by W2.

Figure 2.15: Interface automaton of P wrapped by W1 and, in turn, wrapped by W2

Thus, by exploiting the two synthesized communication mediators, W1 and W2, as wrappers for P ,

we made the alphabets of P and R the same. That is, at this stage, P and R speak the same language

hence solving any communication mismatch. However, communication mediators are not able to solve all

mismatches such as coordination mismatches. These mismatches deal with the control structure of the

(wrapped) protocols. The last activity of our synthesis method is for solving such mismatches.

Synthesis of coordination mediators

Continuing our running example, to better illustrate the third activity of our method, let us consider a slightly

extended version of both the “wrapped” version of P (hereafter, referred to simply as P) and R, whose IA

are shown in Figure 2.16.

Although the two protocols shown in Figure 2.16 share the same alphabet of actions, their interaction

can still exhibit some mismatches (i.e., coordination mismatches). They are due to (i) messages sent/re-

ceived in a different order (see the sequences made of ConfirmItem and CloseOrder); (ii) third-party

messages (PayThirdParty); and (iii) extra/missing sends corresponding to redundant messages (possi-

CONNECT 231167 31/94

Figure 2.16: IA for P (left-hand side) and R (right-hand side)

bly also coming from looping/cyclic behavior, e.g., SelectItem and SetItemQuantity). Thus, in general,

the construction of other mediators that can delegate/receive4, consume, produce, and reorder messages

is required. We call these kinds of mediators coordination mediators.

The synthesis of coordination mediators is carried out by reasoning on the two sets of traces of P and

R, denoted as Tr(P) and Tr(R), respectively. Note that P and R are prefix-closed and hence their sets

of traces are finite. Furthermore, possible loops/cycles are considered k times (where k is a parameter of

our synthesis algorithm). This means that our method produces finite sets of finite traces.

For all pairs of traces (tP , tR) ∈ Tr(P)×Tr(R), our method tries to synthesize a coordination mediator

that makes the protocols corresponding to tP and tR able to interoperate. If no mediator has been synthe-

sized, then a modular connector for P and R does not exist. Otherwise, a non-empty set of coordination

mediators is produced. Indeed, considering all pairs in Tr(P) × Tr(R) is not needed. It is sufficient to

consider only the subset of pairs of semantically related traces. Traces tP and tR are semantically related

if every action that does not belong to their set of common actions is a third-party action, e.g., the action

PayThirdParty of P .

Figure 2.17: (tP , tR): a pair of semantically related traces for P and R

Figure 2.17 shows a pair of semantically related traces for P and R. Input (resp., output) actions are

denoted by the question (resp., exclamation) mark. For each pair (tP , tR), the method computes the so

called difference pair (t′P , t′R). Coming back to our example, Figure 2.18 shows the difference pair for the

pair of traces shown in Figure 2.17.

t′P (resp., t′R) is a sub-trace of tP (resp., tR) representing, in a single sequence, the sequences of

actions in which tP (resp., tR) differs from tR (resp., tP). Due to the alphabet alignment, finding a coordi-

nation mediator for tP and tR means finding a coordination mediator for t′P and t′R. As pictorially shown

4To/from a third-party.

CONNECT 231167 32/94

Figure 2.18: Difference pair for (tP , tR)

in Figure 2.18 by tagging actions with (i), (ii) or (iii), since tP and tR are semantically related and their

loops/cycles are considered k times, t′P and t′R can be different for three reasons only: (i) they have

unshared actions corresponding to input/output third-party actions; (ii) they exhibit extra/missing sends

corresponding to redundant messages, possibly also coming from looping/cyclic behavior; and (iii) they

have complementary shared actions that appear in a different order. By means of the coordination medi-

ators to be synthesized, the first ones should be received by a third-party (resp., an NS) and delegated to

the receiving NS (resp., third-party), the second ones should be produced/consumed, and the third ones

should be reordered. Thus, by denoting with ∗ the iterator operator (for details, see IT12 in Appendix A),

the synthesized coordination mediators for our running example, only limited to t′P and t′R in Figure 2.18,

are:

M1 = JTrans(PayThirdParty, PayThirdParty′)∗K;
M2 = JOrder([ConfirmItem,CloseOrder], (2, 1), [ConfirmItem′, CloseOrder′])∗K;

M3 = J(Prod(SelectItem))∗K;
M4 = J(Prod(SetItemQuantity))∗K;

M5 = J(Cons(ConfirmItem))∗K.

The modular connector for our entire example is given by the follow-

ing composition of coordination mediators: M = M1|| . . . ||M6, where M6 =
JOrder([SelectItem, SetItemQuantity], (2, 1), [SelectItem′, SetItemQuantity′])∗K and || denotes the

IA parallel composition operator (for details, see IT12 in Appendix A); plus the set W = {Wi} of commu-

nication mediator used for the alphabet alignment. As formally shown in the next section, under alphabet

alignment, M is a correct connector meaning that the CONNECTed system is free from communication

and coordination mismatches, deadlocks only when each of P , M , and R deadlock, and satisfies the

constraints imposed by the given domain ontology.

2.3.2 Evaluation: correctness and CONNECTor evolution

In this section, we evaluate our method for the automated synthesis of modular CONNECTors with respect

to its support to: (i) WP3 CONNECTor synthesis; and (ii) CONNECTor evolution, which represents a crucial

dimension for a highly dynamic scenario such as CONNECT.

As described in [12], the WP2 compositional specification theory can be used to synthesize, via a

quotient operator /, a monolithic connector M such that P ||M ||R refines5 a given goal G, i.e., M =
G/(P ||R). G can be considered as the intent of the CONNECTor to be synthesized or, equivalently, of the

5Under a suitable notion of refinement whose formal definition is given in IT12 (see Appendix A).

CONNECT 231167 33/94

CONNECTed system to be. The formal definition of G is out of the scope of this work. For the purposes of

this section, it is sufficient to say that G is an interface automaton, representing the CONNECTed system

goal, which explicitly models three crucial conditions for correct communication and coordination: (c1)

P ||M ||R is not permitted to generate any inconsistencies; (c2) P ||M ||R is only permitted to deadlock

when all P , M , and R deadlock; and (c3) P ||M ||R must satisfy the constraints imposed by the given

protocol ontology.

As already mentioned above, CONNECTors synthesized through quotient generalizes WP3 CON-

NECTors. Thus, showing that our synthesis method supports the WP3 CONNECTor synthesis means

to show that a modular CONNECTor enjoys the same correctness properties of a monolithic CONNECTor

obtained via quotient, i.e., the c1, c2, and c3 correctness conditions. This, in turn, means showing that a

modular connector M synthesized for protocols P and R is such that c1, c2, and c3 hold, under alphabet

alignment. However, note that c2 and c3 trivially hold by construction. In fact, when composing in parallel

protocols, the only possibility to have “sink” states concerns scenarios in which none of the protocols is

willing to perform any action (c2); and communication mediators ensure alphabet alignment (c3). Thus,

in this section, by considering W as the set of synthesized communication mediators, we focus on stating

that the CONNECTed system made of:

• P wrapped by all mediators in W ;

• M ; and

• R wrapped by all mediators in W ;

is free from inconsistencies (c1). To do this we can exploit our notion of refinement (see IT12 in

Appendix A) to state the following theorem whose formal proof can be found in the related paper reported

in Appendix A.

Theorem 2.3 (Correctness under alphabet alignment)

Let M be a modular connector synthesized for the aligned protocols “P wrapped by all mediators in W ”

and “R wrapped by all mediators in W ”, then the following properties hold: (1) the CONNECTed system

made of M and “R wrapped by all mediators in W ” refines any legal environment for “P wrapped by all

mediators in W ”, and (2) the CONNECTed system made of “P wrapped by all mediators in W ” and M
refines any legal environment for “R wrapped by all mediators in W ”.

Concerning the ability, for modular connectors, to evolve in response of possible changes, the most

interesting scenario is related to changes at the level of the domain ontology. In fact, syntactic changes at

the level of the NSs’ interface directly correspond to a relabeling of mediator inputs/outputs, and related

concepts in the ontology. We recall that the synthesis of coordination mediators deals with sets of traces.

Thus, changes at the protocol level imply to re-iter the synthesis step on the affected traces only, hence

accordingly changing the corresponding mediators. However, in the worst case, i.e., all the traces of a

protocol share at least one action, the entire synthesis step must be repeated.

As an example of a possible change at the level of the domain ontology, let us go back to our run-

ning example and apply the following modification to the domain ontology: remove the ontological con-

straint for which StartOrder is an aggregate of Login and CreateOrder, and add the two constraints for

which StartOrder is subsumed by both SelectItem and SetItemQuantity. Although simple, this change

highlights the effectiveness of our decomposition with respect to supporting CONNECTor evolution. In

fact, to address the applied change, it is sufficient to reason compositionally at the level of the algebra-

based description of the modular connector M and related set W of communication mediators, instead

of reasoning in terms of its underlying IA-based monolithic representation. In particular, by just look-

ing at the mediators’ interface, one can easily recognize that the communication mediator affected by

the proposed change is W1, while no coordination mediator is affected. Due to the fact that the above

mentioned aggregation constraint has been removed from the domain ontology, W1 is removed as well.

In place of it, two communication mediators, W1.1 = J(Split(SelectItem, [StartOrder, z]) ⊙ Cons(z))∗K
and W1.2 = J(Split(SetItemQuantity, [StartOrder, k]) ⊙ Cons(k))∗K, are synthesized due to the ad-

dition in the ontology of the two above considered subsumption constraints. Furthermore, we recall

that the interface automaton of P has been modified in order to align its alphabet to the one of R.

CONNECT 231167 34/94

To reflect the change on the performed alphabet alignment, a trace in Tr(R) that contains SelectItem
and/or SetItemQuantity is modified by considering the following substitution: {StartOrder/SelectItem,
StartOrder/SetItemQuantity}. Analogously, a trace in Tr(P) that contains either the sequence

〈SelectItem SetItemQuantity〉 or 〈SetItemQuantity SelectItem〉 is modified by replacing any of these

sequences with StartOrder. According to the new alphabet alignment, in place of both M3 and M4

the coordination mediator J(Prod(StartOrder))∗K is synthesized. Note that, in the monolithic connector,

SelectItem and SetItemQuantity would always appear one after the other and modifying the connector

according to the applied change would mean to solve again the entire quotient problem.

CONNECT 231167 35/94

3 Evaluation of WP2 results
In this chapter, we report an overall evaluation of the WP2 results with respect to the objectives

and assessment criteria discussed in Deliverable D6.3 [14], hence refining the preliminary evaluation

contained in that deliverable. We recall that the objective of WP2 is to provide a comprehensive theory

to enable composition and automated synthesis of CONNECTors in order to automatically learn and

reason about CONNECTor behaviours via a quantitative assume-guarantee reasoning paradigm. The

expected outcomes are theories, formalisms, and methods that can be used for the specification, design,

development, and automated synthesis of CONNECTors, allowing for both functional and non-functional

properties to be expressed and verified. Throughout the duration of the project, we have developed

quantitative assume-guarantee reasoning techniques able to express and manage both functional and

non-functional properties of CONNECTors. We have also developed compositional techniques for enabling

automated synthesis of CONNECTors whose modularity supports dynamic evolution. All of the achieved

results have been published in leading international conferences. The success of this work package will

be evaluated on the final specification theory formalism, along with the defined method for the automated

synthesis of modular CONNECTors. There are two criteria for the evaluation.

Objective 1: Innovative formalism

• Assessment criterion: since there are many formalisms in the literature that address system mod-

elling and synthesis, we will assess our formalisms/methods on their significance, in the sense of

advancing the state of the art, and the range of functionality of the operators that are supported. This

can be judged by high quality publications, e.g., in leading international conferences and journals.

• Methodology: the evaluation of our formalisms/methods will be based on assessment against other

state of the art formulations, in addition to our related publication acceptance at leading venues.

• Assessment: the main contributions of the project are compositional quantitative assume-guarantee

reasoning and a compositional specification theory for components. Our results were published

in internationally leading conferences, and we have a number of journal papers under submission

or in preparation. Among the leading conferences listed in [10] - overall 25 conferences, which

means more than 7 papers published per year - it is worth mentioning FACS2012, TACAS2010,

TACAS2011, FASE2011, ESEC-FSE2009, ICSE2009, FORMATS2009, FORMATS2010, FOR-

MATS2012, QEST2011, and QEST2012.

We proposed the first compositional assume-guarantee framework for probabilistic systems, both for

safety as well as liveness properties (papers accepted for the leading conferences TACAS2010 and

TACAS2011). We formulated and implemented model checking algorithms based on multi-objective

model checking, demonstrating encouraging performance. We also extended the compositional

framework with automated assumption learning for a subset of rules (reported in QEST2010 and

FASE2011).

Our specification theory addresses a number of shortcomings of interface automata and supports a

broader range of operators than previously achieved. In particular, we propose the first quotient for

non-deterministic interface automata, the first definition of conjunction on this model type, and the

weakest preorder preserving substitutivity. Furthermore, the developed real-time extension of the

specification theory allows the modelling of the real-time performance of networked systems. From

this, as a further advance on the state of the art, we have formulated a technique based on quotient

for synthesising connectors that are not only functionally compatible with their environment, but that

are also responsive to the timing demands of the systems to be made interoperable. The first paper

about the specification theory was accepted to ESOP2012, a leading symposium on programming,

followed by the timed extension (FORMATS2012) and the assume-guarantee reasoning framework

(FACS2012).

The defined method for the automated synthesis of modular CONNECTors represents a significant

progress with respect to state of the art methods, where the output of the synthesis process results

in a monolithic connector that prevents evolution, and makes synthesis and maintenance of the

connector code a difficult task. The significance of our method has been confirmed by acceptance

CONNECT 231167 37/94

of a related publication at ICSE2013, a leading conference with interest in system modelling and

reasoning.

It is worth mentioning that a focused amount of attention has been given to component-based spec-

ification theories recently, by numerous authors, justifying that our work has tangible benefits, both

in terms of its practical applicability, and technical contribution (cf [5, 6]). Other work has focused on

components with different semantics, such as those based on modalities [20, 28].

Objective 2: Introducing the theoretical underpinning for emergent connectors

• Assessment criterion: WP2 intends to provide the theoretical underpinning for the work carried out

in the other work packages, in the sense that connectors specified in WP2 can be instantiated

in WP3 (synthesis), WP4 (learning) and WP5 (dependability analysis). Thus a key challenge when

developing the specification theory and its related synthesis methods (e.g., quotient-based, for pro-

ducing modular CONNECTors) is to ensure that it is fully integrated and usable by WPs 3, 4 and

5.

• Methodology: we will assess the application of the formalisms/methods to the concrete approaches

developed in WPs 3-5.

• Assessment: we have studied CONNECT-relevant examples where they have been available, for

example, mediator synthesis from WP3. In particular, as described in this deliverable, we have

developed an example based on the GMES scenario, for which we synthesise connectors in order

to allow successful communication between a number of networked systems. This example has

been applied to both the non-quantitative assume-guarantee framework for safety properties, as

well as the real-time extension of the specification theory. We have also developed an extension of

the specification theory in D2.3 [12] aimed at the register automata of WP4, but without imposing

restrictions (determinism, canonicity) where this is not necessary. We have applied the quantitative

assume-guarantee verification framework to the dependability analysis in WP5 (see D2.2 [11] and

D2.3).

We have demonstrated integration with WP3 in both D2.3 and this deliverable. In particular, in D2.3,

we have shown how quotient can be used for synthesis by showing that a mediator synthesised by

WP3 is the most general mediator, and that the theory supports checking for freedom of errors. As

a further proof of integration, in this deliverable, we have shown how to integrate the specification

theory with the WP2 connector algebra so as to support CONNECTor synthesis in WP3. In particular,

we have provided a method for the automated synthesis of modular CONNECTors that enjoy the

same correctness properties of the monolithic CONNECTor obtained by expressing the synthesis

problem as a quotient problem, as specified by the specification theory and as it is equivalently

produced by the WP3 synthesis. Moreover, to show how modular CONNECTors support evolution,

we applied our method on a WP3 case study in the e-commerce domain borrowed from D3.3 [13].

CONNECT 231167 38/94

4 Conclusion
In this deliverable, we reported the progress of WP2 during the fourth year of the CONNECT project.

The work has been organized into two main streams: (i) a quantitative extension of the compositional

specification theory devised during the previous two years; and (ii) the integration of the WP2 CONNECTor

algebra with the specification theory so as to support WP3 CONNECTor synthesis. As main outcomes of

WP2 for the fourth year of the project, these two streams of work have led us to define an AG framework

for safety properties, a quantitative specification theory, and an automated method for the synthesis of

modular CONNECTors. In the following, for each outcome, we report a brief discussion on groundbreaking

research challenges solved and open.

• AG framework for safety properties. We have presented an algebraically elegant framework for

reasoning compositionally about the safety properties satisfied by specifications of components.

Our work is more general than existing attempts in the area [24], as we do not insist on equality

of interfaces under satisfaction, do not require components and guarantees to be input-enabled,

provide the first definition of conjunction and quotient on contracts for this model type, and present

strong algebraic properties for the operations defined directly on contracts.

We are currently looking at a liveness extension of the framework, based on quiescence (in order to

stay within the present setup of finite traces). To facilitate this, besides assumptions and guarantees

on contracts, we also include a set of liveness traces on which implementing components may not

become quiescent (i.e., they must be able to extend such a trace by an output, without further

stimulation from the environment). This work has also resulted in a quiescence extension of the

compositional specification theory, where refinement guarantees both substitutivity and progress,

the latter being achieved by requiring that a quiescent trace in a refining component must have been

quiescent in the original. Present work involves submission of these two frameworks.

• Quantitative extension of the specification theory. This framework supports the modelling of

real-time components with critical timing constraints. As for the non-quantitative specification theory,

we define the full collection of compositional operators, including quotient for synthesis, and provide

the weakest substitutive refinement preorder maintaining absence of safety and bounded liveness

errors. Our theory is elegant in comparison to existing approaches, based on our equating of safety

and liveness errors through a single inconsistent state ⊥. This means that we need only use a single

transition system, rather than two (cf [19]).

Subsequent work has led us to look at the realisable sub class of timed components, which are

not permitted to stop the global system clock. This involves redefining the compositional operators,

in order to avoid encountering a timestop state from which time may not progress. In addition to

this, we also plan to look at developing an AG framework for reasoning compositionally about timed

components. This will strengthen the parallels between our non-quantitative theories and this timed

extension, as well as our eventual goal of formulating a specification theory for models exhibiting

both real-time and discrete probabilistic behaviour (work in progress).

The specification theory developed as part of WP2 is based on linear-time refinement (to align with

automata learning in WP4) and supports operations such as conjunction for independent devel-

opment and quotient for connector synthesis (to align with WP3). In the last reporting period, we

focused on developing assume-guarantee rules for our specification theory as well as a quantitative,

timed extension of the specification theory, which aligns with the monitoring framework (WP5). One

additional advantage of the timed extension is that refinement can be defined in terms of timed trace

containment, a natural extension of the refinement defined in the non-quantitative case. In contrast,

probabilistic refinement defined in terms of traces is known not to be compositional, and is usually

based on simulation relations. As a first step, we have formulated a refinement relation for abstract

probabilistic timed automata based on modal specifications, together with parallel and conjunction

(work in progress, not reported here). Future work will include formulation of quotient as well as link-

ing the results to the quantitative, probabilistic assume-guarantee framework developed in earlier

deliverables that supports a parallel operator and a number of compositional reasoning rules.

CONNECT 231167 39/94

• Automated synthesis of modular CONNECTors. A modular connector is synthesized as a com-

position of independent mediators, each of them corresponding to the solution of a recurring pro-

tocol mismatch. We have proven that our connector decomposition is correct and, by means of

a WP3 case study, we have shown how it promotes connector evolution. An overall advantage

of our approach with respect to the work in the state of the art (see [32, 29, 25, 22, 30, 27, 8]

just to mention a few) is that our connectors have a modular software architecture organized as

a composition of fundamental mediation primitives. This supports connector evolution and au-

tomated generation of the connector’s implementation code. In particular, we have recently re-

leased a first implementation (http://code.google.com/p/otf-connector/) of both the algebra primi-

tives and the plugging operator. This implementation is based on the use of Enterprise Integra-

tion Patterns (http://www.eaipatterns.com/) and is developed through the Apache Camel framework

(http://camel.apache.org/). Because of the way a modular connector is structured, the automatic

generation of its actual code written in terms of our algebra implementation is viable and can be

achieved with little effort. We have started to show, through its application to the real world case

study presented in IT12 (see Appendix A), that our method supports connector evolution.

As future work, we intend to carry out a rigorous empirical investigation to confirm the results re-

ported in IT12. Another future research direction concerns the ability to infer the needed ontological

information, out of the interface description of the two protocols, rather than assuming it as given.

CONNECT 231167 40/94

A Published work
In this appendix, we report some CONNECT papers that have been accepted for publication to leading

international conferences during the fourth year of the project. These papers provide details on the work

undertaken by WP2, whose overview has been given in this deliverable. The reported papers have been

attached in the same order as listed below.

CJK12 C. Chilton, B. Jonsson, and M. Kwiatkowska. Assume-Guarantee Reasoning for Safe Component

Behaviours. In C. Pasareanu and G. Salaun, editors, Proc. 9th International Symposium on Formal

Aspects of Component Software (FACS’12), Lecture Notes in Computer Science, vol. 7684, pp.

92-109. Springer-Verlag, 2012.

The relation of this paper to CONNECT is documented in Section 2.1.

CKW12 C. Chilton, M. Kwiatkowska, and X. Wang. Revisiting Timed Specification Theories: A Linear-Time

Perspective. In M. Jurdzinski and D. Nickovic, editors, Proc. 10th International Conference on For-

mal Modelling and Analysis of Timed Systems (FORMATS’12), Lecture Notes in Computer Science,

vol. 7595, pp. 75-90. Springer-Verlag, 2012.

An exposition of this paper is contained in Section 2.2.

IT12 Automatic Synthesis of Modular Connectors via Composition of Protocol Mediation Patterns. In

Proc. of the 35th International Conference on Software Engineering (ICSE 2013). To appear.

It provides details for the work discussed in Section 2.3.

CONNECT 231167 41/94

Assume-Guarantee Reasoning

for Safe Component Behaviours

Chris Chilton1, Bengt Jonsson2, and Marta Kwiatkowska1

1 Department of Computer Science, University of Oxford, UK
2 Department of Information Technology, Uppsala University, Sweden

Abstract. We formulate a sound and complete assume-guarantee frame-
work for reasoning compositionally about safety properties of component
behaviours. The specification of a component, which constrains the tem-
poral ordering of input and output interactions with the environment,
is expressed in terms of two prefix-closed sets of traces: an assumption
and guarantee. The framework supports dynamic reasoning about com-
ponents and specifications, and includes rules for parallel composition,
logical conjunction corresponding to independent development, and quo-
tient for incremental synthesis. Practical applicability of the framework
is demonstrated by considering a simple printing example.

Keywords: assume-guarantee, specification theory, components, com-
positionality, parallel, conjunction, quotient.

1 Introduction

Component-based design methodologies enable both design- and run-time as-
sembly of software systems from heterogeneous components, thus facilitating
component reuse, incremental development and independent implementability.
To improve the reliability and predictability of such systems, specification the-
ories have been proposed that permit the mixing of specifications and imple-
mentations, and allow for the construction of new components from existing
ones by means of compositional operators [1,2,3]. A specification should make
explicit the assumptions that a component can make about the environment,
and the corresponding guarantees that it will provide about its own behaviour.
This allows for the use of compositional assume-guarantee (AG) reasoning, in
order to combat issues of complexity and state space explosion during system
development and verification.

In earlier work [4], we introduced a component-based specification theory, in
which components communicate by synchronisation of I/O actions, with the un-
derstanding that inputs are controlled by the environment, while outputs (which
are non-blocking) are under the control of the component. The component-model
is conceptually similar to the interface automata of de Alfaro and Henzinger [5],
except that our refinement is based on classical sets of traces, as opposed to alter-
nating simulation, and that we allow explicit specification of inconsistent traces,
which can model underspecification and errors, etc. With both trace-based and

A.1 Assume-Guarantee Reasoning for Safe Component Be-

haviours

CONNECT 231167 42/94

Assume-Guarantee Reasoning for Safe Component Behaviours 93

operational representations for components, a distinguishing feature of our the-
ory is the inclusion of conjunction and quotient operators (which generalise those
of [2,6]) for supporting independent and incremental development, respectively.
Logical disjunction and hiding can also be added. The theory enjoys strong al-
gebraic properties with all the operators being compositional under refinement,
and we prove full abstraction with respect to a simple testing framework.

In [4] and [5], the assumptions and guarantees of components are merged
into one behavioural representation. In many cases, this avoids duplication of
common information, although there are situations in which it is desirable to
manipulate the assumptions and guarantees separately. For instance, we may
want to express a simple guarantee (such as “no failure will occur”) without
having to weave it into a complex assumption. Another advantage of separation
is specification reuse, in that the same guarantees (or assumptions) can be used
for several related interfaces, each representing different versions of a component.

Contributions. In this paper, we present a complete specification theory for
reasoning about AG specifications of components (as modelled in [4]). Assump-
tions and guarantees are prefix-closed sets of traces, meaning our framework
facilitates reasoning about safety behaviours, and differs from (arguably) more
complex approaches based on modal specifications and alternating simulation.
Building upon the theory in [4], we define the operators of parallel, conjunc-
tion and quotient directly on AG specifications (the last being the first such
definition), and prove their compositionality. By treating AG specifications as
first-class citizens, the theory supports flexible development and verification of
component-based systems using AG principles. A component can be charac-
terised by its weakest AG specification, and, in the opposite direction, we can
infer the least refined component satisfying a given specification. From this, a
notion of refinement corresponding to implementation containment is defined.
In relating implementations with AG specifications by means of satisfaction, we
formulate a collection of sound and complete AG reasoning rules for the preser-
vation of safety properties under the operations and refinement preorder of the
specification theory. These rules are inspired by the Compositionality Principle
of [7,8] for parallel composition, which we generalise to the operations of con-
junction and quotient. The rules allow us to infer properties of compositions
for both AG specifications and components, thus enabling designers to deduce
whether it is safe to substitute a component, for example one synthesised at
run-time by means of the quotient operator, with another.

Related Work. Compositional AG reasoning has been extensively studied in
the literature, where traditionally the work was concerned with compositional
reasoning for processes, components and properties expressed in temporal log-
ics [9,10,11]. A variety of rule formats have been proposed, although Maier
demonstrates through a set-theoretic setting in [12] that compositional circular
AG rules for parallel composition (corresponding to intersection) cannot both
be sound and complete. This seems to contradict the work of Namjoshi and Tre-

CONNECT 231167 43/94

94 C. Chilton, B. Jonsson, and M. Kwiatkowska

fler [13], although the discrepancy is attributed to the fact that the sound and
complete circular rule presented in [13] is non-compositional.

Compositional reasoning about AG specifications in the form of AG pairs,
similar to what we consider in this paper, is discussed in [7] for the generic setting
of state-based processes. The authors formulate a Compositionality Principle for
parallel composition, and observe that this is sound for safety properties. A logi-
cal formulation for specifications is then discussed in [8], where intuitionistic and
linear logic approaches are put forward. The main difference with our approach
is that we consider an action-based component model and have a richer set of
composition operators, including conjunction and quotient. We also prove com-
pleteness, by relying on the convention that an output is controlled by at most
one component, which can be used to break circularity.

More recent proposals focus on compositional verification for interface theo-
ries [14,15], namely interface and I/O automata, which are closest to our work.
In [14], Emmi et al. extend a learning-based compositional AG method to inter-
face automata. They only consider the much more limited asymmetric rules for
safety properties, which are shown to be both sound and complete. The rules are
supplied for the original subset of operators and relations defined in [5], namely
compatibility, parallel composition and refinement based on alternating simula-
tion. Thus, no consideration is given to conjunction or quotient. Other notable
work concerning compositional reasoning for interface theories is the AG frame-
work defined by Larsen et al. in [15] for I/O automata, where assumptions and
guarantees are themselves specified as I/O automata. The authors consider a
parallel composition operator on AG specifications that is the weakest specifi-
cation for composed components respecting independent implementability, for
which they present a sound and complete rule. Our work allows a more gen-
eral component model that does not require input-enabledness, and allows for
specifications to have non-identical interfaces to their implementations. We go
beyond [15] by defining conjunction and quotient operations directly on AG
specifications, thus providing a significantly richer basis for AG based reasoning
and development, and we do not require input-enabledness of guarantees.

A compositional specification theory based on modal specifications has been
developed in [3], which includes all the operations we consider in this paper,
but for systems without I/O distinction. Larsen et al. consider a cross between
modal specifications and interface automata [1], where refinement is given in
terms of alternating simulation/modal refinement (which is stronger than our
trace containment), and no operations for conjunction and quotient are given.
Surveying [16], Bauer et al. provide a generic construction for obtaining a con-
tract framework based on AG pairs from a component-based specification theory.
The abstract ideas share similarity with our framework, and it is interesting to
note how parallel composition of contracts is defined in terms of the conjunction
and quotient operators of the specification theory. Our work differs in that we
define both of these operators directly on contracts. A definition of conjunction
on contracts is provided in [17], but this is for a simplified contract framework,
as witnessed by the definition of parallel composition on contracts.

CONNECT 231167 44/94

Assume-Guarantee Reasoning for Safe Component Behaviours 95

Outline. In Section 2 we summarise the compositional specification theory of [4],
which serves as a basis for our AG reasoning framework. Section 3 introduces
the main definitions of the AG framework, and presents a number of sound
and complete compositional rules for the operators of the specification theory.
An application of our framework is illustrated in Section 4, while Section 5
concludes our work and suggests possible extensions. Proofs of our results are
made available as the technical report [18].

2 Compositional Specification Theory

In this section, we briefly survey the essential features of our compositional
specification theory presented in [4]. In that paper, we present two notations for
modelling components: a trace-based formalism and an operational representa-
tion. Here we focus on the trace-based models, since operational models can be
mapped to semantically equivalent trace-based ones.

A component comes equipped with an interface, together with a set of be-
haviours over the interface. The interface is represented by a set of input actions
and a set of output actions, which are necessarily disjoint, while the behaviour
is characterised by sets of traces.

Definition 1 (Components). A component P is a tuple 〈AI
P ,AO

P , TP , FP〉 in
which AI

P and AO
P are disjoint sets referred to as inputs and outputs respectively

(the union of which is denoted by AP), TP ⊆ A∗
P is a non-empty set of permis-

sible traces, and FP ⊆ A∗
P is a set of inconsistent traces. The trace sets must

satisfy the constraints:

1. FP ⊆ TP

2. If t ∈ TP and i ∈ AI
P , then ti ∈ TP

3. TP is prefix closed
4. If t ∈ FP and t′ ∈ A∗

P , then tt′ ∈ FP .

The permissible traces contain all possible interaction sequences between the
component and the environment; they are thus receptive to all inputs, as these
are under the control of the environment. If on some interaction sequence an
error arises in the component, or the environment issues a non-enabled input,
the trace is said to be inconsistent. We adopt the convention that any inconsistent
trace is suffix closed, meaning that, once the component becomes inconsistent,
it behaves similarly to the process CHAOS in CSP.

From hereon let P, Q and R be components with signatures 〈AI
P , AO

P , TP , FP〉,
〈AI

Q,AO
Q, TQ, FQ〉 and 〈AI

R,AO
R, TR, FR〉 respectively.

Notation. Let A, B and C be sets of actions. For a trace t, write t ↾ A for the
projection of t onto A. Now for T ⊆ A∗, write T ↾ B for {t ↾ B : t ∈ T}, T ⇑ B
for {t ∈ B∗ : t ↾ A ∈ T}, T ⇈ B for ǫ+(T ⇑ B)(ǫ+AI), T ↑ B for T (B)(A∪B)∗,
T ↑ǫ B for T ∪ (T ↑ B), T for A∗ \ T , and pre(T) for the largest prefix-closed set
contained in T .

CONNECT 231167 45/94

96 C. Chilton, B. Jonsson, and M. Kwiatkowska

Refinement. In the specification theory, refinement corresponds to safe-substitutivity.
This means that Q is a refinement of P if Q can be used safely in any environ-
ment that is safe for P. An environment is safe for a component if any interaction
between the two cannot be extended by a sequence of output actions under the
control of the component such that the resulting trace is inconsistent. We will
thus need to consider the safe representation of a component, obtained by prop-
agating inconsistencies backwards over outputs.

Definition 2 (Safe component). Let P be a component. The most general
safe representation for P is a component E(P) = 〈AI

P ,AO
P , TE(P), FE(P)〉, where

TE(P) = TP∪FE(P) and FE(P) = {tt′ ∈ A∗
P : t ∈ TP and ∃t′′ ∈ (AO

P)∗ ·tt′′ ∈ FP}.

We can now give the formal definition of refinement. Intuitively, Q must be
willing to accept any input that P can accept, but it must produce no more
outputs than P, otherwise we could not be certain how the environment would
respond to these additional outputs.

Definition 3 (Refinement). For components P and Q, Q is said to be a re-
finement of P, written Q ⊑imp P, iff:

1. AI
P ⊆ AI

Q

2. AO
Q ⊆ AO

P

3. TE(Q) ⊆ TE(P) ∪ TE(P) ↑ (AI
Q \ AI

P)
4. FE(Q) ⊆ FE(P) ∪ TE(P) ↑ (AI

Q \ AI
P).

The set TE(P) ↑ (AI
Q\AI

P) represents the extension of P’s interface to include
all inputs in AI

Q \ AI
P . As these inputs are not ordinarily accepted by P, they

are treated as bad inputs, hence the suffix closure with arbitrary behaviour.

Parallel Composition. The parallel composition of two components is obtained as
the cross-product by synchronising on common actions and interleaving on inde-
pendent actions. To support broadcasting, we make the assumption that inputs
and outputs synchronise to produce outputs. Communication mismatches aris-
ing through non-input enabledness automatically appear as inconsistent traces
in the product, on account of our component formulation. As the outputs of
a component are controlled locally, we assume that the output actions of the
components to be composed are disjoint.

Definition 4 (Parallel composition). Let P and Q be components such that
AO

P∩AO
Q = ∅. Then P || Q is the component 〈AI

P||Q,AO
P||Q, TP||Q, FP||Q〉, where:

– AI
P||Q = (AI

P ∪ AI
Q) \ (AO

P ∪ AO
Q)

– AO
P||Q = AO

P ∪ AO
Q

– TP||Q = [(TP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)] ∪ FP||Q

– FP||Q = [(TP ⇑ AP||Q) ∩ (FQ ⇑ AP||Q)]A∗
P||Q ∪

[(FP ⇑ AP||Q) ∩ (TQ ⇑ AP||Q)]A∗
P||Q.

CONNECT 231167 46/94

Assume-Guarantee Reasoning for Safe Component Behaviours 97

Informally, a trace is permissible in P || Q if its projection onto AP is a
trace of P and its projection onto AQ is a trace of Q. A trace is inconsistent if
it has a prefix whose projection onto the alphabet of one of the components is
inconsistent and the projection onto the alphabet of the other component is a
permissible trace of that component.

Conjunction. The conjunction of components P and Q is the coarsest component
that will work safely in any environment that P or Q can work safely in. It can be
thought of as finding a common implementation for a number of specifications.
Thus, conjunction is essentially the meet operator on the refinement preorder.
Consequently, the conjunction of two components is only defined when the union
of their inputs is disjoint from the union of their outputs.

Definition 5 (Conjunction). Let P and Q be components such that AI
P ∪AI

Q

and AO
P ∪AO

Q are disjoint. Then P ∧Q is the component 〈AI
P∧Q,AO

P∧Q, TP∧Q,
FP∧Q〉, where:

– AI
P∧Q = AI

P ∪ AI
Q

– AO
P∧Q = AO

P ∩ AO
Q

– TP∧Q = [(TP ∪ TP ↑ (AI
Q \ AI

P)) ∩ (TQ ∪ TQ ↑ (AI
P \ AI

Q))] ∩ A∗
P∧Q

– FP∧Q = [(FP ∪ TP ↑ (AI
Q \ AI

P)) ∩ (FQ ∪ TQ ↑ (AI
P \ AI

Q))] ∩ A∗
P∧Q.

Intuitively, after any trace of P ∧Q, the conjunction must accept any input
offered by either P or Q, but can only issue an output if both P and Q are
willing to offer it. Once P becomes inconsistent, or an input is seen that is not
an input of P, the conjunction behaves like Q (and vice-versa).

Quotient. In [4], we introduced a quotient operator acting on components. Given
a component R, together with a component P implementing part of R, the
quotient R/P yields the coarsest component for the remaining part of R to be
implemented. Thus, the quotient satisfies the property: there exists Q such that
P || Q ⊑imp R iff P || (R/P) ⊑imp R and Q ⊑imp (R/P). Whether the quotient
exists depends on the extent to which P is a sub-component of R.

For the development in this paper, we will not use quotient on components,
and refer to [4]. Instead, we will define a quotient operator that acts on AG spec-
ifications. Thus, the quotient of two AG specifications yields an AG specification
characterising a set of component implementations.

3 Assume-Guarantee Framework for Safety Properties

To support reasoning about components, we introduce the concept of an AG
specification, which consists of two prefix-closed sets of traces referred to as the
assumption and guarantee. The assumption specifies the environment’s allowable
interaction sequences, while the guarantee is a constraint on the component’s

CONNECT 231167 47/94

98 C. Chilton, B. Jonsson, and M. Kwiatkowska

behaviour. As assumptions and guarantees are prefix-closed, our theory ensures
that components preserve (not necessarily regular) safety properties3.

Definition 6 (AG specification). An AG specification S is a tuple 〈AI
S ,AO

S ,
RS ,GS〉, in which AI

S and AO
S are disjoint sets, referred to as the inputs and

outputs respectively, and RS and GS are prefix closed subsets of (AI
S ∪ AO

S)∗,
referred to as the assumption and guarantee respectively, such that t ∈ RS and
t′ ∈ (AO

S)∗ implies tt′ ∈ RS .

Since outputs are under the control of a component, we insist that assump-
tions are closed under output-extensions. On the other hand, we need not insist
that the guarantee is closed under input-extensions, since the assumption can
select inputs under which the guarantee is given.

Given an AG specification S, we want to be able to say whether a component
P satisfies S. Informally, P satisfies S if for any interaction between P and the
environment characterised by a trace t, if t ∈ RS , then t ∈ GS and t cannot
become inconsistent in P without further stimulation from the environment.
Components can thus be thought of as implementations of AG specifications.

Before defining satisfaction, we need to introduce a notion of compatibility
between AG specifications and components, meaning that they do not disagree
on what are inputs or outputs.

Definition 7 (Compatibility). Let P be a component, and let S and T be
AG-specifications. Then P is compatible with S, written P ∼ S, iff AI

P ∩ AO
S =

∅ = AO
P ∩AI

S . Similarly, S is compatible with T , written S ∼ T , iff AI
S ∩AO

T =
∅ = AO

S ∩ AI
T .

We can now give the formal definition for satisfaction of an AG specification
by a component.

Definition 8 (AG satisfaction). A component P satisfies the AG specification
S, written P |= S, iff:

S1. P ∼ S
S2. AI

S ⊆ AI
P

S3. AO
P ⊆ AO

S
S4. RS ∩ TP ⊆ GS ∩ FP .

By output-extension closure of assumptions, condition S4 is equivalent to
checking RS ∩TP ⊆ GS ∩FE(P), which involves the most general safe representa-
tion E(P) of P (see Definition 2). The following lemma shows that this definition
of satisfaction is preserved under the component-based refinement corresponding
to safe-substitutivity, subject to compatibility.

Lemma 1. Let P and Q be components, and let S be an AG specification. If
P |= S, Q ⊑imp P and Q ∼ S, then Q |= S.

3 Model-checking components against AG specifications would force us to restrict the
properties we can encode and check. In this setting, we would naturally restrict to
the regular safety properties, which can be encoded by finite-state automata.

CONNECT 231167 48/94

Assume-Guarantee Reasoning for Safe Component Behaviours 99

3.1 Refinement

There is a natural hierarchy on AG specifications respecting the satisfaction
rule defined in Definition 8. From this we can define a refinement relation on
AG specifications that corresponds to implementation containment. But first,
we introduce the shorthand: violations(X) , {t ∈ A∗

X : ∃t′ ∈ (AI
X)∗ · tt′ ∈

RX ∩ GX}A∗
X .

Definition 9 (AG refinement). Let S and T be AG specifications. S is said
to be a refinement of T , written S ⊑ T , iff:

R1. S ∼ T
R2. AI

T ⊆ AI
S

R3. AO
S ⊆ AO

T
R4. violations(T) ∩ A∗

S ⊆ violations(S)
R5. RT ∩ A∗

S ⊆ RS ∪ violations(S).

It is our intention that S ⊑ T iff the implementations of S are contained
within the implementations of T (subject to compatibility). Conditions R1-R3
are the bare minimum to uphold this principle. For condition R4, any component
having a trace t ∈ violations(T) ∩ A∗

S cannot be an implementation of T , so it
should not be an implementation of S. For this to be the case, the component
must violate the guarantee on S, i.e., t ∈ violations(S). Condition R5 deals with
inconsistent traces. If a component has an inconsistent trace t ∈ RT ∩A∗

S , then
this cannot be an implementation of T . Consequently, the component must not
be an implementation of S, so either t must violate the guarantee of S, i.e.,
t ∈ violations(S), or t must be in RS , so that the component cannot satisfy S.

Lemma 2. Refinement respects implementation containment:

S ⊑ T ⇐⇒ {P : P |= S and P ∼ T } ⊆ {P : P |= T }.

In [15], Larsen et al. give a sound and complete characterisation of their
refinement relation (which corresponds to implementation containment, as for
us) by means of conformance tests. The definition assumes equality of interfaces,
so does not need to deal with issues of compatibility or the complexities of both
covariant and contravariant inclusion of inputs and outputs respectively (i.e.,
conditions R1-R3). Thus, their definition largely corresponds to condition R4.
Condition R5 is not necessary in that setting, as implementation models are
required to be input-enabled.

Refinement can be shown to be a preorder, provided that we add the minor
technical condition that compatibility of components is maintained, as the next
lemma shows.

Lemma 3 (Weak transitivity). For AG specifications S, T and U , if S ⊑ T ,
T ⊑ U and S ∼ U , then S ⊑ U .

As an aside, component-based refinement ⊑imp is a preorder because, in
refining a component P to a component Q, it is possible to transform some
of P’s outputs into inputs of Q, as this preserves safe-substitutivity. However,
this transformation of action types does not make sense with AG specifications,
which talk explicitly about the behaviour of the environment.

CONNECT 231167 49/94

100 C. Chilton, B. Jonsson, and M. Kwiatkowska

3.2 Inferring Components from AG Specifications

Given a specification for a component, we require a way for developers to con-
struct an actual component that satisfies the requirements of the specification.
In the following definition, we show how to infer the least refined component
that satisfies a given specification.

Definition 10 (Inferred component). Let S be an AG specification. Then the
least refined implementation of S is the component I(S) = 〈AI

S ,AO
S , TI(S), FI(S)〉,

defined only when ǫ ∈ TI(S), where:

– TI(S) = pre({t ∈ RS ∩ GS : ∀t′ ∈ (AI
S)∗ · tt′ ∈ RS ∪ GS}) ∪ FI(S)

– FI(S) = {tit′ : t ∈ RS ∩ GS , i ∈ AI
S and ti 6∈ RS} ∪ {t ∈ A∗

S : ǫ 6∈ RS}.

The following lemma shows that the obtained component model really is
least refined with respect to the refinement preorder ⊑imp on implementations.

Lemma 4. Let S be an AG specification, and let P be a component. Then:

– ǫ 6∈ TI(S) implies S is non-implementable;
– ǫ ∈ TI(S) implies I(S) |= S; and
– P |= S iff P ⊑imp I(S).

3.3 Characteristic AG Specification of a Component

One may be interested in the most general AG specification that satisfies a com-
ponent, which we refer to as the characteristic AG specification of the component.
This can be found by examining the component’s safe traces.

Definition 11 (Characteristic AG specification). The characteristic AG
specification for the component P is an AG specification AG(P) = 〈AI

P ,AO
P ,

RAG(P),GAG(P)〉, where RAG(P) = A∗
P \ FE(P) and GAG(P) = TP \ FE(P).

The largest assumption safe for component P is the set of all non-inconsistent
traces, while the guarantee is the set of traces of E(P) that are non-inconsistent.
As the following lemma demonstrates, the characteristic AG specification satis-
fies the desired properties.

Lemma 5. Let P be a component and let S be an AG specification. Then:

– P |= AG(P); and
– P |= S iff AG(P) ⊑ S.

The final point in the previous lemma shows that satisfaction of a specifi-
cation by a component is equivalent to checking whether the characteristic AG
specification of the component is a refinement of the specification. This means
that implementability of specifications built up compositionally follows immedi-
ately from compositionality results on AG specifications, as we will see in the
subsequent sections.

We are now in a position to present sound and complete AG rules for inferring
properties of composite systems from the properties of their sub-components.

CONNECT 231167 50/94

Assume-Guarantee Reasoning for Safe Component Behaviours 101

3.4 Parallel Composition

The AG rule for parallel composition is based on the well-established theorem
of Abadi and Lamport [7], which has appeared in several forms [19,20,21]. In-
tuitively, the guarantee of any component must not be allowed to violate the
assumptions of the other components. Such reasoning seems circular, but the
circularity can be broken up in our setting as a safety property cannot be simul-
taneously violated by two or more components. This is due to an output being
under the control of at most one component.

Notation. To assist in our definition, we introduce the following shorthands:

– R(SP ,SQ) , (RSP
⇑ ASP ||SQ

) ∩ (RSQ
⇑ ASP ||SQ

)

– G(SP ,SQ) , (GSP
⇑ ASP ||SQ

) ∩ (GSQ
⇑ ASP ||SQ

)

– G+(SP ,SQ) , (GSP
⇈ ASP ||SQ

) ∩ (GSQ
⇈ ASP ||SQ

).

Definition 12. Let SP and SQ be AG specifications such that AO
SP

∩AO
SQ

= ∅.
If SP and SQ are both implementable, then SP || SQ is an AG specification
〈AI

SP ||SQ
,AO

SP ||SQ
,RSP ||SQ

,GSP ||SQ
〉 defined by:

– AI
SP ||SQ

= (AI
SP

∪ AI
SQ

) \ (AO
SP

∪ AO
SQ

)

– AO
SP ||SQ

= AO
SP

∪ AO
SQ

– RSP ||SQ
⊆ A∗

SP ||SQ
is the largest prefix closed set satisfying

RSP ||SQ
(AO

SP ||SQ
)∗ ∩ G+(SP ,SQ) ⊆ R(SP ,SQ)

– GSP ||SQ
= RSP ||SQ

∩ G(SP ,SQ).

If at least one of SP or SQ is non-implementable, then SP || SQ = 〈AI
SP ||SQ

,

AO
SP ||SQ

,A∗
SP ||SQ

, ∅〉

SP || SQ yields the strongest specification satisfiable by the parallel com-
position of any two components that satisfy SP and SQ. The specification only
guarantees what can be assured by both SP and SQ, thus it is the strongest com-
position. The assumption is the largest collection of environmental behaviours
that cannot violate either of the guarantees GSP

or GSQ
, and moreover does not

permit a component implementing one of the specifications to violate the other
specification’s assumption. Ignoring differences in alphabets, this can loosely be
phrased as RSP ||SQ

∩ GSP
⊆ RSQ

and RSP ||SQ
∩ GSQ

⊆ RSP
, which is akin

to the presentation in [7]. However, as implementations are not required to be
input-enabled, this must be reformulated as RSP ||SQ

∩G+(SP ,SQ) ⊆ R(SP ,SQ).
The set G+(SP ,SQ) extends G(SP ,SQ) by a single input on each of GSP

and
GSQ

, and also includes ǫ. This has the effect of ensuring that, if t ∈ G+(SP ,SQ)∩
R(SP ,SQ) and ta 6∈ G+(SP ,SQ), then whatever the action type of a, wlog
t ↾ ASP

∈ RSP
∩ GSP

or ta ↾ ASP
∈ RSP

∩ GSP
. Thus, any implementation

of SP must have suppressed an output at some stage along the trace ta ↾ ASP
,

implying the parallel composition of any two implementations of SP and SQ will
suppress an output along ta. Thus, RSP ||SQ

contains only traces within GSP ||SQ

and traces not reachable by any pair of implementations of SP and SQ.

CONNECT 231167 51/94

102 C. Chilton, B. Jonsson, and M. Kwiatkowska

Subject to suitable constraints on the alphabets of AG specifications, it can
be shown that the parallel composition operator on AG specifications is composi-
tional under the AG refinement relation, as the following theorem demonstrates.

Theorem 1. Let SP , S ′
P , SQ and S ′

Q be AG specifications such that AO
SP

∩

AO
SQ

= ∅, S ′
P || S ′

Q ∼ SP || SQ, AI
S′
P

∩ AO
S′
Q

⊆ AI
SP

∩ AO
SQ

, AO
S′
P

∩ AI
S′
Q

⊆

AO
SP

∩AI
SQ

and AI
S′
P

∩AI
S′
Q

∩AI
SP ||SQ

⊆ AI
SP

∩AI
SQ

. If S ′
P ⊑ SP and S ′

Q ⊑ SQ,

then S ′
P || S ′

Q ⊑ SP || SQ.

The condition AO
SP

∩AO
SQ

= ∅ ensures that the parallel composition of the AG
specifications is defined, while S ′

P || S ′
Q ∼ SP || SQ means S ′

P || S ′
Q and SP || SQ

are comparable under refinement. The remaining three conditions are standard
for compositionality of parallel composition. From this compositionality result,
it is easy to give a sound and complete AG rule.

Theorem 2. Let P and Q be components, and let SP , SQ and S be AG speci-
fications such that P || Q ∼ S, AI

P ∩AO
Q ⊆ AI

SP
∩AO

SQ
, AO

P ∩AI
Q ⊆ AO

SP
∩AI

SQ

and AI
P ∩AI

Q∩AI
SP ||SQ

⊆ AI
SP

∩AI
SQ

. Then the following AG rule is both sound
and complete:

Parallel
P |= SP Q |= SQ SP || SQ ⊑ S

P || Q |= S
.

3.5 Conjunction

In this section we define a conjunctive operator on AG specifications for combin-
ing independently developed requirements. From this we show that the operator
is both compositional and corresponds to the meet operation on the refinement
relation. This allows us to formulate a sound and complete AG rule.

The conjunction of AG specifications SP and SQ is only defined when AI
SP

∪

AI
SQ

is disjoint from AO
SP

∪AO
SQ

, in which case we say SP and SQ are composable.
The composability constraint is necessary, as otherwise it is not possible to find
an interface that can refine both SP and SQ.

Definition 13. Let SP and SQ be AG specifications composable for conjunc-
tion. Then SP ∧SQ is an AG specification 〈AI

SP∧SQ
,AO

SP∧SQ
,RSP∧SQ

,GSP∧SQ
〉

defined by:

– AI
SP∧SQ

= AI
SP

∪ AI
SQ

– AO
SP∧SQ

= AO
SP

∩ AO
SQ

– RSP∧SQ
= (RSP

∪RSQ
) ∩ A∗

SP∧SQ

– GSP∧SQ
is the intersection of the following sets:

• RSP∧SQ
∩ (GSP

∪ GSQ
)

• pre(RSP
∪ GSP

) ↑ǫ (AI
SQ

\ AI
SP

)

• pre(RSQ
∪ GSQ

) ↑ǫ (AI
SP

\ AI
SQ

).

CONNECT 231167 52/94

Assume-Guarantee Reasoning for Safe Component Behaviours 103

The assumption RSP∧SQ
is constrained to be within at least one of RSP

or
RSQ

. On the other hand, the guarantee GSP∧SQ
must be within at least one of

GSP
or GSQ

, and must ensure that, if the assumption for one of the specifications
is satisfied, then the corresponding guarantee cannot have been violated.

The next two theorems show that our definition of conjunction corresponds to
the meet operator on the refinement relation, and is compositional under refine-
ment. Consequently, the set of implementations for SP ∧ SQ is the intersection
of the implementation sets for SP and SQ.

Theorem 3. Let SP and SQ be AG specifications such that SP and SQ are
composable for conjunction. Then:

– SP ∧ SQ ⊑ SP

– SP ∧ SQ ⊑ SQ

– SR ⊑ SP and SR ⊑ SQ implies SR ⊑ SP ∧ SQ.

Theorem 4. Let SP , SQ, S ′
P and S ′

Q be AG specifications such that S ′
P and

S ′
Q are composable for conjunction, S ′

P ∼ SQ and S ′
Q ∼ SP . If S ′

P ⊑ SP and
S ′
Q ⊑ SQ, then S ′

P ∧ S ′
Q ⊑ SP ∧ SQ.

From these strong algebraic properties, we can formulate an AG rule for
conjunction that is both sound and complete.

Theorem 5. Let P and Q be components composable for conjunction, and let
SP and SQ be AG specifications such that P ∼ SQ, Q ∼ SP and P ∧ Q ∼ S.
Then the following AG rule is both sound and complete:

Conjunction
P |= SP Q |= SQ SP ∧ SQ ⊑ S

P ∧Q |= S
.

3.6 Quotient

The AG rule for parallel composition in Theorem 2 makes use of the composition
SP || SQ. To support incremental development, we need a way of decomposing
the composition to find SQ given SP . We can do this using a quotient operator.

Definition 14. Let SP and SW be AG specifications. Then the quotient SW/SP

is an AG specification 〈AI
SW/SP

,AO
SW/SP

,RSW/SP
,GSW/SP

〉, defined only when

AO
SP

⊆ AO
SW

, where AI
SW/SP

= AI
SW

\ AI
SP

, AO
SW/SP

= AO
SW

\ AO
SP

and:

– If SP is implementable, and ǫ ∈ RSW
implies ǫ ∈ RSP

, then:
• RSW/SP

= [RSW
∩ (GSP

⇈ ASW
)(AO

SW
)∗] ↾ ASW/SP

• GSW/SP
= RSW/SP

∩ (X ↾ ASW/SP
), where X is the largest prefix closed

set satisfying X(AI
SP

)∗ ∩RSW
⊆ pre(GSW

∪ GSP
⇑ ASW

)∩

pre((RSP
⇑ ASW

) ∪ GSP
⇈ ASW

).
– If SP is implementable and ǫ ∈ RSW

∩ RSP
, then RSW/SP

= A∗
SW/SP

and

GSW/SP
= ∅.

– If SP is non-implementable, then RSW/SP
= GSW/SP

= ∅.

CONNECT 231167 53/94

104 C. Chilton, B. Jonsson, and M. Kwiatkowska

Although not immediately obvious, the assumption in the previous definition
is closed under output-extensions. Before explaining the definition, we introduce
the following theorem, which shows that the quotient operator on AG specifica-
tions yields the weakest decomposition of the parallel composition.

Theorem 6. Let SP and SW be AG specifications. Then there exists an AG
specification SQ such that SP || SQ ⊑ SW iff the following properties hold:

– The quotient SW/SP is defined
– SP || (SW/SP) ⊑ SW

– SQ ⊑ SW/SP .

To make sense of the definition for quotient (in the difficult case of SP being
implementable and ǫ ∈ RSW

implies ǫ ∈ RSP
), it is necessary to consider the

final two results in Theorem 6. For these, we need to show that: (i) RSW
⊆

RSP ||(SW/SP); and (ii) RSW
∩ GSW

⊆ violations(SP || (SW/SP)). Clause (i)
amounts to showing RSW

∩G+(SP ,SW/SP) ⊆ R(SP ,SW/SP), i.e., the condition
for parallel composition. Thus, the assumption RSW/SP

is the smallest output-
closed set such that t ∈ RSW

and t ∈ GSP
⇈ ASW

implies t ∈ RSW/SP
⇑ ASW

.
The cases of t 6∈ RSP

⇑ ASW
or t 6∈ GSW/SP

⇈ ASW
are handled by GSW/SP

.
Considering the guarantee GSW/SP

, it is obvious that it need only be con-
tained within the assumption RSW/SP

. Moreover, it is safe to have t ∈ GSW/SP
⇈

ASW
if t 6∈ GSP

⇈ ASW
or t ∈ RSP

⇑ASP
ASW

; this is equivalent to requiring

t ∈ pre((RSP
⇑ ASW

)∪GSP
⇈ ASW

). For requirement (ii), if t ∈ GSW/SP
⇑ ASW

,
then it must be the case that t 6∈ GSW

implies t 6∈ GSP
⇑ ASW

. This is equivalent
to requiring t ∈ pre(GSW

∪GSP
⇑ ASW

). Piecing these conditions together yields
a definition of quotient that is correct by construction.

Theorem 7. Let SP and SW be AG specifications such that P ranges over com-
ponents having the same interface as SP , and Q is a component having the same
interface as SW/SP . If SW/SP is defined (i.e., AO

SP
⊆ AO

SW
), then the following

AG rule is sound and complete:

Quotient
∀P · P |= SP implies P || Q |= SW

Q |= SW/SP
.

The restriction on P and SP having the same interface, and Q and SW/SP

having the same interface, is necessary, because the parallel operator is only
compositional under certain restrictions on the interfaces (cf Theorem 1).

3.7 Decomposing Parallel Composition

The following corollary shows how we can revise the AG rule for parallel compo-
sition so that it makes use of quotient on AG specifications when we know the
global specification S. This is useful for system development, as we will often
have the specification of a global system, rather than the specifications of the
systems to be composed.

CONNECT 231167 54/94

Assume-Guarantee Reasoning for Safe Component Behaviours 105

Corollary 1. Let P and Q be components such that AI
P ∩AI

Q = ∅, and let SP ,
SQ and S be AG specifications. If AO

SP
∩ AO

SQ
= ∅, P || Q ∼ S, AI

P ∩ AO
Q ⊆

AI
SP

∩ AO
SQ

and AO
P ∩ AI

Q ⊆ AO
SP

∩ AI
SQ

, then the following rule is both sound
and complete:

Parallel-Decompose
P |= SP Q |= SQ SQ ⊑ S/SP

P || Q |= S
.

This rule, based on Theorem 2, differs in having the premise SQ ⊑ S/SP

in place of SP || SQ ⊑ S. This substitution is permitted by the results of
Theorem 6. The condition AI

P ∩ AI
Q = ∅ is necessary in order to show that

SP || SQ ⊑ SP || (S/SP), given the constraints on parallel compositionality, and
the fact that AI

SP
and AI

S/SP
are always disjoint.

4 A Printing Example

We illustrate our assume-guarantee framework on a simple example of component-
based design for a system concerned with printing a document. The system as
a whole is composed of a job scheduler, a printer controller and the physical
printer itself. Intuitively, the scheduler decides when a print job can start, and
expects to be informed when the job has finished. The controller, on the other
hand, waits for the start signal from the scheduler, after which it instructs the
printer to print the document, and awaits confirmation from the printer that the
document has printed. At this stage, the controller will signal to the scheduler
that the job has finished. The printer accepts a print command, after which it
will start to print the document, and will signify when the document is printed.

We iteratively derive a design by successively applying AG rules and con-
structions. We start by making use of two specifications for the combined effect
of the scheduler and printer controller:

1. Spec1: If the number of jobs sent to print is equal to or one greater than the
number of jobs printed, then the number of job starts must be equal to or
one greater than the number of requests sent to print.

2. Spec2: If the number of jobs sent to print is equal to or one greater than the
number of jobs printed, then a job must be printed before it can be finished,
and no two jobs can be consecutively finished without a document being
printed in between.

Spec1 and Spec2 can be represented by the AG specifications 〈RSpec,GSpec1〉
and 〈RSpec,GSpec2〉 respectively, where the assumptions and guarantees are de-
picted in Figure 1. For simplicity, we represent sets of traces by means of finite
automata, and annotate states with an F to indicate that a trace becomes in-
consistent. The combined effect of Spec1 and Spec2 is given by the conjunctive
specification Spec1 ∧ Spec2 = 〈RSpec,GSpec1∧Spec2〉, the guarantee of which is
presented in Figure 2.

CONNECT 231167 55/94

106 C. Chilton, B. Jonsson, and M. Kwiatkowska

RSpec

print!

printed?

print!

start! start! start!
finish! finish! finish!

print!

error?

GSpec1

start!

print!
finish! finish!
printed? printed?

GSpec2

printed?

finish!
start! start!
print! print!

printed?

Fig. 1. Assumption and guarantees for Spec1 and Spec2

GSpec1∧Spec2

start! print! start! print!
start!

print!

print!
start!

print!

finish! finish!

start! print! start!

finish! finish! finish! finish!

printed?printed?

printed?

printed?

Fig. 2. The guarantee for Spec1 ∧ Spec2

F

start! print! start!

start! print! start!

finish! finish! finish! finish!

printed?printed?

printed?

printed?

printed?

printed?

start!
finish!

print!

printed?

printed?

printed?

Fig. 3. The most general implementation of Spec1 ∧ Spec2

CONNECT 231167 56/94

Assume-Guarantee Reasoning for Safe Component Behaviours 107

RSched

start?

finish?

GSched

start?

finish?

Fig. 4. Specification of a scheduling constraint Sched

R(Spec1∧Spec2)/Sched

print!

printed?

print!
print!

error?

print!

printed?

print!
print!

error?

start! finish!

finish! finish! finish!

finish!

start!
print!

finish!

start!
print!

finish!

start!
print!

start! start! start!

start!
print!

finish!

start!
print!

finish!

start!
print!

finish!

G(Spec1∧Spec2)/Sched

start!

print!

printed?

finish!

Fig. 5. Specification for (Spec1 ∧ Spec2)/Sched

To demonstrate compositional AG reasoning, by Definition 10 we can find
implementations I(Spec1) and I(Spec2) of Spec1 and Spec2 respectively, which
by Theorem 5 allows us to derive I(Spec1)∧I(Spec2) |= Spec1∧Spec2. Accord-
ing to Lemma 4, this means that I(Spec1) ∧ I(Spec2) ⊑imp I(Spec1 ∧ Spec2).
Now by Theorem 3, we know Spec1∧Spec2 ⊑ Spec1, so from Lemma 2 we obtain
I(Spec1 ∧ Spec2) |= Spec1, and from Lemma 4 we derive I(Spec1 ∧ Spec2) ⊑imp

I(Spec1). By similar reasoning it can be shown that I(Spec1 ∧ Spec2) ⊑imp

I(Spec2), hence by Theorem 2 of [4] we acquire I(Spec1 ∧ Spec2) ⊑imp I(Spec1)∧
I(Spec2). Mutual refinement of components in our framework corresponds to
equality of models, so I(Spec1 ∧ Spec2) = I(Spec1) ∧ I(Spec2). Such an imple-
mentation is shown in Figure 3. Note how this component is unwilling to print
after encountering two start requests not separated by a job being printed. This
is because RSpec can issue an error after such an occurrence, but this is not ac-

CONNECT 231167 57/94

108 C. Chilton, B. Jonsson, and M. Kwiatkowska

cepted by GSpec1∧Spec2. Moreover, this implementation is able to start and print
an unbounded number of jobs without ever having to finish one of them.

We now propose an alternative derivation based on quotient, by making use
of a constraint specification Sched = 〈RSched,GSched〉 that requires start and
finish to alternate (shown in Figure 4). We wish to find an implementation for
the printer controller, let it be called Controller, such that Controller is an imple-
mentation of Spec1 ∧ Spec2 subject to the constraints imposed by Sched. This
is equivalent to requiring Controller |= (Spec1 ∧ Spec2)/Sched. The specification
(Spec1∧ Spec2)/Sched is exhibited in Figure 5, and the most general implemen-
tation is obtained from G(Spec1∧Spec2)/Sched by appending all non-enabled inputs
as inconsistent traces. In contrast to I(Spec1 ∧ Spec2), the constraints imposed
by Sched on Spec1 ∧ Spec2 means that any candidate implementation for Con-

troller will ensure that there can be at most one outstanding job that has not
finished.

5 Conclusion

We have presented a complete specification theory for reasoning about safety
properties of component behaviours with an explicit separation of assumptions
from guarantees. Our theory supports refinement based on traces, which relates
specifications by implementation containment. We define compositional oper-
ations of parallel composition, as well as – for the first time in this setting
– conjunction and quotient, directly on AG specifications. We give sound and
complete AG reasoning rules for the three operators, which preserve safety and
enable the reasoning about, e.g., safe substitutivity of components synthesised
at run-time. The theory can be extended with disjunction and hiding, as well
as liveness through the introduction of quiescence. The AG rules can also be
fully automated, as they are based on simple set-theoretic operations and do not
require the learning of assumptions. The refinement is linear-time, and hence
amenable to automata-theoretic approaches.

Acknowledgments. The authors are supported by EU FP7 project CON-
NECT and ERC Advanced Grant VERIWARE.

References

1. Larsen, K.G., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In Nicola, R.D., ed.: ESOP. Volume 4421 of LNCS., Springer
(2007) 64–79

2. Doyen, L., Henzinger, T.A., Jobstmann, B., Petrov, T.: Interface theories with
component reuse. In: Proc. 8th ACM international conference on Embedded soft-
ware. EMSOFT ’08, ACM (2008) 79–88

3. Raclet, J.B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: A
modal interface theory for component-based design. Fundam. Inform. 108 (2011)
119–149

CONNECT 231167 58/94

Assume-Guarantee Reasoning for Safe Component Behaviours 109

4. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A Compositional Specifica-
tion Theory for Component Behaviours. In Seidl, H., ed.: ESOP’12. Volume 7211
of LNCS., Springer (2012) 145–165

5. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26 (2001) 109–120

6. Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion. Form. Asp.
Comput. 20 (2008) 205–224

7. Abadi, M., Lamport, L.: Composing specifications. ACM Transactions on Pro-
gramming Languages and Systems 15 (1993) 73–132

8. Abadi, M., Plotkin, G.: A logical view of composition. Theoretical Computer
Science 114 (1993) 3–30

9. Pnueli, A.: Logics and models of concurrent systems. Springer (1985) 123–144
10. Clarke, E., Long, D., McMillan, K.: Compositional model checking. In: Proc. 4th

Annual Symposium on Logic in computer science, IEEE Press (1989) 353–362
11. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-

actions on Programming Languages and Systems 16 (1991)
12. Maier, P.: A set-theoretic framework for assume-guarantee reasoning. In Orejas,

F., Spirakis, P.G., Leeuwen, J., eds.: ICALP’01, LNCS 2076. (2001) 821–834
13. Namjoshi, K.S., Trefler, R.J.: On the completeness of compositional reasoning

methods. ACM Trans. Comput. Logic 11 (2010) 16:1–16:22
14. Emmi, M., Giannakopoulou, D., Păsăreanu, C.: Assume-Guarantee Verification

for Interface Automata. In Cuellar, J., Maibaum, T., Sere, K., eds.: FM 2008:
Formal Methods. Volume 5014 of LNCS. Springer (2008) 116–131

15. Larsen, K.G., Nyman, U., Wasowski, A.: Interface input/output automata. In:
FM 2006. Volume 4085 of LNCS., Springer (2006) 82–97

16. Bauer, S., David, A., Hennicker, R., Larsen, K., Legay, A., Nyman, U., Wasowski,
A.: Moving from specifications to contracts in component-based design. In Lara,
J., Zisman, A., eds.: FASE’12. Volume 7212 of LNCS. Springer (2012) 43–58

17. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: a compositional
reasoning methodology for the design of systems with stochastic and/or non-
deterministic aspects. FMSD 38 (2011) 1–32

18. Chilton, C., Jonsson, B., Kwiatkowska, M.: Assume-Guarantee Reasoning for Safe
Component Behaviours. Technical Report CS-RR-12-07, Department of Computer
Science, University of Oxford (2012)

19. Collette, P.: Application of the composition principle to Unity-like specifications.
In: TAPSOFT’93, LNCS 668, Springer-Verlag (1993) 230–242

20. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems 17 (1995) 507–534

21. Jonsson, B., Tsay, Y.K.: Assumption/guarantee specifications in linear-time tem-
poral logic. Theoretical Computer Science 167 (1996) 47–72

CONNECT 231167 59/94

Revisiting Timed Specification Theories:

A Linear-Time Perspective

Chris Chilton, Marta Kwiatkowska, and Xu Wang

Department of Computer Science, University of Oxford, UK

Abstract. We consider the setting of component-based design for real-
time systems with critical timing constraints. Based on our earlier work,
we propose a compositional specification theory for timed automata with
I/O distinction, which supports substitutive refinement. Our theory pro-
vides the operations of parallel composition for composing components at
run-time, logical conjunction/disjunction for independent development,
and quotient for incremental synthesis. The key novelty of our timed
theory lies in a weakest congruence preserving safety as well as bounded
liveness properties. We show that the congruence can be characterised by
two linear-time semantics, timed-traces and timed-strategies, the latter of
which is derived from a game-based interpretation of timed interaction.

1 Introduction

Component-based design methodologies can be encapsulated in the form of com-
positional specification theories, which allow the mixing of specifications and
implementations, admit substitutive refinement to facilitate reuse, and provide
a rich collection of operators. Several such theories have been introduced in the
literature, but none simultaneously address the following requirements: support
for asynchronous input/output (I/O) communication with non-blocking outputs
and non-input receptiveness; linear-time refinement preorder, so as to interface
with automata and learning techniques; substitutivity of refinement, to allow
for component reuse at runtime without introducing errors; and strong algebraic
and compositionality properties, to enable offline as well as runtime reasoning.

Previously [1], we developed a linear-time specification theory for reason-
ing about untimed components that interact by synchronisation of I/O actions.
Models can be specified operationally by means of transition systems augmented
by an inconsistency predicate on states, or declaratively using traces. The the-
ory admits non-determinism, a substitutive refinement preorder based on traces,
and the operations of parallel composition, conjunction and quotient. The refine-
ment is strictly weaker than alternating simulation and is actually the weakest
pre-congruence preserving freeness of inconsistent states.

In this paper we target component-based development for real-time systems
with critical timing constraints, such as embedded system components, the mid-
dleware layer and asynchronous hardware. Amongst notable works in the liter-
ature, we surveyed the theory of timed interfaces [2] and the theory of timed

A.2 Revisiting Timed Specification Theories: A Linear-Time Per-

spective

CONNECT 231167 60/94

2 Chris Chilton, Marta Kwiatkowska, and Xu Wang

specifications [3]. Though both support I/O distinctions, their refinement rela-
tions are not linear time: in [2], refinement (compatibility) is based on timed
games, and in [3] it is a timed version of the alternating simulation originally
defined for interface automata [4]. Consequently, it is too strong for determin-
ing when a component can be safely substituted for another. As an example,
consider the transition systems P and Q in Figure 3: these should be equivalent
in the sense of substitutivity under any environment, and are equivalent in our
formulation (Definition 5), but they are not so according to timed alternating
simulation.

Contributions. We formulate an elegant timed, asynchronous specification the-
ory based on finite traces which supports substitutive refinement, as a timed
extension of the linear-time specification theory of [1]. We allow for both op-
erational descriptions of components, as well as declarative specifications based
on traces. Our operational models are a variant of timed automata with I/O
distinction (although we do not insist on input-enabledness, cf [5]), augmented
by two special states: the inconsistent state ⊥ represents safety and bounded-
liveness errors, while the timestop state ⊤ is a novel addition representing either
unrealisable output (if the component is not willing to produce that output) or
unrealisable time-delay (if the delay would violate the invariant on that state).

Timestop models the ability to stop the clock and has been used before
in embedded system and circuit design [6, 7]. It is notationally convenient, ac-
counting for simpler definitions and a cleaner formalism. By enhancing the au-
tomata with the notion of co-invariant, we can, for the first time, distinguish
the roles of input/output guards and invariant/co-invariants as specifying safety
and bounded-liveness timed assumptions/guarantees. We emphasise that this is
achieved with finite traces only; note that in the untimed case it would be nec-
essary to extend to infinite traces to model liveness. In addition to timed-trace
semantics, we present timed-strategy semantics, which coincides with the former
but relates our work closer to the timed-game frameworks used by [3] and [2],
and could in future serve as a guide to implementation of the theory. Finally,
the substitutive refinement of our framework gives rise to the weakest congruence
preserving ⊥-freeness, which is not the case in the formalism of [3].

Related work. Our work can be seen as an alternative to the timed theories of [2,
3]. Being linear-time in spirit, it is also a generalisation of [8], an untimed theory
inspired by asynchronous circuits, and Dill’s trace theory [9]. The specification
theory in [3] also introduces parallel, conjunction and quotient, but uses timed
alternating simulation as refinement, which does not admit the weakest pre-
congruence. An advantage of [3] is the algorithmic efficiency of branching-time
simulation checking as well as the implementation reported in [10]. We briefly
mention other related works, which include timed modal transition systems [11,
12], the timed I/O model [5, 13] and asynchronous circuits and embedded sys-
tems [14, 15]. A more detailed comparison based on the technical details of our
work is included in Section 5. A full version of this paper including an even
greater comparison with related work, in addition to proofs, is available as [16].

CONNECT 231167 61/94

Revisiting Timed Specification Theories: A Linear-Time Perspective 3

2 Formal Framework

In this section we introduce timed I/O automata, timed I/O transition systems
and a semantic mapping from the former to the latter. Timed I/O automata are
compact representations of timed I/O transition systems. We also present an
operational specification theory based on timed I/O transition systems, which
are endowed with a richer repertoire of semantic machinery than the automata.

2.1 Timed I/O Automata

Clock constraints. Given a set X of real-valued clock variables, a clock constraint
over X , cc : CC (X), is a boolean combination of atomic constraints of the form
x ⊲⊳ d and x − y ⊲⊳ d where x , y ∈ X , ⊲⊳∈ {≤, <,=, >,≥}, and d ∈ N.

A clock valuation over X is a map t that assigns to each clock variable x in
X a real value from R≥0. We say t satisfies cc, written t ∈ cc, if cc evaluates to
true under valuation t . t + d denotes the valuation derived from t by increasing
the assigned value on each clock variable by d ∈ R≥0 time units. t [rs 7→ 0]
denotes the valuation obtained from t by resetting the clock variables in rs to
0. Sometimes we use 0 for the clock valuation that maps all clock variables to 0.

Definition 1. A timed I/O automaton (TIOA) is a tuple (C , I ,O ,L, l0,AT ,
Inv , coInv), where:

– C ⊆ X is a finite set of clock variables
– A (= I ⊎ O) is a finite alphabet, consisting of inputs I and outputs O
– L is a finite set of locations and l0 ∈ L is the initial location
– AT ⊆ L × CC (C) × A × 2C × L is a set of action transitions
– Inv : L → CC (C) and coInv : L → CC (C) assign invariants and co-

invariants to states, each of which is a downward-closed clock constraint.

We use l , l ′, li to range over L and use l
g,a,rs
−−−−→ l ′ as a shorthand for (l , g , a, rs,

l ′) ∈ AT . g : CC (C) is the enabling guard of the transition, a ∈ A the action,
and rs the subset of clock variables to be reset.

Our TIOAs are timed automata that distinguish input from output and in-
variant from co-invariant. They are similar to existing variants of timed automata
with input/output distinction, except for the introduction of co-invariants and
non-insistence on input-enabledness. While invariants specify the bounds be-
yond which time may not progress, co-invariants specify the bounds beyond
which the system will time-out and enter error states. It is designed for the as-
sume/guarantee specification of timed components, in order to specify both the
assumptions made by the component on the inputs and the guarantees provided
by the component on the outputs, with respect to timing constraints.

Guards on output transitions express safety timing guarantees, while guards
on input transitions express safety timing assumptions. On the other hand, in-
variants (urgency) express liveness timing guarantees on the outputs at the
locations they decorate, while co-invariants (time-out) express liveness timing
assumptions on the inputs at those locations.

CONNECT 231167 62/94

4 Chris Chilton, Marta Kwiatkowska, and Xu Wang

Inv: x <= 100
Co: true

Inv: y<=1
Co: true

finish?

x:=0

5 <= x <= 8

start! x:=0

y==1
print!
y:=0

finish!
y<=5

Inv: y<=5
Co: true

Inv: true
Co: y<=10

A B

1 2

34

start? y:=0

printed? y:=0

Scheduler Printer_controller

Fig. 1. Job scheduler and printer controller.

When two components are composed, the parallel composition automatically
checks whether the guarantees provided by one component meet the assumptions
required by the other. For instance, the unexpected arrival of an input at a
particular location and time (indicated by a non-enabled transition) leads to a
safety error in the parallel composition. The non-arrival of an expected input at
a location before its time-out (specified by the co-invariant) leads to a bounded-
liveness error in the parallel composition.

Example. Figure 1 depicts TIOAs representing a job scheduler together with a
printer controller. The invariant at location A of the scheduler forces a bounded-
liveness guarantee on outputs in that location. As time must be allowed to
progress beyond t = 100, the start action must be fired within the range 0 ≤ t ≤
100. After start has been fired, the clock x is reset to 0 and the scheduler waits
(possibly indefinitely) for the job to finish. If the job does finish, the scheduler is
only willing for this to take place between 5 ≤ t ≤ 8 after the job started (safety
assumption), otherwise an unexpected input error will be thrown.

The controller waits for the job to start , after which it will wait exactly 1
time unit before issuing print (forced by the invariant y ≤ 1 on state 2 and
the guard y = 1). The controller now requires the printer to indicate the job is
printed within 10 time units of being sent to the printer, otherwise a time-out
error on inputs will occur (co-invariant y ≤ 10 in state 3 as liveness assumption).
After the job has finished printing, the controller must indicate to the scheduler
that the job has finished within 5 time units.

Notation. For a set of input actions I and a set of output actions O , define
tA = I ⊎ O ⊎ R>0 to be the set of timed actions, tI = I ⊎ R>0 to be the set of
timed inputs, and tO = O ⊎R>0 to be the set of timed outputs. We use symbols
like α, β, etc. to range over tA.

A timed word (ranged over by w ,w ′,wi etc.) is a finite mixed sequence of
positive real numbers (R>0) and visible actions such that no two numbers are
adjacent to one another. For instance, 〈0.33, a, 1.41, b, c, 3.1415〉 is a timed word
denoting the observation that action a occurs at 0.33 time units, then another
1.41 time units lapse before the simultaneous occurrence of b and c, which is
followed by 3.1415 time units of no event occurrence. ǫ denotes the empty word.

Concatenation of timed words w and w ′ is obtained by appending w ′ onto
the end of w and coalescing adjacent reals (summing them). Prefix/extension

CONNECT 231167 63/94

Revisiting Timed Specification Theories: A Linear-Time Perspective 5

are defined as usual by concatenation. We write w ↾ tA0 for the projection of w
onto timed alphabet tA0, which is defined by removing from w all actions not
inside tA0 and coalescing adjacent reals.

2.2 Semantics as Timed I/O Transition Systems

The semantics of TIOAs are given as timed I/O transition systems, which are a
special class of infinite labelled transition systems.

Definition 2. A timed I/O transition system (TIOTS) is a tuple P = 〈I ,O ,S ,
s0,→〉, where I and O are the input and output actions respectively, S = (L ×
RC) ⊎ {⊥,⊤} is a set of states, s0 ∈ S is the designated initial state, and
→⊆ S × (I ⊎ O ⊎ R>0) × S is the action and time-labelled transition relation.

The states of the TIOTS for a TIOA capture the configuration of the automa-
ton, i.e. its location and clock valuation. Therefore, each state of the TIOTS is a
pair drawn from L×RC , which we refer to as the set of plain states. In addition,
we introduce two special states ⊥ and ⊤, which are required for the semantic
mapping of disabled inputs/outputs, invariants and co-invariants. In the rest of
the paper, we use p, p′, pi to range over P = L×RC while s, s ′, si range over S .

⊥ is the so-called inconsistent state, arising through assumption/guarantee
mismatches, i.e. safety and bounded-liveness errors. ⊤ is the so-called timestop
state, representing the magic moment from which time stops elapsing and no
error can occur. We assume that ⊤ refines plain states, which in turn refine
⊥. For technical convenience (e.g. ease of defining time additivity and trace
semantics), we require that ⊤ and ⊥ are a chaotic states, i.e. states having
self-loops for each α ∈ tA.

On TIOTSs, a disabled input in a state p is equated to an input transition
from p to ⊥, while a disabled output/delay in p is equated to an output/delay
from p to ⊤. The intuition here comes from the I/O game perspective. The
component controls output and delay, while the environment controls input. ⊥
is the losing state for the environment, so an input transition from p to ⊥ is
a transition that the environment tries to avoid at all cost (unless there is no
choice). ⊤ is the losing state for the component, so an output/delay transition
from p to ⊤ is a transition that the component tries to avoid at any cost. Thus
we can have two semantic-preserving transformations on TIOTSs.

The ⊥-completion of a TIOTS P, denoted P⊥, adds an a-labelled transition
from p to ⊥ for every p ∈ P (= L × RC) and a ∈ I s.t. a is not enabled at p.1

The ⊤-completion, denoted P⊤, adds an α-labelled transition from p to ⊤ for
every p ∈ P and α ∈ tO s.t. α is not enabled at p.

Now, the transition relation → of the TIOTS is derived from the execution
semantics of the TIOA.

Definition 3. Let P be a TIOA. The execution semantics of P is a TIOTS
〈I ,O ,S , s0,→〉, where:

1 ⊥-completion will make a TIOTS input-receptive, i.e. input-enabled in all states.

CONNECT 231167 64/94

6 Chris Chilton, Marta Kwiatkowska, and Xu Wang

– S = (L × RC) ⊎ {⊥,⊤}
– s0 = ⊤ providing 0 /∈ Inv(l0), s0 = ⊥ providing 0 ∈ Inv(l0) ∧ ¬coInv(l0)

and s0 = (l0, 0) providing 0 ∈ Inv(l0) ∧ coInv(l0),
– → is the smallest relation satisfying:

1. If l
g,a,rs
−−−−→ l ′, t ′ = t [rs 7→ 0], t ∈ Inv(l) ∧ coInv(l) ∧ g, then:

(a) plain action: (l , t)
a
−→ (l ′, t ′) providing t ′ ∈ Inv(l ′) ∧ coInv(l ′)

(b) error action: (l , t)
a
−→ ⊥ providing t ′ ∈ Inv(l ′) ∧ ¬coInv(l ′)

(c) magic action: (l , t)
a
−→ ⊤ providing t ′ ∈ ¬Inv(l ′) and a ∈ I .

2. plain delay: (l , t)
d
−→ (l , t + d) if t , t + d ∈ Inv(l) ∧ coInv(l)

3. time-out delay: (l , t)
d
−→ ⊥ if t ∈ Inv(l) ∧ coInv(l), t + d /∈ coInv(l) and

∃ 0 < δ ≤ d : t + δ ∈ Inv(l) ∧ ¬coInv(l).

Note that our semantics tries to minimise the use of transitions leading to
⊤/⊥ states. Thus there are no delay or output transitions leading to ⊤. However,
there are implicit timestops, which we capture using the concept of semi-timestop
(i.e. semi-⊤). We say a plain state p is a semi-⊤ iff 1) all output transitions
enabled in p and all of its time-passing successors lead to the ⊤ state, and 2)

there exists d ∈ R>0 s.t. p
d
−→ ⊤ or d is not enabled in p. Thus a semi-⊤ is a

state in which it is impossible for the component to avoid the timestop without
suitable inputs from the environment.

The introduction of timestop (⊤), which can model the operation of stopping
the system clock, is an unconventional aspect of our semantics. Certain real-world
systems have an inherent ability to stop the clock, e.g. [6, 7], which are related
to embedded systems and circuit design. When the suspension of clocks is not
meaningful, it is necessary to remove timestop in order to leave the so-called
realisable behaviour. Timestop is useful even for timestop free systems, as it can
significantly simplify operations, such as quotient and conjunction.

TIOTS terminology. We say a TIOTS is deterministic iff s
α
−→ s ′ ∧ s

α
−→ s ′′

implies s ′ = s ′′, and is time additive providing p
d1+d2−−−−→ s ′ iff p

d1−→ s and

s
d2−→ s ′ for some s. In the sequel, we only consider time-additive TIOTSs.
Given a TIOTS P, a timed word can be derived from a finite execution of

P by extracting the labels in each transition and coalescing adjacent reals. The
timed words derived from such executions are called traces of P. We use tt , tt ′, tti
to range over traces and write s0 tt

=⇒ s to denote a finite execution producing tt
and leading to s.

2.3 Operational Specification Theory

In this section we develop a compositional specification theory for TIOTSs based
on the operations of parallel composition ‖, conjunction ∧, disjunction ∨ and
quotient %. The operators are defined via transition rules that are a variant on
synchronised product.

Parallel composition yields a TIOTS that represents the combined effect
of its operands interacting with one another. The remaining operations must

CONNECT 231167 65/94

Revisiting Timed Specification Theories: A Linear-Time Perspective 7

Table 1. State representations under composition operators.

‖ ⊤ p0 ⊥
⊤ ⊤ ⊤ ⊤
p1 ⊤ p0×p1 ⊥
⊥ ⊤ ⊥ ⊥

∧ ⊤ p0 ⊥
⊤ ⊤ ⊤ ⊤
p1 ⊤ p0×p1 p1

⊥ ⊤ p0 ⊥

∨ ⊤ p0 ⊥
⊤ ⊤ p0 ⊥
p1 p1 p0×p1 ⊥
⊥ ⊥ ⊥ ⊥

% ⊤ p0 ⊥
⊤ ⊥ ⊥ ⊥
p1 ⊤ p0×p1 ⊥
⊥ ⊤ ⊤ ⊥

be explained with respect to a refinement relation, which corresponds to safe-
substitutivity in our theory. A TIOTS is a refinement of another if it will work
in any environment that the original worked in without introducing safety or
bounded-liveness errors. Conjunction yields the coarsest TIOTS that is a refine-
ment of its operands, while disjunction yields the finest TIOTS that is refined
by both of its operands. The operators are thus equivalent to the join and meet
operations on TIOTSs2. Quotient is the adjoint of parallel composition, meaning
that P0%P1 is the coarsest TIOTS such that (P0%P1)‖P1 is a refinement of P0.

Let Pi = 〈Ii ,Oi ,Si , s
0
i ,→i〉 for i ∈ {0, 1} be two TIOTSs that are both ⊥

and ⊤-completed, satisfying (wlog) S0 ∩ S1 = {⊥,⊤}. The composition of P0

and P1 under the operation ⊗ ∈ {‖,∧,∨,%}, written P0 ⊗ P1, is only defined
when certain composability restrictions are imposed on the alphabets of the
TIOTSs. P0 ‖ P1 is only defined when the output sets of P0 and P1 are disjoint,
because an output should be controlled by at most one component. Conjunction
and disjunction are only defined when the TIOTSs have identical alphabets (i.e.
O0 = O1 and I0 = I1). This restriction can be relaxed at the expense of more
cumbersome notation, which is why we focus on the simpler case in this paper.
For the quotient, we require that the alphabet of P0 dominates that of P1 (i.e.
A1 ⊆ A0 and O1 ⊆ O0), in addition to P1 being a deterministic TIOTS. As
quotient is a synthesis operator, it is difficult to give a definition using just
state-local transition rules, since quotient needs global information about the
transition systems. This is why we insist on P1 being deterministic3.

Definition 4. Let P0 and P1 be TIOTSs composable under ⊗ ∈ {‖,∧,∨,%}.
Then P0 ⊗ P1 = 〈I ,O ,S , s0,→〉 is the TIOTS where:

– If ⊗ =‖, then I = (I0 ∪ I1) \ O and O = O0 ∪ O1

– If ⊗ ∈ {∧,∨}, then I = I0 = I1 and O = O0 = O1

– If ⊗ = %, then I = I0 ∪ O1 and O = O0 \ O1

– S = (P0 × P1) ⊎ P0 ⊎ P1 ⊎ {⊤,⊥}
– s0 = s0

0 ⊗ s0
1

– → is the smallest relation containing →0 ∪ →1, and satisfying the rules:

p0

α−→0s
′
0 p1

α−→1s
′
1

p0⊗p1

α−→s ′0⊗s ′1

p0

a−→0s
′
0 a /∈A1

p0⊗p1

a−→s ′0⊗p1

p1

a−→0s
′
1 a /∈A0

p0⊗p1

a−→p0⊗s ′1

2 As we write A ⊑ B to mean A is refined by B , our operators ∧ and ∨ are reversed
in comparison to the standard symbols for meet and join.

3 Technically speaking, the problem is a consequence of state quotient being right-
distributive but not left-distributive over state disjunction (cf Table 1).

CONNECT 231167 66/94

8 Chris Chilton, Marta Kwiatkowska, and Xu Wang

We adopt the notation of s0 ⊗ s1 for states, where the associated interpretation
is supplied in Table 1. Furthermore, given two plain states pi = (li , ti) for i ∈
{0, 1}, we define p0 × p1 = ((l0, l1), t0 ⊎ t1).

Table 1 tells us how states should be combined under the composition oper-
ators. For parallel, a state is magic if one component state is magic, and a state
is error if one component is error while the other is not magic. For conjunction,
encountering error in one component implies the component can be discarded
and the rest of the composition behaves like the other component. The conjunc-
tion table follows the intuition of the join operation on the refinement preorder.
Similarly for disjunction. Quotient is the adjoint of parallel composition. If the
second component state does not refine the first, the quotient will try to rescue
the refinement by producing ⊤ (so that its composition with the second will
refine the first). If the second component state does refine the first, the quotient
will produce the least refined value so that its composition with the second will
not break the refinement.

An environment for a TIOTS P is any TIOTS Q such that the alphabet of Q
is complementary to that of P, meaning IP = OQ and OP = IQ. Refinement in
our framework corresponds to contextual substitutability, in which the context
is an arbitrary environment.

Definition 5. Let Pimp and Pspec be TIOTSs with identical alphabets. Pimp

refines Pspec, denoted Pspec ⊑ Pimp, iff for all environments Q, Pspec ‖ Q is
⊥-free implies Pimp ‖ Q is ⊥-free. We say Pimp and Pspec are substitutively
equivalent, i.e. Pspec ≃ Pimp, iff Pimp ⊑ Pspec and Pspec ⊑ Pimp.

It is obvious that ≃ induces the weakest equivalence on TIOTSs that pre-
serves ⊥-freeness. In the sequel, we give two concrete characterisations of ≃ and
show it to be a congruence w.r.t. the operators of the specification theory.

The operational definition of quotient requires P1 to be deterministic. For any
TIOTS P, a semantically-equivalent deterministic component can be obtained,
denoted PD , by means of a modified subset construction acting on (P⊥)⊤. For
any subset S0 of states reachable by a given trace, we only keep those which are
minimal w.r.t. the state refinement relation. So if the current state subset S0

contains ⊥, the procedure reduces S0 to ⊥; if ⊥ /∈ S0 6= {⊤}, it reduces S0 by
removing any potential ⊤ in S0.

4

Proposition 1. For any TIOTS P, it holds that P ≃ PD .

Equipped with determinisation, quotient is a fully defined operator on any
pair of TIOTSs. Furthermore, we can give an alternative (although substitutively
equivalent) formulation of quotient as the derived operator (P¬

0 ‖ P1)
¬, where ¬

is a mirroring operation that first determinises its argument, then interchanges
the input and output sets, as well as the ⊤ and ⊥ states.

4 A detailed definition of transforming untimed non-deterministic systems into
substitutively-equivalent deterministic ones is contained in Definition 4.2 of [8].

CONNECT 231167 67/94

Revisiting Timed Specification Theories: A Linear-Time Perspective 9

Inv: y<=1
Co: true

y==1
print!
y:=0

finish!
5 <= x <= 8
and y<=5

Inv: y<=5
Co: true

Inv: true
Co: y<=10

A1 B2

B3B4

start! x,y:=0

printed? y:=0

Inv: x <= 100
Co: true

Scheduler || Printer_controller

not (5 <= x <= 8)
and y<=5

finish!

Fig. 2. Parallel composition of the job scheduler and printer controller.

Example. Figure 2 shows the parallel composition of the job scheduler with the
printer controller. In the transition from B4 to A1, the guard combines the effects
of the constraints on the clocks x and y . As finish is an output of the controller,
it can be fired at a time when the scheduler is not expecting it, meaning that a
safety error will occur. This is indicated by the transition to ⊥ when the guard
constraint 5 ≤ x ≤ 8 is not satisfied.

3 Timed I/O Game

Our specification theory can be seen as an I/O game between a component and
an environment that uses a coin to break ties. The specification of a component
(in the form of a TIOA or TIOTS) is built to encode the set of strategies possible
for the component in the game (just like an NFA encodes a set of words).

– Given two TIOTSs P and Q with identical alphabets, we say P is a partial
unfolding [17] of Q if there exists a function f from SP to SQ s.t. 1) f maps
⊤ to ⊤, ⊥ to ⊥, and plain states to plain states, 2) f (s0

P) = s0
Q, and 3)

p
α
−→P s ⇒ f (p)

α
−→Q f (s).

– We say an acyclic TIOTS is a tree if 1) there does not exist a pair of tran-

sitions in the form of p
a
−→ p′′ and p′ d

−→ p′′, 2) p
a
−→ p′′ ∧ p′ b

−→ p′′ implies

p = p′ and a = b and 3) p
d
−→ p′′ ∧ p′ d

−→ p′′ implies p = p′.

– We say an acyclic TIOTS is a simple path if 1) p
a
−→ s ′ ∧ p

α
−→ s ′′ implies

s ′ = s ′′ and a = α and 2) p
d
−→ s ′ ∧ p

d
−→ s ′′ implies s ′ = s ′′.

– We say a simple path L is a run of P if L is a partial unfolding of P.

Strategies. A strategy G is a deterministic tree TIOTS s.t. each plain state in G is
ready to accept all possible inputs by the environment, but allows a single move
(delay or output) by the component, i.e. ebG(p) = I ⊎mvG(p) s.t. mvG(p) = {a}
for some a ∈ O or mvG(p) ⊆ R>0, where ebG(p) denotes the set of enabled timed
actions in state p of LTS G, and mvG(p) denotes the unique component move
allowed by G at p.

A TIOTS P contains a strategy G if G is a partial unfolding of (P⊥)⊤. The
set of strategies contained in P is denoted stg(P). Since it makes little sense to

CONNECT 231167 68/94

10 Chris Chilton, Marta Kwiatkowska, and Xu Wang

a! a!

b!
f?e?

c!

a!

b! c!

b!
f? f?

c!
e? e?

f?
a!

f?
a!

a!

b!
f?

a!

f?
c!

e? e?

f?e? f?e?

a!

b!
f?

a!

f?
c!

e? e?

f?e? f?e?e?e?

P (1) (2) (3) (4)

Q (A) (B)

Fig. 3. Strategy example.

distinguish strategies that are isomorphic, we will freely use strategies to refer
to their isomorphism classes and write G = G′ to mean G and G′ are isomorphic.

Figure 3 illustrates the idea of strategies. For simplicity, we use two un-
timed transition systems P and Q with identical alphabets I = {e, f } and
O = {a, b, c}. The transition systems use solid lines, while strategies use dotted
lines. Plain states are unmarked, while the ⊤ and ⊥ states are labelled as such5.
A subset of the strategies for P and Q are shown on the right hand side of the
respective components. Note that strategies 3 and 4 arise through ⊤-completion.

Comparing strategies. When the game is played, the component tries to avoid
reaching ⊤, while the environment tries to avoid reaching ⊥. Strategies in stg(P)
vary in their effectiveness to achieve this objective, which induces a hierarchy
on strategies that closely resemble one another. We say G and G′ are affine if

s0
G

tt
=⇒ p and s0

G′

tt
=⇒ p′ implies mvG(p) = mvG′(p′). Intuitively, it means G and

G′ propose the same move at the ‘same’ states. For instance, the strategies 1, 3
and A in Figure 3 are pairwise affine and so are the strategies 2, 4 and B .

Given two affine strategies G and G′, we say G is more aggressive than G′,

denoted G � G′, if 1) s0
G′

tt
=⇒ ⊥ implies there is a prefix tt0 of tt s.t. s0

G
tt0=⇒ ⊥ and

2) s0
G

tt
=⇒ ⊤ implies there is a prefix tt0 of tt s.t. s0

G′

tt0=⇒ ⊤. Intuitively, it means G
can reach ⊥ faster but ⊤ slower than G′. � forms a partial order over stg(P), or
more generally, over any set of strategies with identical alphabets. For instance,
strategy A is more aggressive than 1 and 3, while strategy B is more aggressive
than 2 and 4.

When the game is played, the component P prefers to use the maximally
aggressive strategies in stg(P)6. Thus two components that differ only in non-
maximally aggressive strategies should be equated. We define the strategy se-
mantics of component P to be [P]s = {G′ | ∃ G ∈ stg(P) : G � G′}, i.e. the
upward-closure of stg(P) w.r.t. �.
5 For simplicity, we allow multiple copies of ⊤ and ⊥, which are assumed to be chaotic.
6 This is because our semantics is designed to preserve ⊥ rather than ⊤.

CONNECT 231167 69/94

Revisiting Timed Specification Theories: A Linear-Time Perspective 11

Game rules. When a component strategy G is played against an environment
strategy G′, at each game state (i.e. a product state pG × pG′) G and G′ each
propose a move (i.e. mvG(pG) and mvG′(pG′)). If one of them is a delay and
the other is an action, the action will prevail. If both propose delay moves (i.e.
mvG(pG),mvG′(pG′) ⊆ R>0), the smaller one (w.r.t. set containment) will pre-
vail.7

Since a delay move proposed at a strategy state is the maximal set of possible
delays enabled at that state, the next move proposed at the new state after firing
the set must be an action move (due to time additivity). Thus a play cannot
have two consecutive delay moves.

If, however, both propose action moves, there will be a tie, which will be
resolved by tossing the coin. For uniformity’s sake, the coin can be treated as a
special component. A strategy of the coin is a function h from tA∗ to {0, 1}. We
denote the set of all possible coin strategies as H .

A play of the game can be formalised as a composition of three strategies,
one each from the component, environment and coin, denoted GP ‖h GQ. At a

current game state pP × pQ, if the prevailing action is α and we have pP
α
−→ s ′P

and pQ
α
−→ s ′Q, then the next game state is sP ‖ sQ. The play will stop when it

reaches either ⊤ or ⊥. The composition will produce a simple path L that is a
run of P ‖ Q. Since P ‖ Q gives rise to a closed system (i.e. the input alphabet
is empty), a run of P ‖ Q is a strategy of P ‖ Q.

Thus, strategy composition of P and Q is closely related to their parallel
composition: stg(P ‖ Q) = {GP ‖h GQ | GP ∈ stg(P),GQ ∈ stg(Q) and h ∈ H }.

Parallel composition. Strategy composition, like component parallel composi-
tion, can be generalised to any pair of components P and Q with composable
alphabets. That is, OP∩OQ = {}. For such P and Q, GP ‖h GQ gives rise to a tree
rather than a simple path TIOTS. That is, at each game state pP × pQ, besides
firing the prevailing α ∈ tOP∪tOQ, we need also to fire 1) all the synchronised in-

puts, i.e. e ∈ IP ∩ IQ, and reach the new game state sP ‖ sQ (assuming pP
e
−→ sP

and pQ
e
−→ sQ) and 2) all the independent inputs, i.e. e ∈ (IP ∪ IQ) \ (AP ∩AQ),

and reach the new game state sP × pQ or pP × sQ. It is easy to verify that
GP ‖h GQ is a strategy of P ‖ Q.

Conjunction/disjunction. Strategy conjunction (&) and strategy disjunction (+)
are binary operators defined only on pairs of affine strategies, by G&G′ = G ∧G′

and G+G′ = G∨G′. If G and G′ are not affine, G∧G′ and G∨G′ may not produce
a strategy. From Figure 3, the disjunction of strategies 1 and 2 will produce a
transition system that stops to output after the a transition.

Refinement. Equality of strategies induces an equivalence on TIOTSs: P and
Q are strategy equivalent iff [P]s = [Q]s . However, strategy equivalence is too
fine for the purpose of substitutive refinement (cf Definition 5). For instance,

7 Note that all invariants and co-invariants are downward-closed. Thus a delay move
can be respresented as a time interval from 0 to some d ∈ R≥0.

CONNECT 231167 70/94

12 Chris Chilton, Marta Kwiatkowska, and Xu Wang

transition systems P and Q in Figure 3 are substitutively equivalent, but are
not strategy equivalent, because 1, 2, 3 and 4 are strategies of Q (due to upward-
closure w.r.t. �), while A and B are not strategies of P.

However, we demonstrate that substitutive equivalence is reducible to strategy
equivalence providing we perform disjunction closure on strategies.

Lemma 1. Given a pair of affine component strategies G0 and G1, G0 ‖h G and
G1 ‖h G are ⊥-free for a pair of environment and coin strategies G and h iff
G0 + G1 ‖h G is ⊥-free.

We say Π+ is a disjunction closure of set of strategies Π iff it is the least
superset of Π s.t. G + G′ ∈ Π+ for all pairs of affine strategies G,G′ ∈ Π+. It is
easy to see disjunction closure preserves upward-closedness of strategy sets.

Proposition 2. Disjunction closure is determinisation: [PD]s = [PD]+s = [P]+s .

Lemma 2. For any TIOTS P, [P¬]+s = {GP¬ | ∀ GP ∈ [P]+s , h ∈ H : GP¬ ‖h

GP is ⊥-free}.

Theorem 1. Given TIOTSs P and Q, P ⊑ Q iff [Q]+s ⊆ [P]+s .

Looking at Figure 3, the disjunction of strategies 1 and 3 produces A, while
the disjunction of strategies 2 and 4 produces B . Thus [P]+s = [Q]+s .

Relating operational composition to strategies. The operations of parallel compo-
sition, conjunction, disjunction and quotient defined on the operational models
of TIOTSs (Section 2.3) can be characterised by simple operations on strategies
in the game-based setting.

Lemma 3. For ‖-composable TIOTSs P and Q, [P ‖ Q]+s = {GP‖Q | ∃ GP ∈
[P]+s ,GQ ∈ [Q]+s , h ∈ H : GP ‖h GQ � GP‖Q}.

Lemma 4. For ∨-composable TIOTSs P and Q, [P ∨Q]+s = ([P]+s ∪ [Q]+s)+.

Lemma 5. For ∧-composable TIOTSs P and Q, [P ∧Q]+s = [P]+s ∩ [Q]+s .

Lemma 6. For %-composable TIOTSs P and Q, [P%Q]+s = {GP%Q | ∀ GQ ∈
[Q]+s , h ∈ H : GP%Q ‖h GQ ∈ [P]+s }.

Thus, conjunction and disjunction are the join and meet operations, and
quotient produces the coarsest TIOTS s.t. (P0%P1)‖P1 is a refinement of P0.

Theorem 2. ≃ is a congruence w.r.t. ‖, ∨, ∧ and % subject to composability.

Summary. Strategy semantics has given us a weakest ⊥-preserving congruence
(i.e. [P]+s) for timed specification theories based on operators for (parallel) com-
position, conjunction, disjunction and quotient. Strategy semantics captures
nicely the game-theoretical nature as well as the operational intuition of the
specification theory. In the next section, we give a more declarative characteri-
sation of the equivalence by means of timed traces.

CONNECT 231167 71/94

Revisiting Timed Specification Theories: A Linear-Time Perspective 13

4 Declarative Specification Theory

In this section, we develop a compositional specification theory based on timed
traces. We introduce the concept of a timed-trace structure, which is an abstract
representation for a timed component. The timed-trace structure contains essen-
tial information about the component, for checking whether it can be substituted
with another in a safety and liveness preserving manner.

Given any TIOTS P = 〈I ,O ,S , s0,→〉, we can extract three sets of traces
from (P⊥)⊤: TP a set of timed traces leading to plain states; TE a set of timed
traces leading to the error state ⊥; and TM a set of timed traces leading to the
magic state ⊤. TE and TM are extension-closed as ⊤ and ⊥ are chaotic, while
TP is prefix-closed. Due to ⊤/⊥-completion, it is easy to verify TE ∪TP ∪TM
gives rise to the full set of timed traces tA∗; thus TP and TE are sufficient.

However, TP and TE contain more information than necessary for our substi-
tutive refinement, which is designed to preserve ⊥-freeness. For instance, adding
any trace tt ∈ TE to TP should not change the semantics of the component.
Based on a slight abstraction of the two sets, we can thus define a trace structure
T T (P) as the semantics of P.

Definition 6 (Trace structure). T T (P) := (I ,O ,TR,TE), where TR :=
TE ∪ TP the set of realisable traces. Obviously, TR is prefix-closed.

From hereon let P0 and P1 be two TIOTSs with trace structures T T (Pi) :=
(Ii ,Oi ,TRi ,TEi) for i ∈ {0, 1}. Define ī = 1 − i .

The substitutive refinement relation ⊑ in Section 2.3 can equally be charac-
terised by means of trace containment. Consequently, T T (P0) can be regarded
as providing an alternative encoding of the set [P0]

+
s of strategies.

Theorem 3. P0 ⊑ P1 iff TR1 ⊆ TR0 and TE1 ⊆ TE0.

We are now ready to define the timed-trace semantics for the operators of
our specification theory. Intuitively, the timed-trace semantics mimic the syn-
chronised product of the operational definitions in Section 2.3.

Parallel composition. The idea behind parallel composition is that the projection
of any trace in the composition onto the alphabet of one of the components
should be a trace of that component.

Proposition 3. If P0 and P1 are ‖-composable, then T T (P0 ‖ P1) = (I ,O ,TR,
TE) where I = (I0 ∪ I1) \ O, O = O0 ∪ O1 and the trace sets are given by:

– TE = {tt | tt ↾ tAi ∈ TEi ∧ tt ↾ tAī ∈ TRī} · tA
∗

– TR = TE ⊎ {tt | tt ↾ tAi ∈ (TRi \ TEi) ∧ tt ↾ tAī ∈ (TRī \ TEī)}

The above says tt is an error trace if the projection of tt on one component is
an error trace, while the projection of tt on the other component is a realisable
trace. tt is a realisable trace if tt is either an error trace or a (strictly) plain
trace. tt is a (strictly) plain trace if the projections of tt on to P0 and P1 are
(strictly) plain traces.

CONNECT 231167 72/94

14 Chris Chilton, Marta Kwiatkowska, and Xu Wang

Disjunction. From any composite state in the disjunction of two components,
the composition should only be willing to accept inputs that are accepted by
both components, but should accept the union of outputs. After witnessing an
output enabled by only one of the components, the disjunction should behave like
that component. Because of the way that ⊥ and ⊤ work in Table 1, this loosely
corresponds to taking the union of the traces from the respective components.

Proposition 4. If P0 and P1 are ∨-composable, then T T (P0 ∨ P1) = (I ,O ,
TR0 ∪ TR1,TE0 ∪ TE1), where I = I0 = I1 and O = O0 = O1.

Conjunction. Similarly to disjunction, from any composite state in the con-
junction of two components, the composition should only be willing to accept
outputs that are accepted by both components, and should accept the union of
inputs, until a stage when one of the component’s input assumptions has been
violated, after which it should behave like the other component. Because of the
way that both ⊥ and ⊤ work in Table 1, this essentially corresponds to taking
the intersection of the traces from the respective components.

Proposition 5. If P0 and P1 are ∧-composable, then T T (P0 ∧ P1) = (I ,O ,
TR0 ∩ TR1,TE0 ∩ TE1), where I = I0 = I1 and O = O0 = O1.

Quotient. Quotient ensures its composition with the second component is a
refinement of the first. Given the synchronised running of P0 and P1, if P0 is in
a more refined state than P1, the quotient will try to rescue the refinement by
taking ⊤ as its state (so that its composition with P1’s state will refine P0’s). If
P0 is in a less or equally refined state than P1, the quotient will take the worst
possible state without breaking the refinement.

Proposition 6. If P0 dominates P1, then T T (P0%P1) = (I ,O ,TR,TE), where
I = I0 ∪ O1, O = O0 \ O1, and the trace sets satisfy:

– TE = TE0 ∪ {tt | tt ↾ tA1 6∈ TR1} · tA
∗

– TR = TE ⊎ {tt | tt ∈ (TR0 \ TE0) ∧ tt ↾ tA1 ∈ (TR1 \ TE1)}.

The above says tt is an error trace if either tt is an error trace in P0 or the
projection of tt on P1 is not a realisable trace. A strictly plain trace must have
strictly plain projections onto P0 and P1.

Mirroring of trace structures is equally straightforward: T T (P0)
¬

= (O0, I0,
tA∗ \TE0, tA

∗ \TR0). Consequently, quotient can also be defined as the derived
operator (T T (P0)

¬ ‖ T T (P1))
¬.

5 Comparison with Related Works

Our framework can be seen as a linear-time alternative to the timed specification
theories of [2] and [3], albeit with significant differences. The specification theory
in [3] also introduces parallel, conjunction and quotient, but uses timed alternat-
ing simulation as refinement, which does not admit the weakest precongruence.

CONNECT 231167 73/94

Revisiting Timed Specification Theories: A Linear-Time Perspective 15

An advantage of [3] is the algorithmic efficiency of branching-time simulation
checking and the implementation reported in [10].

The work of [2] on timed games also bears conceptual similarities, although
they do not define conjunction and quotient. We adopt most of the game rules
in [2], except that, due to our requirement that proposed delay moves are
maximal delays allowed by a strategy, a play cannot have consecutive delay
moves. This enables us to avoid the complexity of time-blocking strategies and
blame assignment, but does not ensure non-Zenoness8. Secondly, we do not
use timestop/semi-timestop to model time errors (i.e. bounded-liveness errors).
Rather, we introduce the explicit inconsistent state ⊥ to model both time and
immediate (i.e. safety) errors. This enables us to avoid the complexity of having
two transition relations and well-formedness of timed interfaces.

Based on linear time, our timed theory owes much to the pioneering work of
trace theories in asynchronous circuit verification, such as Dill’s trace theory [9].
Our mirror operator is essentially a timed extension of the mirror operator from
asynchronous circuit verification [15]. The definition of quotient based on mir-
roring (for the untimed case) was first presented by Verhoeff as his Factorisation
Theorem [14].

In comparison with our untimed theory [1], our timed extension requires new
techniques (e.g. those related to timestop) to handle delay transitions since time
can be modelled neither as input nor as output. In the timed theory, the set of
realisable traces (TR) is not required to be input-enabled, which is necessary
for the set of untimed traces in [1]. Thus, the domain of trace structures is
significantly enlarged. Furthermore, the timed theory supports the modelling of
liveness assumptions/guarantees, with the checking of such violations reducing
to ⊥-reachability. Therefore, finite traces suffice to model and verify liveness
properties, whereas in contrast, the untimed theory must employ infinite traces
to treat liveness in a proper way.

We briefly mention other related works, which include timed modal transition
systems [11, 12], the timed I/O model [5, 13] and embedded systems [18, 19].

6 Conclusions

We have formulated a rich compositional specification theory for components
with real-time constraints, based on a linear-time notion of substitutive refine-
ment. The operators of hiding and renaming can also be defined, based on our
previous work [8]. We believe that our theory can be reformulated as a timed
extension of Dill’s trace theory [9]. Future work will include an investigation of
realisability and assume-guarantee reasoning.

Acknowledgments. The authors are supported by EU FP7 project CONNECT,
ERC Advanced Grant VERIWARE and EPSRC project EP/F001096.

8 Zeno behaviours (infinite action moves within finite time) in a play are not regarded
as abnormal behaviours in our semantics.

CONNECT 231167 74/94

16 Chris Chilton, Marta Kwiatkowska, and Xu Wang

References

1. Chen, T., Chilton, C., Jonsson, B., Kwiatkowska, M.: A compositional specification
theory for component behaviours. In: ESOP’12. Volume 7211 of LNCS., Springer-
Verlag (2012) 148–168

2. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: EMSOFT’02.
Volume 2491 of LNCS. Springer-Verlag (2002) 108–122

3. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O au-
tomata: a complete specification theory for real-time systems. In: HSCC ’10, ACM
(2010) 91–100

4. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26 (2001) 109–120

5. Kaynar, D.K., Lynch, N.A., Segala, R., Vaandrager, F.W.: Timed I/O Automata:
A mathematical framework for modeling and analyzing real-time systems. In:
RTSS. (2003)

6. Lim, W.: Design methodology for stoppable clock systems. Computers and Digital
Techniques, IEE Proceedings E 133 (1986) 65 –72

7. Moore, S., Taylor, G., Cunningham, P., Mullins, R., Robinson, P.: Using stoppable
clocks to safely interface asynchronous and synchronous subsystems. In: AINT
(Asynchronous INTerfaces) Workshop, Delft, Netherlands (2000)

8. Wang, X., Kwiatkowska, M.Z.: On process-algebraic verification of asynchronous
circuits. Fundam. Inform. 80 (2007) 283–310

9. Dill, D.L.: Trace theory for automatic hierarchical verification of speed-
independent circuits. ACM distinguished dissertations. MIT Press (1989)

10. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Ecdar: An envi-
ronment for compositional design and analysis of real time systems. In: ATVA.
Volume 6252 of LNCS., Springer (2010) 365–370

11. Bertrand, N., Legay, A., Pinchinat, S., Raclet, J.B.: A compositional approach
on modal specifications for timed systems. In: ICFEM. Volume 5885 of LNCS.,
Springer (2009) 679–697

12. Cerans, K., Godskesen, J.C., Larsen, K.G.: Timed modal specification - theory
and tools. In: CAV. (1993) 253–267

13. Berendsen, J., Vaandrager, F.W.: Compositional abstraction in real-time model
checking. In: FORMATS. Volume 5215 of LNCS., Springer (2008) 233–249

14. Verhoeff, T.: A Theory of Delay-Insensitive Systems. PhD thesis, Dept. of Math.
and C.S., Eindhoven Univ. of Technology (1994)

15. Zhou, B., Yoneda, T., Myers, C.: Framework of timed trace theoretic verification
revisited. IEICE Trans. on Information and Systems 85 (2002) 1595–1604

16. Chilton, C., Kwiatkowska, M., Wang, X.: Revisiting timed specification theories:
A linear-time perspective. Technical Report RR-12-04, Department of Computer
Science, University of Oxford (2012)

17. Wang, X.: Maximal Confluent Processes. In: Petri Nets’12. Volume 7347 of LNCS.,
Springer-Verlag (2012)

18. Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-
time systems. In: EMSOFT. (2006)

19. Lee, I., Leung, J., Song, S.: Handbook of Real-Time and Embedded Systems.
Chapman (2007)

CONNECT 231167 75/94

Automatic Synthesis of Modular Connectors via

Composition of Protocol Mediation Patterns

Paola Inverardi and Massimo Tivoli

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica

Università degli Studi dell’Aquila, Italy

Email: {paola.inverardi,massimo.tivoli}@univaq.it

Abstract—Ubiquitous and pervasive computing promotes the
creation of an environment where Networked Systems (NSs) eter-
nally provide connectivity and services without requiring explicit
awareness of the underlying communications and computing
technologies. In this context, achieving interoperability among
heterogeneous NSs represents an important issue. In order to me-
diate the NSs interaction protocol and solve possible mismatches,
connectors are often built. However, connector development is a
never-ending and error-prone task and prevents the eternality
of NSs. For this reason, in the literature, many approaches
propose the automatic synthesis of connectors. However, solving
the connector synthesis problem in general is hard and, when
possible, it results in a monolithic connector hence preventing its
evolution. In this paper, we define a method for the automatic
synthesis of modular connectors, each of them expressed as the
composition of independent mediators. A modular connector, as
synthesized by our method, supports connector evolution and
performs correct mediation.

I. INTRODUCTION

The near future envisions an ubiquitous and pervasive

computing environment that enables heterogeneous Networked

Systems (NSs) to provide and access software services without

requiring an explicit awareness of the underlying communica-

tions and computing technologies [1]. In such an environment,

a problem that arises when integrating and composing different

NSs is related to the problem of achieving interoperability

among heterogeneous NSs by solving possible protocol mis-

matches. They can occur while the NSs interact with each

other to accomplish some common task.

A widely used technique to cope with this problem is

to build connectors [2], [3] that bridge the communication

among heterogenous protocols and coordinate their interaction.

However, due to the potentially infinite number of different

available protocols, connector development is a never-ending

and error-prone task and prevents the eternality of NSs.

Nowadays, the efficacy of integrating and composing NSs is

This work has been partially supported by the FET project CONNECT No
231167.

proportional to the level of interoperability of the systems’

respective underlying technologies. For this reason, in the

literature, starting from the pioneering work in [4], many

approaches propose the automatic synthesis of connectors,

see [5]–[8] just to cite a few.

As a matter of fact, in general, the connector synthesis

problem is hard in the sense that not all possible protocol

mismatches are solvable. For instance, building a connector

that reconciles the component interaction by reordering certain

sequences of exchanged messages can lead to unbounded

executions. As shown in [9], a suitable termination crite-

rion can be defined with the aim of under-approximating

unbounded interactions by means of bounded ones whenever a

pattern of behaviour indicating potential infinity occurs. Thus,

practical solutions can only deal with a combination of specific

mediation patterns that correspond to tractable protocol mis-

matches [10]–[13]. However, these solutions eventually result

in a monolithic connector hence preventing evolution, and

making synthesis and maintenance of the connector code a

difficult task.

In this paper, we define a method for the automatic synthesis

of modular connectors. A modular connector is represented

as a suitable composition of independent mediators. Each

mediator can be seen as a basic (sub-)connector that realizes a

specific mediation pattern, which corresponds to the solution

of a recurring protocol mismatch. The advantage of our

connector decomposition is twofold: (i) it is correct, i.e., as

for its monolithic version, the mediation logic performed by a

modular connector is free from possible mismatches; and (ii) it

promotes connector evolution, hence also easing the synthesis

and maintenance of its implementation code. To show (i),

we formally define the semantics of protocols (as well as

of mediators and connectors) by using a revised version of

the Interface Automata (IA) theory described in [14]. Then,

we prove that a modular connector for two protocols P and

R enjoys the same correctness properties of the monolithic

connector obtained by expressing the synthesis problem as a

A.3 Automatic Synthesis of Modular Connectors via Composition

of Protocol Mediation Patterns

CONNECT 231167 76/94

quotient problem between P and R [15]. Concerning the set

of considered mediation patterns and, hence, connector mod-

ularization, our synthesis method relies on a revised version

of the connector algebra described in [16]. It is an algebra for

reasoning about protocol mismatches where basic mismatches

can be solved by suitably defined primitives, while complex

mismatches can be settled by composition operators that build

connectors out of simpler ones. We revise the original algebra

by adding an iterator operator and by giving its semantics

in terms of our revised IA theory. For (ii), we make use

of a case study in the e-commerce domain to illustrate that

relevant changes can be applied on a modular connector by

simply acting on its constituent mediators, without entirely

re-synthesizing its protocol.

The paper is organized as follows. Section II puts the bases

for the definition of our synthesis method by discussing our

revised version of both the IA theory in [14] and the connector

algebra in [16]. Section III introduces the purchase order

mediation scenario that we use as case study in the sequel of

the paper. In Section IV, we formalize our synthesis method

and illustrate it at work on the case study. In Section V,

we state correctness of our method and, by means of the

case study, we show how it supports connector evolution.

Section VI discusses related work, and Section VII provides

final remarks and future research directions.

II. PREAMBLE ON THE SYNTHESIS METHOD

At connector synthesis stage, we assume that a NS comes

together with a IA-based specification of its interaction pro-

tocol. The interaction protocol of a NS expresses the order in

which input and output actions are performed while the NS

interacts with environment. In our setting, actions are used to

abstract messages that can be sent (outputs) or received (in-

puts) by a NS. Inputs are received from and controlled by the

environment, whereas outputs are controlled and emitted by

the NS. A NS can perform also hidden actions corresponding

to internal computation.

In this section, we instantiate some definitions from the

IA theory in [14] to our context and, when needed for the

purposes of automated connector synthesis, we also add new

ones.

Definition 1 (Interaction Protocol Specification)

An Interaction Protocol Specification (IPS) P is a tuple

(AI
P , AO

P , AH
P , SP , s0

P , δP), where AI
P , AO

P , AH
P are disjoint

sets referred to as input, output, and hidden actions (the

union of which we denote by AP), SP is a finite set of

states with s0
P ∈ SP being the designated initial state, and

δP : SP × AP → SP is the partial transition function.

Intuitively, from a state, the NS may either emit any output

that is enabled according to its IPS or perform internal com-

putation. If the environment supplies an input that is enabled,

the reaction of the NS is according to its IPS. If the input is

not enabled, this causes an inconsistency.

Let a be an action, we denote with a its complement. If a
is an input action then a is the corresponding output action,

and vice versa. When a is a hidden action, a is hidden as well

and its label is the one of a followed by ‘;’. Abusing notation,

we extend the complement also to IPSs. That is, let P be an

IPS, then P denotes its complement and it is P where all

input, output, and hidden actions have been complemented.

Furthermore, we consider a special kind of IPS denoted by I
and called identity. It is defined as the IPS (∅, ∅, ∅, {s0

I}, s
0
I , ∅).

To give the possibility to express IPSs that take a message as

input and forward the same message as output, given an action

a, we consider also the action a′ as semantically equivalent

to a (yet syntactically different). We write s
a

−→P s′ to denote

that δP (s, a) = s′ (or, equivalently, that (s, a, s′) ∈ δP). An

action a is enabled in s, if δP (s, a) is defined. AP (s) denotes

the set of actions in P that are enabled in s. We denote

with s
a

=⇒P s′ a sequence of internal actions starting from

s, terminating to s′, and with an observable action a in some

point in the middle of the sequence. We write s
a
 P to denote

that, from s, P can perform a sequence of hidden actions

terminating with the observable action a. Abusing notation,

 P (s, a) denotes the set of states, in P , that are reachable

from s by performing a sequence of hidden actions terminating

with the observable action a.

Definition 2 (Traces of an IPS)

Let P = (AI
P , AO

P , AH
P , SP , s0

P , δP) be an IPS, a trace of P
is a tP ∈ ((AI

P ∪ AO
P)∗ ∪ {ǫ}) defined in such a way that

tP = ǫ ∨ ∃n > 0, sP
0 , . . . , sP

n ∈ SP : tP = a1a2 . . . an ∧
sP
0

a1=⇒ . . .
an=⇒ sP

n , where ǫ denotes the so called empty trace.

We denote with AtP
the set of actions in tP , and with |tP |

the length of tP . Furthermore, we denote with tP (a) the first

position of the action a in tP . Finally, we denote with Tr(P)
the set of traces of P .

From hereon let P = (AI
P , AO

P , AH
P , SP , s0

P , δP) and

R=(AI
R, AO

R, AH
R , SR, s0

R, δR) be two IPSs. P and R may

only be composed if their action sets are compatible with

each other. IPSs P and R are composable if AH
P ∩ AR = ∅,

AP ∩AH
R = ∅, AI

P ∩AI
R = ∅, and AO

P ∩AO
R = ∅. We denote

with common(P,R) the set AP ∩ AR of common actions.

Note that if P and R are composable then common(P,R) =
(AI

P ∩ AO
R) ∪ (AO

P ∩ AI
R). To define the parallel composition

of composable IPSs, we use a product operation that accounts

for possible semantically equivalent actions.

Definition 3 (Product of two IPSs)

The product of P and R is an IPS P ⊗ R =
(AI

P⊗R, AO
P⊗R, AH

P⊗R, SP × SR, (s0
P , s0

R), δP⊗R), where:

• AI
P⊗R = (AI

P ∪ AI
R) \ common(P,R);

• AO
P⊗R = (AO

P ∪ AO
R) \ common(P,R);

• AH
P⊗R = AH

P ∩ AH
R ∩ common(P,R);

• (p, r)
a

−→P⊗R(p′, r′) ⇔

– p
a (resp., a′)
−−−−−−−−→P p′ ∧ δR(r, a′) (resp., δR(r, a)) is not

defined ∧ r = r′ ∧ a (resp., a′) /∈ common(P,R);
– p = p′ ∧ δP (p, a′) (resp., δP (p, a)) is not defined ∧

r
a (resp., a′)
−−−−−−−−→R r′ ∧ a (resp., a′) /∈ common(P,R);

CONNECT 231167 77/94

– p
a (resp., a′)
−−−−−−−−→P p′ ∧ r

a (resp., a′)
−−−−−−−−→R r′ ∧

a (resp., a′) ∈ common(P,R);

– p
a (resp., a′)
−−−−−−−−→P p′ ∧ r

a′ (resp., a)
−−−−−−−−→R r′.

Unfortunately, the product can introduce a number of

inconsistencies when one of the two protocols is willing

to offer an output action in the common alphabet, but the

second is not able to offer, possibly after a sequence of

hidden actions, the corresponding input action (accounting

also for possible semantically equivalent actions). We denote

with Inconsistencies(P,R) the set of states in the product

P ⊗ R from which inconsistencies can arise. The kernel of

the inconsistencies in P ⊗ R, with P and R composable,

is the set of states (p, r) for which: either (i) there is some

a ∈ common(P,R) (resp., a′ ∈ common(P,R)) such that

one of p and r can make an a-labelled (resp., a′-labelled)

output transition, but the other cannot match it with the

corresponding input transition; or (ii) one of p and r can

make an a-labelled (resp., a′-labelled) output transition, but the

other cannot match it with the semantically equivalent input

transition. Inconsistencies(P,R) is then the set of those

states in the kernel, plus those that can reach a state in the

kernel by a sequence of transitions labelled by either output

or hidden actions.

Definition 4 (Composition of two IPSs)

The composition of two composable IPSs P and R, written

as P ||R, is defined to be P ⊗ R after pruning all states in

Inconsistencies(P,R), providing the initial state (sP
0 , sR

0)
is contained within the remaining automaton. Otherwise, the

composition is undefined.

As formally proven in [14], || is a compositional operator

meaning that, given three composable IPSs P , Q, and R, then

(P ||Q)||R = P ||(Q||R).
As it will be clear in Section V, to state correctness of our

synthesis method, we use a notion of refinement based on a

version of alternating simulation [17] that accounts for both

hidden actions and semantically equivalent ones. Informally, R
refines P if all input steps of P can be simulated by R, and all

the output steps of R can be simulated by P , considering that

internal steps of P and R are independent and an observable

step can be simulated by a semantically equivalent one. We

make use of a “semantic” inclusion operator, denoted by ⊆sem,

between sets of actions. Its meaning is the same as ⊆, but

it accounts also for semantically equivalent actions. That is,

given two sets of actions S and S′, if S ⊆ S′ then S ⊆sem S′

and, given an action a, either ({a} ∪ S) ⊆sem ({a′} ∪ S′) or

({a′} ∪ S) ⊆sem ({a} ∪ S′).

Definition 5 (Refinement between IPSs)

R refines P , denoted by P � R if the following conditions

hold:

• AI
P ⊆sem AI

R ∧ AO
R ⊆sem AO

P ;

• there exists an alternating simulation as a binary relation

�⊆ SP ×SR such that for all states s ∈ SP and r ∈ SR,

with s � r, the following conditions hold:

(ii.1) {x|s
x
 P ∧x ∈ AI

P } ⊆sem {y|r
y
 R ∧y ∈ AI

R};

(ii.2) {y|r
y
 R ∧y ∈ AO

R} ⊆sem {x|s
x
 P ∧x ∈ AO

P };

(ii.3) ∀z ∈ {x|s
x
 P ∧x ∈ AI

P } ∪ {y|r
y
 R ∧y ∈ AO

R},

r′ ∈ R(r, z) : ∃s′ ∈ P (s, z) : s′ � r′;

• s0
P � s0

R.

Refinement between IPSs is a preorder (i.e., reflexive and

transitive). Note that P and P are always composable and,

under refinement, P ||P and I are equivalent, i.e., P ||P�I and

I�P ||P . The same holds for P ||I and P , i.e., P � P ||I and

P ||I � P . Furthermore, let P ′ and R′ be two IPSs, refinement

is compositional meaning that P ||P ′ � R||R′, if both P � R
and P ′ � R′.

As already mentioned in Section I, in order to reason about

protocol mismatches, we consider a revised version of the

connector algebra described in [16]. In the following, we

report only the portion of the algebra that is relevant for the

purposes of this work.

From hereon let A be the universal set of actions. The

primitives of the connector algebra AP(A), corresponding to

specific protocol mismatches, are described below.

1) Extra send: it concerns the possibility for a NS to

generate either a redundant or an additional message a.

Such a mismatch can be solved by means of a mediator

that consumes a. It is modeled by the primitive Cons(a)
that takes a as input.

2) Missing send: it occurs when a NS expects either a

redundant message or a message a that is not sent by

another NS. It can be solved by introducing a mediator

that generates a. It is modeled by the primitive Prod(a)
that produces a as output.

3) Signature mismatch: two messages a and b of two

different NSs can be functionally compatible yet syntac-

tically inconsistent. A mediator that performs the needed

translation can solve this mismatch, i.e., Trans(a, b)
that takes a as input and produces b as output.

4) Split message mismatch: a NS may expect to receive a

message a as a sequence of fragments of a. If message a
can be decomposed into a1, . . . , an, then the mismatch

can be solved by Split(a, [a1, . . . , an]) which takes a
as input and produces an ordered sequence a1, . . . , an

as output.

5) Merge message mismatch: it is symmetric to the

previous one. The mismatch can be solved by the prim-

itive Merge([a1, . . . , an], a) which takes an ordered

sequence a1, . . . , an as input, and produces a as output.

6) Reordering mismatch: a NS expects to receive mes-

sages in an order different from the order used by

the sending NS. It can be solved by a reordering

primitive Order([a1, . . . , an], π, [a′
1, . . . , a

′
n]), where π

is a permutation of {1, . . . , n}. The primitive takes as

input the ordered sequence a1, . . . , an from one NS ,

and produces the ordered sequence a′
π(1), . . . , a

′
π(n) as

output for another NS.

The syntax of a term t in AP(A) is given by:

t ::= t ⊙ t | t∗ | (t) | p

CONNECT 231167 78/94

p ::= | Cons(a) | Prod(a) | Trans(a, b) |
Split(a, [a1, . . . , an]) | Merge([a1, . . . , an], a) |
Order([a1, . . . , an], π, [a′

1, . . . , a
′
n])

where a, ai, a
′
i, b ∈ A and π is a permutation of {1, . . . , n}.

The symbol ⊙ is a binary operator called plugging, and ∗ is

an unary operator called iterator.

The semantics of AP(A) is given in terms of a function

J·K : AP(A) → IPS ∪ {Err}, where IPS is the universal

set of IPSs and Err represents the undefined IPS, i.e., it has no

states. For any term t, the denotation JtK is defined inductively.

If t is a primitive, then JtK is the corresponding IPS, pro-

viding the parameters are well-defined (otherwise JtK = Err).

If t is a compound term, such as t = p ⊙ r, then JtK is

given by: if either JpK or JrK is equal to Err, then JtK = Err.

Alternatively, if JpK and JrK are not composable or JpK || JrK
is not defined, then JtK = Err. Otherwise, JtK = JpK || JrK.

If t is an iterative term, such as t = p∗, then JtK is given

by the IPS JpK suitably adjusted, by means of (hidden) ǫ-

transitions, for allowing cyclic behaviour. This can be easily

achieved by exploiting the well-known Thompson’s algorithm

to produce finite state automata from regular expressions [18].

Otherwise, if JpK is undefined, then JtK = Err.

III. THE PURCHASE ORDER MEDIATION SCENARIO

We borrow a case study from [19], slightly changed to better

show the peculiarities of our method. The case study concerns

the so called Purchase Order Mediation scenario from the

Semantic Web Service (SWS) Challenge1. As stated in [19],

“it represents a typical real-world problem that is as close

to industrial reality as practical... This scenario highlights

the various mismatches that can be encountered when making

heterogeneous systems interoperable”. The scenario considers

two NSs implemented using different standards and protocols:

the Blue Service (BS) and the Moon Client (MC).

Figures 1 and 2 show the IPSs of BS and MC, respectively.

The box that encloses the transition system corresponds to the

protocol interface. Labelled arrows pointing at the interface

correspond to inputs, whereas arrows departing from the

interface correspond to outputs. Both BS and MC do not

perform hidden actions.

Fig. 1. MC: Moon Client Interaction Protocol

1http://sws-challenge.org/wiki/.

MC orders products by assuming to interact with a Moon

Service according to the following protocol: MC has to

perform authentication (Login) to prove that it represents a

known and authorized customer; if authentication succeeds,

an order can be created (CreateOrder) by starting from an

empty cart; then, individual items can be added to the created

order. Thus, an item is selected (SelectItem) by also specifying

the needed quantity (SetItemQuantity). At this stage, MC is

asked, from the Moon Service, to confirm the addition of

the item to the order (CloseOrder followed by ConfirmItem).

Finally, the order payment is asked by a third-party payment

system (PayThirdParty) so as the order can be closed (Close).

BS is a service providing purchase order functionalities. A

client can initiate a purchase by starting an order (StartOrder)

and adding items to it (AddItemtoOrder). For each item

belonging to the order, BS asks its clients to confirm the item

addition (GetConfirmation) and, then, to place the order by

means of the client identifier (PlaceOrder). Finally, a client

can quit the session (Quit).

Fig. 2. BS: Blue Service Interaction Protocol

MC cannot communicate with BS due to the following

protocol mismatches, of two different types.

Communication mismatches concern the semantics and

granularity of the protocol actions. For instance, a client of

BS provides its identifier while placing the order, whereas

MC has to authenticate before performing any operation.

Furthermore, BS provides a single operation to add an item,

with the needed quantity, to the order, whereas MC expects to

use two different operations, one for the addition and one for

the quantity specification. To solve these kind of mismatches

it is necessary to assume and use ontology knowledge in order

to align the two protocols to the same concepts and language.

Coordination mismatches concern the control structure of

the protocols and can be solved by means of the mediator that

can mediate the conversation between the two protocols so

that they can actually interact. For instance, BS requires its

clients to confirm the ordered items and then place the order,

whereas MC expects to confirm the ordered items only once

the order is placed. Finally, BS allows the addition of several

CONNECT 231167 79/94

kinds of items in the same order, whereas MC performs the

addition of only one kind of item per order.

As stated in [19], MC and BS “are provided by the

SWS-Challenge organizers and can not be altered (although

their description may be semantically enriched)”. In particular,

in [19], by exploiting an ontology [20] in the domain of

purchase processes, the description of both MC and BS has

been semantically enriched. This domain ontology is denoted

by DO and shown in Figure 3.

Fig. 3. DO: Domain Ontology

DO shows the relations holding between the various con-

cepts used by MC and BS as purchase order systems.

Typically, ontologies account for two fundamental relations

between concepts: subsumption and aggregation [21]. A con-

cept a is subsumed by a concept b, in a given ontology O,

if in every model of O the set denoted by a is a subset of

the set denoted by b. A concept a is an aggregate of concepts

b1, . . . , bn if the latter are part of the former. It is worth to

mention that our use of the ontology concept is specific of

the CONNECT project (this work is part of). Thus, in the

following, we will exploit these notions to our purposes. That

is, concepts in DO correspond to NS input/output actions.

The two relations between concepts are, then, used to account

for the granularity of the data that define the structure of the

messages exchanged by the respective input/output actions.

For example, the message associated to the request of Ad-

dItemToOrder is an aggregate of the messages associated to

the requests of SelectItem and SetItemQuantity.

IV. SYNTHESIS OF MODULAR CONNECTORS

A mediator has an input-output behaviour (not necessarily

strictly sequential, e.g., for allowing reordering of messages),

and it is a “reactive” software entity harmonizing the in-

teraction between heterogeneous NSs by intercepting output

messages from one NS and eventually issuing to another

NS the co-related input messages. Message co-relations can

be inferred by taking into account ontological information,

which is characterized as follows. We recall that the following

definitions apply in the scope of our problem that is defined

by two NSs enriched with the respective IPS and ontologies

as defined in the previous section.

Definition 6 (Protocol Ontology)

A protocol ontology O is a triple (CO, SO, AO), where CO

is the set of ontological concepts and it is partitioned into the

two disjoint sets ICO and OCO of input and output ontolog-

ical concepts, respectively. SO and AO are the subsumption

and aggregation relations among concepts, respectively. The

following properties hold:

• (CO ⊆ A) ∧ (CO = ICO∪OCO) ∧ (ICO∩OCO = ∅);
• SO ⊆ ICO × OCO;

• AO ⊆ ICO × OCn
O ∧ n > 0.

If (a, b) ∈ SO then we write that a is subsumed by b, and

(a, b) is called subsumption pair. This means that the output

action b from a component C must precede the input action

a from a (different) component C ′. In other words, since the

set of data constituting a is a subset of those constituting b,

to build the message associated to a, one needs to process the

data contained in the message associated to b first. A mediator

that makes C and C ′ able to interoperate would take b as input

from C and send, as co-related message, a as output to C ′. If

(a, b1, . . . , bn) ∈ AO then we write that b1, . . . , bn are part of

a. Furthermore, (a, b1, . . . , bn) is called aggregation tuple. If

b1, . . . , bn are part of a then the latter can be built by merging

the messages associated to b1, . . . , bn. Thus, a mediator would

take b1, . . . , bn as input in any order, and send a as the merge

of b1, . . . , bn, plus possible additional data explicitly specified

in O for a.

We write that a protocol ontology O=(ICO∪OCO,SO,AO)
is valid for protocols P and R if and only if ICO = AI

P ∪AI
R

and OCO = AO
P ∪ AO

R .

Coming back to our case study, let

O=(ICO∪OCO,SO,AO) be the protocol ontology shown in

Figure 3 then:
ICO={ConfirmItem,PayThirdParty,CloseOrder,

StartOrder,AddItemToOrder,Quit};
OCO={GetConfirmation,Login,CreateOrder,SelectItem,

SetItemQuantity,PlaceOrder,Close};
SO={(ConfirmItem,GetConfirmation),

(CloseOrder,PlaceOrder)};

AO={(AddItemToOrder,SelectItem,SetItemQuantity),

(Quit,Close),

(StartOrder,Login,CreateOrder)};

and it is a valid protocol ontology for MC and BS.

We, now, formalize our synthesis method as organized into

two phases described in Sections IV-A and IV-B, respectively.

They are performed only if the protocol ontology is valid.

A. Automatic Synthesis of Communication Mediators

In this section by defining the semantics of subsumption

pairs and aggregation tuples in terms of IPSs we synthesize

primitive mediators. We do this by exploiting the primitives

CONNECT 231167 80/94

and operators of AP(A), hence following a modular approach.

We call them communication mediators because they aim

at solving communication mismatches among heterogeneous

interaction protocols by aligning their different alphabets

according to the defined ontological relations (Figure 3). For

instance, the communication mediators for the case study

introduced in Section III are:
M1=JSplit(GetConfirmation, [ConfirmItem, x1]) ⊙

Cons(x1)K;
M2=JSplit(PlaceOrder, [CloseOrder, x2]) ⊙ Cons(x2)K;
M3=JTrans(SelectItem, x3) ⊙

Trans(SetItemQuantity, x4) ⊙
Prod(x5)⊙Merge([x3, x4, x5], AddItemToOrder)K;

M4=JTrans(Close, x6) ⊙ Prod(x7) ⊙
Merge([x6, x7], Quit)K;

M5=JTrans(Login, x8) ⊙ Trans(CreateOrder, x9) ⊙

Prod(x10) ⊙ Merge([x8, x9, x10], StartOrder)K.

Definition 7 (Semantics of Subsumption Pairs)

Let O = (CO, SO, AO) be a protocol ontology, the semantics

of (a, b) ∈ SO is given by JSplit(b, [a, x]) ⊙ Cons(x)K.

Definition 8 (Semantics of Aggregation Tuples)

Let O = (CO, SO, AO) be a protocol ontology,

the semantics of (a, b1, . . . , bn) is given by

JTrans(b1, x1) ⊙. . .⊙ Trans(bn, xn) ⊙ Prod(xn+1)
⊙ Merge([x1, . . . , xn, xn+1], a)K.

For the purposes of alphabet alignment, when synthesized out

of a subsumption pair (a, b), a mediator is used as a wrapper

for the output action b of a protocol, which is taken as input by

the mediator. Instead, when synthesized out of an aggregation

tuple (a, b1, . . . , bn), a mediator is used as a wrapper for

the input action a of a protocol, which is sent as output by

the mediator. Thus, we define a further derived composition

operator called wrapping. P can be wrapped by R on action a
if and only if P and R are composable, a ∈ Common(P,R),
and R is a communication mediator.

Definition 9 (Wrapping of an IPS)

The wrapping of P by a communication me-

diator R, on action a, is an IPS P ⊳a R =
(AI

P⊗R, AO
P⊗R, AH

P⊗R, SP⊳aR, s0
P , δP⊳aR), where:

• SP⊳aR = (SP ∪ SR);
• δP⊳aR = (δP ∪ δR) \ {(s, a, s′)|s, s′ ∈ (SP ∪ SR)} ∪

{(p, ǫs0

R
; , s0

R)|(p, a, p′) ∈ δP ∧ δR(S0
R, a) is not defined}

∪ {(r, ǫp′ ; , p′)|(p, a, p′) ∈ δP ∧ r 6= s0
R ∧ δR(r, a) is

defined} ∪ {(p, ǫr′ ; , r′)|(p, a, p′) ∈ δP ∧ δR(s0
R, a) is

defined}.

Definition 10 (Alphabet Alignment)
Given P and R to be mediated, let O = (CO, SO, AO)
be the valid protocol ontology specification for P and R.
Let S1, . . . , Sn be the communication mediators synthesized
according to SO, and let A1, . . . , Ah be those synthesized
according to AO. The algorithm for the alphabet alignment
step is as follows:

procedure Alignment

input: P , R, O, S1,. . .,Sn, A1,. . .,Ah

output: AlignedProtocols

1: AlignedProtocols := ∅
2: for each j : (AI

P ∩ AO
Aj

6= ∅) ∧ (AO
Aj

= {a}) do
3: P := P ⊳a Aj

4: end for
5: for each k : (AO

P ∩ AI
Sk

6= ∅) ∧ (AI
Sk

= {b}) do
6: P := P ⊳a Sk

7: end for
8: AlignedProtocols := AlignedProtocols ∪ {P}
9: for each j : (AI

R ∩ AO
Aj

6= ∅) ∧ (AO
Aj

= {a}) do
10: R := R ⊳a Aj

11: end for
12: for each k : (AO

R ∩ AI
Sk

6= ∅) ∧ (AI
Sk

= {b}) do
13: R := R ⊳a Sk

14: end for
15: AlignedProtocols := AlignedProtocols ∪ {R}
16: return AlignedProtocols

It is worth to note that after having performed the procedure

Alignment, P and R have the same alphabet of actions, except

for possible third-party and hidden actions. Hereafter, given

a set W of communication mediators and a protocol P , we

denote with P⊳W the protocol P whose alphabet has been

aligned by means of the mediators in W .

Coming back to our case study, after having performed the

alphabet alignment step, the protocol of BS becomes the one

shown in Figure 4. The protocol of MC does not change.

Fig. 4. BS after the alphabet alignment step

However, communication mediators are not able to solve

all mismatches such as coordination mismatches. For in-

stance, although the two protocols shown in Figures 1

and 4 share the same alphabet of actions, their interac-

tion can still exhibit some mismatches. They are due to

(i) messages sent/received in a different order (see the se-

quences made of ConfirmItem and CloseOrder); (ii) third-

party messages (PayThirdParty); and (iii) extra/missing

sends corresponding to redundant messages (possibly also

coming from looping/cyclic behavior, e.g., SelectItem and

SetItemQuantity). Thus, in general, the construction of

other mediators that can delegate/receive2, consume, produce,

2To/from a third-party.

CONNECT 231167 81/94

and reorder messages is required. We call this kind of medi-

ators as coordination mediators.

B. Automatic Synthesis of Coordination Mediators

Given two protocols to be mediated, P and R, whose alpha-

bets have been aligned, our method produces their respective

sets of traces. P and R are prefix-closed and hence their

sets of traces are finite. Furthermore, possible loops/cycles are

considered k times (where k is a parameter of our synthesis

algorithm). This means that our method produces finite sets of

finite traces. We recall that, by Definition 2, possible hidden

actions are not represented within a considered trace.

Hereafter, we denote with Tr(P)
k

the set of traces of P
where, for each trace, cycles/loops are considered k times.

As it will be clear later in this section, once Tr(P)
k

and

Tr(R)
k

have been generated, for all (tP , tR) ∈ Tr(P)
k
×

Tr(R)
k
, our method tries to synthesize a coordination media-

tor that makes the protocols corresponding to tP and tR able

to interoperate. If no mediator has been synthesized, then a

modular connector for P and R does not exist. Otherwise, a

non-empty set of coordination mediators is produced. Indeed,

considering all pairs in Tr(P)
k
×Tr(R)

k
is not needed. It is

sufficient to consider only the subset of pairs of semantically

related traces. Traces tP and tR are semantically related if

every action that does not belong to their set of common

actions is a third-party action.

Definition 11 (Pairs of Semantically Related Traces)

Given P and R to be mediated, let k be an integer such that

k > 0, (tP , tR) ∈ Tr(P)
k
×Tr(R)

k
is a pair of semantically

related traces if and only if the following conditions hold:

• a ∈ AtP
\ AtR

⇒ ∄t ∈ Tr(R)
k
\ tR : a ∈ At;

• a ∈ AtR
\ AtP

⇒ ∄t ∈ Tr(P)
k
\ tP : a ∈ At.

We denote with Π(P,R, k) the k-bounded set of pairs of

semantically related traces for P and R.

Before continuing our formalization, Definition 11 deserves

some discussion. It formalizes a strong notion of semantic

co-relation for traces. For instance, let us consider traces tP
and tR as shown in Figure 5. They are not semantically related

because both actions e and f are in the set of common actions

of P and R and, hence, cannot be considered as third-party

actions, although are not common for tP and tR.

Fig. 5. tP and tR: two traces that are not semantically related

However, note that a way of mediating tP and tR exists,

e.g., by re-ordering a and b and producing e and, afterwards, f .

This mediation logic is correct only if e and f are independent

from a and b, and a causality dependency is defined for f
and e, e.g., the production of f depends on the production

of e. Otherwise (e.g., the production of e depends on the

production of f), it could result in an inconsistent mediation.

Note that the relations defined in the protocol ontology do not

necessarily represent all the possible causality dependencies.

They are those related only to the semantics and structure of

the exchanged data. That is, causality dependencies related

to the control structure, and hence depending on the protocol

semantics, could not be represented. Thus, despite the exis-

tence of a protocol ontology, without further information about

protocol actions and their causality dependencies, one cannot

in general know how to correctly mediate tP and tR. The

safest choice that one can take, while synthesizing coordina-

tion mediators, is to discard this pair of traces. However, to

avoid inconsistencies, discarding a pair of traces means that

the mediator being synthesized has to consume all the outputs

from the two traces. In other words, although this strong notion

of semantic co-relation leads to synthesize correct modular

connectors (i.e., that do not introduce inconsistencies), the

synthesized connector might constrain too much the set of

interactions on which the two protocols are made able to

interoperate, hence possibly under-using them.

To avoid this problem we can consider a weak notion of

semantic co-relation. This notion assumes the existence of

a specification of the desired coordination protocol that the

coordination mediator to be synthesized should satisfy. For

instance, by referring to the example depicted in Figure 5,

the coordination protocol specification could express that e
must always precedes f or, equivalently, that f must be

always eventually performed after e. For space reasons, we

do not formalize this weak notion of semantic co-relation

and, hereafter, we consider only the notion formalized by

Definition 11.

Continuing the formalization of our synthesis method, for

each pair (tP , tR) ∈ Π(P,R, k), the method computes the so

called difference pair (t′P , t′R). t′P (resp., t′R) is a sub-trace of

tP (resp., tR) representing, in a single sequence, the sequences

of actions in which tP (resp., tR) differs from tR (resp., tP).

Due to the alphabet alignment, finding a coordination mediator

for tP and tR means finding a coordination mediator for t′P
and t′R. Since tP and tR are semantically related, their possible

hidden actions have been removed, and their loops/cycles are

considered k times, t′P and t′R can be different for three

reasons only: (i) they have unshared actions corresponding to

input/output third-party actions; (ii) they exhibit extra/missing

sends corresponding to redundant messages, possibly also

coming from looping/cyclic behavior; and (iii) they have

complementary shared actions that appear in a different order.

By means of the coordination mediators to be synthesized,

the first ones should be received by a third-party (resp., an

NS) and delegated to the receiving NS (resp., third-party), the

second ones should be produced/consumed, and the third ones

CONNECT 231167 82/94

should be reordered.

Definition 12 (Coordination Mismatches Resolution)
Let W be the set of synthesized communication mediators for
protocols P and R, and valid protocol ontology O. Let k be
the bound considered for the length of possible loops/cycles
in P⊳W and R⊳W . The algorithm for the coordination
mismatches resolution step (i.e., the automatic synthesis of
coordination mediators) is as follows:

procedure CoordinationMismatchesResolution
input: P⊳W , R⊳W , k
output: CoordMediators

1: CoordMediators := ∅
2: for each (tP⊳W

, tR⊳W
) ∈ Π(P⊳W , R⊳W , k) do

3: computes the difference pair (t′P⊳W
, t′R⊳W

) of (tP⊳W
, tR⊳W

)
4: for each a ∈ (At′

P⊳W

\ At′
R⊳W

) ∪ (At′
R⊳W

\ At′
P⊳W

) do

5: CoordMediators := CoordMediators ∪
{ThirdParty(a)}

6: remove a from either t′P⊳W
or t′R⊳W

7: end for
8: if |t′P⊳W

| 6= |t′R⊳W
| then

9: for each a ∈ At′
P⊳W

∪At′
R⊳W

that appears more than once

in either t′P⊳W
or t′R⊳W

do
10: CoordMediators := CoordMediators ∪

{ExtraOrMissing(a)}
11: remove a from either t′P⊳W

or t′R⊳W

12: end for
13: end if
14: if t′P⊳W

6= t′R⊳W
then

15: CoordMediators := CoordMediators ∪
{Reorder(a, t′P⊳W

, t′R⊳W
)}

16: CoordMediators := CoordMediators ∪
{Reorder(a, t′R⊳W

, t′P⊳W
)}

17: end if
18: end for
19: for each (tP⊳W

, tR⊳W
) /∈ Π(P⊳W , R⊳W , k) do

20: CoordMediators := CoordMediators ∪
Discard(tP⊳W

, tR⊳W
, P⊳W , R⊳W)

21: end for
22: return CoordMediators

where the ThirdParty, ExtraOrMissing, Reorder, and
Discard (sub-)procedures are defined as follows:

procedure ThirdParty
input: a
output: Mediator

1: Mediator := JTrans(a, a′)∗K
2: return Mediator

procedure ExtraOrMissing
input: a
output: Mediator

1: if a is an input action then
2: Mediator := JProd(a)∗K
3: else
4: Mediator := JCons(a)∗K
5: end if
6: return Mediator

procedure Reorder
input: a, t′P⊳W

, t′R⊳W

output: Mediator

1: aList := []

2: pTuple := ()
3: for each a ∈ At′

P⊳W

do

4: if a is an output action then
5: add a as last element of aList
6: add t′R⊳W

(a) as last element of pTuple
7: end if
8: end for
9: Mediator := Order(aList, pTuple, aList′), where

aList′ = [a′
1, . . . , a

′
n] and aList = [a1, . . . , an]

10: Mediator := JMediator∗K
11: return Mediator

procedure Discard
input: tP⊳W

, tR⊳W
, P⊳W , R⊳W

output: Mediators

1: for each a ∈ AtP⊳W
∪ AtR⊳W

∧ a ∈ AO
P⊳W

∪ AO
R⊳W

do

2: Mediators := Mediators ∪ {JCons(a)∗K}
3: end for
4: return Mediators

Coming back to our case study, the synthesized coordination

mediators are:
M6=JTrans(PayThirdParty, PayThirdParty′)∗K;

M7=JOrder([ConfirmItem, CloseOrder],
(2, 1),
[ConfirmItem′, CloseOrder′])∗K;

M8=JOrder([SelectItem, SetItemQuantity],
(2, 1),
[SelectItem′, SetItemQuantity′])∗K;

M9=J(Prod(SelectItem))∗K;

M10=J(Prod(SetItemQuantity))∗K;

M11=J(Cons(ConfirmItem))∗K.

By referring to Definition 4, the modular connector for

our case study is given by the following composition of

coordination mediators: M = M6|| . . . ||M11; plus the set

W = {M1, . . . ,M5} of communication mediator used for the

alphabet alignment. As formally shown in the next section,

under alphabet alignment, M is a correct connector meaning

that both P⊳W � M ||(R⊳W) and R⊳W � (P⊳W)||M hold.

V. CORRECTNESS AND CONNECTOR EVOLUTION

By taking into account hidden actions and denying broad-

cast communication (as done in [14]), the IA theory described

in [15] can be used to synthesize, via a quotient operator

/, a monolithic connector M such that G � P ||M ||R, i.e.,

M = G/(P ||R). The formal definition of G is out of the

scope of this work. For the purposes of this section, it is

sufficient to say that G is an IPS, representing the connected

system goal, which explicitly models three crucial conditions

for correct communication and coordination: (c1) P ||M ||R is

not permitted to generate any inconsistencies; (c2) P ||M ||R is

only permitted to deadlock when all P , M , and R deadlock;

and (c3) P ||M ||R must satisfy the constraints imposed by the

given protocol ontology.

Stating correctness of our synthesis method means showing

that a modular connector M synthesized for protocols P
and R is such that c1, c2, and c3 hold, under alphabet

alignment. However, note that c2 and c3 trivially hold by

construction. In fact, when composing in parallel protocols,

the only possibility to have “sink” states concerns scenarios

CONNECT 231167 83/94

in which none of the protocols is willing to perform any action

(c2); and communication mediators ensure alphabet alignment

(c3). Thus, in this section, by considering W as the set of

synthesized communication mediators, we focus on proving

that P⊳W ||M ||R⊳W is free from inconsistencies, i.e., it is

defined (c1). To do this, we can exploit Definition 5, hence

checking both P⊳W � M ||R⊳W and R⊳W � P ||M⊳W .

Theorem 1 (Correctness under alphabet alignment)

Let M be a modular connector synthesized for aligned pro-

tocols P⊳W and R⊳W , then the following properties hold: (1)

P⊳W � M ||R⊳W , and (2) R⊳W � P ||M⊳W .

Proof: To prove (1), we must prove that (i) AI
P⊳W

⊆sem

AI
M ||R⊳W

∧ AO
M ||R⊳W

⊆sem AO
P⊳W

, and (ii) there is an

alternating simulation from M ||R⊳W to P⊳W , with s0
P⊳W

�

s0
M ||R⊳W

. By construction, AI
M = AO

P⊳W
∪ AO

R⊳W
and AO

M ⊆

AI
P ∪ AI

R. Furthermore, common(M, R⊳W) is given by the

union set of AO
R⊳W

and a subset of AI
R⊳W

. Thus, by defini-

tion of complement operator for IPSs, it follows that both

AI
P⊳W

⊆sem AI
M ||R⊳W

and AO
M ||R⊳W

⊆sem AO
P⊳W

hold.

To prove (ii), we have to show that ii.1, ii.2, and ii.3 of

Definition 5 hold, where P and R have been replaced with

P⊳W and M ||R⊳W , respectively. Let us assume that ii.1 does

not hold. This means that P ⊳ W would perform an output

action x that is not consumed by M . This is a contradiction

since by construction M always consumes output actions from

both P ⊳ W and R ⊳ W . Analogously, if ii.2 would not hold,

then M ||R⊳W would produce an output action that does not

match any input action of P ⊳W . Again, this is a contradiction

because M ||R⊳W produces output actions only when there is

the need to match an input from R⊳W with an input from P⊳W .

ii.3 directly follows from the previous considerations hence

recursively propagating the alternating simulation relation

from M ||R⊳W to P⊳W . The proof of (2) is analogous and

hence, for space reasons, we omit it. �

Concerning the ability, for modular connectors, to evolve in

response of possible changes, the most interesting scenario is

related to changes at the level of the protocol ontology. In fact,

syntactic changes at the level of the NSs’ interface directly

correspond to a relabeling of mediator inputs/outputs, and

related concepts in the ontology. We recall that the synthesis

of coordination mediators deals with sets of traces. Thus,

changes at the protocol level imply to re-iter the synthesis

step on the affected traces only, hence accordingly changing

the corresponding mediators. However, in the worst case, i.e.,

all the traces of a protocol share at least one action, the entire

synthesis step must be repeated.

As an example of a possible change at the level of the

protocol ontology, let us go back to our case study and

apply the following modification to the ontology O shown in

Figure 3: SO = SO ∪ {(AddItemToOrder, SelectItem),
(AddItemToOrder, SetItemQuantity)} and AO = AO

\ {(AddItemToOrder, SelectItem, SetItemQuantity)}.

Although simple, this change highlights the effectiveness

of our decomposition with respect to supporting connector

evolution. In fact, to address the applied change, it is sufficient

to reason compositionally at the level of the algebra-based

description of the modular connector M and related set

W of communication mediators, instead of reasoning in

terms of its underlying IA-based monolithic representation.

In particular, by just looking at the mediators’ interface,

one can easily recognize that the communication mediator

affected by the proposed change is M3, while M8, M9, and

M10 are the affected coordination mediators. Due to the fact

that the aggregation tuple (AddItemToOrder, SelectItem,
SetItemQuantity) has been removed by AO, M3 is removed

as well. In place of it two communication mediators, M3.1 =
J(Split(SelectItem, [AddItemToOrder, z]) ⊙ Cons(z))∗K
and M3.2 = J(Split(SetItemQuantity, [AddItemToOrder,
k]) ⊙ Cons(k))∗K, are synthesized due to the addition

to SO of the above considered subsumption tuples.

Furthermore, we recall that the IPS of BS has been

modified in order to align its alphabet to the one of

MC. To reflect the change on the performed alphabet

alignment, a trace in Tr(MC)
k

that contains SelectItem
and/or SetItemQuantity is modified by considering the

following substitution: {AddItemToOrder/SelectItem,
AddItemToOrder/SetItemQuantity}. Analogously,

a trace in Tr(BS)
k

that contains either the sequence

〈SelectItem SetItemQuantity〉 or 〈SetItemQuantity
SelectItem〉 is modified by replacing any of these sequences

with AddItemToOrder. According to the new alphabet

alignment, M8 is removed and in place of both M9 and M10

the coordination mediator J(Prod(AddItemToOrder))∗K
is synthesized. Note that, in the monolithic connector,

SelectItem and SetItemQuantity would always appear

one after the other and modifying the connector according

to the applied change would mean to solve again the entire

quotient problem.

VI. RELATED WORK

Interoperability and mediation have been investigated in

several contexts, among which integration of heterogeneous

data sources [13], architectural patterns [22], patterns of con-

nectors [12], Web services [10], [11], and algebra to solve

mismatches [23]. For space reasons, we discuss only the

works, from the different contexts, closest to our method.

The interoperability/mediation of protocols have received at-

tention since the early days of networking. Indeed many efforts

have been done in several directions including for example

formal approaches to protocol conversion, like in [24], [25].

The seminal work in [4] is strictly related to the notions of

mediator presented in this paper. Compared to our connector

synthesis, this work does not allow to deal with ordering mis-

matches and different granularity of the languages (solvable

by the split and merge primitives).

Recently, with the emergence of web services and advocated

universal interoperability, the research community has been

studying solutions to the automatic mediation of business

processes [26], [27]. However, most solutions are discussed

CONNECT 231167 84/94

informally, making it difficult to assess their respective advan-

tages and drawbacks.

In [12] the authors present an approach for formally specify-

ing connector wrappers as protocol transformations, modular-

izing them, and reasoning about their properties, with the aim

to resolve component mismatches. In [28] the authors present

an algebra for five basic stateless connectors that are symme-

try, synchronization, mutual exclusion, hiding and inaction.

They also give the operational, observational and denotational

semantics and a complete normal-form axiomatization. The

presented connectors can be composed in series and in parallel.

Although these formalizations supports connector modulariza-

tion, automated synthesis is not treated at all hence keeping

the focus only on connector design and specification.

In [8], the authors use a game theoretic approach for

checking whether incompatible component interfaces can be

made compatible by inserting a converter between them which

satisfies specified requirements. This approach is able to auto-

matically synthesize the converter. In contrast to our method,

their method needs as input a deadlock-free specification of

the requirements that should be satisfied by the adaptor, by

delegating to the user the non-trivial task of specifying that.

In other work in the area of component adaptation [7], it

is shown how to automatically generate a concrete adaptor

from: (i) a specification of component interfaces, (ii) a partial

specification of the components interaction behavior, (iii) a

specification of the adaptation in terms of a set of correspon-

dences between actions of different components and (iv) a

partial specification of the adaptor. The key result is the setting

of a formal foundation for the adaptation of heterogeneous

components that may present mismatching interaction behav-

ior. Assuming a specification of the adaptation in terms of a set

of correspondences between methods (and their parameters)

of two components requires to know many implementation

details (about the adaptation) that we do not want to consider

in order to synthesize a connector.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we formalized a method for the automated

synthesis of modular connectors. A modular connector is

structured as a composition of independent mediators, each

of them corresponding to the solution of a recurring protocol

mismatch. We have proven that our connector decomposition

is correct and, by means of a case study, we have shown

how it promotes connector evolution. An overall advantage

of our approach with respect to the work in the state of the

art (Section VI) is that our connectors have a modular soft-

ware architecture organized as a composition of fundamentals

mediation primitives. This supports connector evolution and

automated generation of the connector’s implementation code.

In particular, we have recently released a first implementation

(http://code.google.com/p/otf-connector/) of both the algebra

primitives and the plugging operator. This implementation is

based on the use of Enterprise Integration Patterns (http:

//www.eaipatterns.com/) and is developed through the Apache

Camel framework (http://camel.apache.org/). Because of the

way a modular connector is structured, the automatic genera-

tion of its actual code written in terms of our algebra imple-

mentation is viable and can be achieved with little effort. We

have started to show, through its application to the real world

case study presented in this paper, that our method supports

connector evolution. As future work, we intend to carry out a

rigorous empirical investigation to confirm the results reported

in this paper. Another future research direction concerns the

ability to infer the needed ontological information, out of the

interface description of the two protocols, rather than assuming

it as given.

REFERENCES

[1] M. Weiser, “The computer for the twenty-first century,” Scientific

American, 1991.
[2] D. E. Perry and A. L. Wolf, “Foundations for the study of software

architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, 1992.
[3] R. Allen and D. Garlan, “A formal basis for architectural connection,”

ACM Trans. Softw. Eng. Methodol., vol. 6, no. 3, 1997.
[4] D. M. Yellin and R. E. Strom, “Protocol specifications and component

adaptors,” ACM Trans. Program. Lang. Syst., vol. 19, no. 2, 1997.
[5] P. Inverardi, R. Spalazzese, and M. Tivoli, “Application-layer connector

synthesis,” in SFM, 2011.
[6] V. Issarny, A. Bennaceur, and Y.-D. Bromberg, “Middleware-layer con-

nector synthesis: Beyond state of the art in middleware interoperability,”
in SFM, 2011.

[7] C. Canal, P. Poizat, and G. Salaün, “Model-based adaptation of behav-
ioral mismatching components,” IEEE Trans. Software Eng., 2008.

[8] R. Passerone, L. de Alfaro, T. A. Henzinger, and A. L. Sangiovanni-
Vincentelli, “Convertibility verification and converter synthesis: two
faces of the same coin,” in ICCAD, 2002.

[9] J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone, and Y. Watan-
abe, “Quasi-static scheduling of independent tasksfor reactive systems,”
in ICATPN, 2002.

[10] F. Jiang, Y. Fan, and X. Zhang, “Rule-based automatic generation of
mediator patterns for service composition mismatches,” in GPC, 2008.

[11] X. Li, Y. Fan, J. Wang, L. Wang, and F. Jiang, “A pattern-based approach
to development of service mediators for protocol mediation,” in WICSA,
2008.

[12] B. Spitznagel and D. Garlan, “A compositional formalization of connec-
tor wrappers,” in ICSE, 2003.

[13] G. Wiederhold and M. Genesereth, “The conceptual basis for mediation
services,” IEEE Expert: Intelligent Systems and Their Applications,
vol. 12, no. 5, 1997.

[14] L. de Alfaro and T. A. Henzinger, “Interface automata,” in ESEC/FSE,
2001.

[15] T. Chen, C. Chilton, B. Jonsson, and M. Kwiatkowska, “A compositional
specification theory for component behaviours,” in ESOP, 2012.

[16] M. Autili, C. Chilton, P. Inverardi, M. Kwiatkowska, and M. Tivoli,
“Towards a connector algebra,” in ISoLA, 2010.

[17] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi, “Alternating
refinement relations,” in CONCUR’98, 1998.

[18] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, 1979.
[19] “CONNECT consortium. CONNECT Deliverable D3.3: Dynamic con-

nector synthesis: revised prototype implementation. FET IP CONNECT
EU project, FP7 GA n.231167, http://connect-forever.eu/.”

[20] U. Aßmann, S. Zschaler, and G. Wagner, Ontologies, Meta-Models, and

the Model-Driven Paradigm. Springer, 2006.
[21] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-

Schneider, Eds., The description logic handbook: theory, implementa-

tion, and applications. Cambridge University Press, 2003.
[22] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

Pattern-Oriented Software Architecture, Volume 1: A System of Patterns.
Chichester, UK: Wiley, 1996.

[23] M. Dumas, M. Spork, and K. Wang, “Adapt or perish: Algebra and
visual notation for service interface adaptation,” in Business Process

Management, 2006.
[24] K. L. Calvert and S. S. Lam, “Formal methods for protocol conversion,”

IEEE Journal on Selected Areas in Communications, vol. 8, no. 1, 1990.

CONNECT 231167 85/94

[25] S. S. Lam, “Correction to ”protocol conversion”,” IEEE Trans. Software

Eng., vol. 14, no. 9, 1988.
[26] R. Vaculı́n and K. Sycara, “Towards automatic mediation of OWL-S

process models,” Web Services, IEEE International Conference on, 2007.
[27] R. Vaculı́n, R. Neruda, and K. P. Sycara, “An agent for asymmetric

process mediation in open environments.” in SOCASE, 2008.
[28] R. Bruni, I. Lanese, and U. Montanari, “A basic algebra of stateless

connectors,” Theor. Comput. Sci., vol. 366, no. 1, 2006.

CONNECT 231167 86/94

B Quantitative extension: computation of con-
straints

In this appendix, we briefly give the derivation of the constraints imposed on guards, invariants and

co-invariants by means of the ⊥-backpropagation technique. This procedure is applied to the product

automaton shown in Figure 2.8.

The ⊥-backpropagation procedure in our theory is implemented symbolically using assertional rea-

soning techniques (e.g. weakest pre-condition calculation). The idea is that we first identify the set of

initial auto-⊥ and semi-⊥ states in the automaton, which are given by constraints, say α. Then we back-

propagate α through output transitions and delay transitions in order to calculate new auto-⊥ and semi-⊥
states.

• For action transitions (say a!), which are used to find new auto-⊥ states, weakest pre-condition

calculation suffices; it returns a constraint α′ s.t. any state satisfying α′ can take the a! transition and

go to another state satisfying α.

• For delay transitions, which are used to find new semi-⊥ states, in addition to the weakest pre-

condition requirement, the calculation of α′ also needs to guarantee that no input is enabled in any

state of α′. Thus, a state s satisfying α′ can delay-transit into another state s′ satisfying α, and

all delay successors of s before reaching s′ must have all inputs disabled. The disabled inputs

are calculated using an implicit ⊥-removal sub-procedure (implemented as weakest precondition

calculation on input transitions) interwoven into the ⊥-backpropagation.

In our case study, initially we only have semi-⊥ states. For instance, location BV T3ZN (i.e. the

product state in which the component automata are in locations B, V , T , 3, Z, N resp.) is waiting for the

input play frame which must arrive before x′ reaching 2 (specified by its co-invariant). For BV T3ZN , the

set of semi-⊥ states is characterised as the constraint x′ > y + 1&x′ > x&x′ > z − 8&bf == 0&b == ff ,

which say that clock x′ can reach 2 faster than any of x, y and z reaching 2, 1 and 10 resp. Thus, the

co-invariant of BV T3ZN will be violated before the violation of its invariant, which leads to ⊥. Similarly

we have x′ > x&x′ > z − 8&buf, bf == 0 as β for BV S3Y N .

Based on x′ > y + 1&x′ > x&x′ > z − 8&bf == 0&b == ff as α, we can do ⊥-elimination on input?

by calculating the weakest pre-condition, which is x′ > 1&x′ > x&x′ > z−8&bf == 0&b == ff&buf > 0
as α′. Obviously all states satisfying α′ can delay-transit into the violation of the BV S3Y N co-invariant

(i.e. before the invariant violation) and no play frame? is enabled along the way. Thus α′ captures a set

of new semi-⊥ states. We can combine α′ and β for BV S3Y N and get the new constraints x′ > 1&x′ >
x&x′ > z − 8&bf == 0&b == ff .

In this way, we propagate the constraints through the graph of the product automaton, finding new auto-

⊥/semi-⊥ states and weakening the constraints at locations accordingly until the fixed-point is reached.

The detailed step-by-step illustration of the constraint-based ⊥-backpropagation for our case study is

given in Figures B.2, B.3 and B.4.

The four key locations we are interested in are BV S3Y N , BV T3ZN , BUS3Y N and BUT3ZN . Our

strategy first iterates over BV S3Y N and BV T3ZN to reach the local fixed-point, i.e. constraints (0)&(6)
and (d)&(g). Then, locations BUS3Y N and BUT3ZN are added and the iteration (over all four states)

continues until the global fixed-points are reached, i.e. constraints FP1, FP2, FP3, FP4 in Figure B.1.

The fixed-point constraint backpropagation in Figures B.2, B.3 and B.4 is done manually for illustrative

purposes, but it is easy to see that the procedure can be automated in a relatively straightforward manner.

Once the fixed-points have been reached, we can:

1. strengthen the co-invariants for locations BV S3Y N , BV T3ZN , BUS3Y N and BUT3ZN in Fig-

ure 2.8 by removing those states characterised by the corresponding fixed-points FP1, FP2, FP3
and FP4 in Figure B.1; and

2. perform ⊥-elimination, and modify the guard on the start play? transitions to be G1, G2, G3 and G4
in Figure B.1 (so that proper delay can be observed before the playback is started).

After this, the inputs and outputs, along with invariants and co-invariants should be exchanged on the

resulting automaton, in order to obtain the timed quotient.

CONNECT 231167 87/94

FP1::= OR{A,E,J,P,N,[a],[f],[l],[o]}

FP2::= OR{I,II,XII,VI,VIII,[1],[3],[6],[8]}

FP3::= OR{7,9,III,IV,V,VII,IX,X,[2],[4],[5],[7],[9]}

FP4::= OR{n,s,D,H,O,L,M,Q,[e],[i],[j],[k],[n]}

G1::= u==0& (bf+5*r)>=5 or u==1&r<=1& bf+5*r>=10 or u==1&r>=2&bf>=4

G2::= u==0&y>0& (bf+5*r)>=4 or u==0&y==0& bf+5*r>=5 or
 u==1&y>0&r<=1& (bf+5*r)>=9 or u==1&y==0&r<=1& bf+5*r>=10 or u==1&r>=2&bf>=4

G3::= b==tt&y>0& z+2*(bf+5*r)>=18 or b==tt&y==0& z+2*(bf+5*r)>=20 or
 b==ff&y>0&r<=1& z+2*(bf+5*r)>=18 or b==ff&y==0&r<=1& z+2*(bf+5*r)>=20 or b==ff&r>=2&z+2*bf>=8

G4::= b==tt& z+2*(bf+5*r)>=20 or b==ff&r<=1& z+2*(bf+5*r)>=20 or b==ff&r>=2&z+2*bf>=8

Fixpoints:

Guards on the incoming ‘start_play?’ transitions:

Figure B.1: The fixed-points and guards

CONNECT 231167 88/94

BVT3ZN

x’>y+1&x’>x&x’>z-8&bf==0&b==ff (1)

x’>1&x’>x&x’>z-8&bf==0&b==ff&buf>0

be:input?+bp:semi-bot

x’>1&x’>x&x’>z-8&bf==0&b==ff

bp:semi_bot

x’>z-(8-2*bf)&b==ff (9)

......

+(a)

x’>y+1&x’>x&x’>z-8&bf==0&b==tt (6)

bp:frame_loss!

bp:semi-bot

x’>1&x’>x&x’>z-8&bf==0&b==ff&y<=1

x’>y&x’>x&x’>z-8&bf==0&b==ff

x’>0&x’>x&x’>z-8&bf==0&b==ff&buf>0

be:input?+bp:semi-bot

x’>x&x’>z-8&bf==0&b==ff (b)

+(a)

bp:send_frame!

x’>y+1&x’>0&x’>z-8&bf==0&b==tt&x==2

bp:semi-bot

x>=x’>y+1&x’>z-8&bf==0&b==tt

+(6)

x’>y+1&x’>z-8&bf==0&b==tt (7)

be:input?

x’>1&x’>z-8&bf==0&b==tt&buf>0

+(a)

x’>1&x’>x&x’>z-8&bf==0&b==tt (i)

bp:send_frame!

x’>1&x’>0&x’>z-8&bf==0&b==tt&x==2

bp:semi-bot

x>=x’>1&x’>z-8&bf==0&b==tt

+(i)

x’>1&x’>z-8&bf==0&b==tt (n)

x’>x&x’>z-8&buf,bf==0 (a)

BVS3YN

bp:semi_bot

 [h]

x’>z-6&bf==1&b==ff&x’>x,1 (k)

(r)
......

x’>z-(8-2*bf)&b==ff (s)

BVT3ZN

bp:semi_bot

bp:frame_loss!

x’>z-8&bf==0&b==ff (3)

bp:send_frame!

x’>0&x’>z-8&bf==0&b==ff&x>=x’,y+1

x’>0&x’>z-8&bf==0&b==ff&x==2

bp:semi-bot

+(b)

x’>0&x’>z-8&bf==0&b==ff (f)

bp:semi-bot + (2)

x<2&x’>z-8&bf==0&b==ff (g)

bp:send_frame!

x==2&x’>z-8&bf==0&b==ff

+(g)

x’>z-8&bf==0&b==ff (h)

be:play_frame?+bp:semi-bot + (j)

bp:send_frame!

+(k)

be:input?

x’>z-6&bf==1&b==ff&x’>1&buf>0 (j)

x’==2&0>z-8&bf==1&b==ff&x<2&y<1

be:play_frame?+bp:semi-bot

bp:frame_loss!

x’>x&x’>z-8&bf==0&b==ff

be:input?

x’>0&x’>z-8&bf==0&b==ff&x>=x’,1&buf>0 (c)

(b)

bp:send_frame!

x’>0&x’>z-8&bf==0&b==ff&x>=x’,1

x’>0&x’>z-8&bf==0&b==ff&x==2 (d)

bp:semi-bot+ (c)

bp:frame_loss!

x’>0&x’>z-8&bf==0&b==ff&x>=x’,1&y<=1

x’>0&x’>z-8&bf==0&b==ff&x>=x’,y

be:input?

(d)

bp:semi-bot+ (e)

x’>0&x’>z-8&bf==0&b==ff&x>=x’

bp:semi-bot

x’>z-6&bf==1&b==ff&x’>x,y+1 (4)

bp:semi-bot

bp:send_frame!

x’>z-6&bf==1&b==ff&x’>0,y+1&x==2

bp:semi-bot

x’>z-6&bf==1&b==ff&x>=x’>0,y+1

+(4)

x’>z-6&bf==1&b==ff&x’>y+1

x’>z-6&bf==1&b==ff&x’>1&x==2

bp:semi-bot + (j)

x’>z-6&bf==1&b==ff&x>=x’>1

x’>z-6&bf==1&b==ff&x’>1 (l)

bp:frame_loss!

x’>z-6&bf==1&b==ff&x’>1&y<=1

bp:semi-bot

x’>z-6&bf==1&b==ff&x’>y&x<x’+1 (5)

bp:send_frame!

x’>z-6&bf==1&b==ff&x’>y&0<x’+1&x==2

bp:semi-bot

x’>z-6&bf==1&b==ff&x>=x’>y

+(5)

x’>z-6&bf==1&b==ff&x’>y

be:input?

x’>z-6&bf==1&b==ff&x’>0&buf>0 (m)

(l)

bp:semi-bot + (m)

x’>z-6&bf==1&b==ff&x’>0&x<x’+1 (o)

bp:send_frame!

x’>z-6&bf==1&b==ff&x’>0&x==2

bp:semi-bot + (m)

x’>z-6&bf==1&b==ff&x>=x’>0

+(o)

x’>z-6&bf==1&b==ff&x’>0 (p)

bp:frame_loss!

x’>z-6&bf==1&b==ff

x<2&x’>z-6&bf==1&b==ff (q)

bp:send_frame!

x==2&x’>z-6&bf==1&b==ff

+(q)

x’>z-6&bf==1&b==ff (r)

bp:frame_loss!

x’>0&x’>z-8&bf==0&b==ff

bp:semi-bot

x<2&x’>z-8&bf==0&b==ff (2)

 (f)

bp:frame_loss!

x’>0&x’>z-6&bf==1&b==ff

bp:semi-bot

x<2&x’>z-8&bf==1&b==ff (8)

bp:semi-bot + (8)

 (p)

Figure B.2: Local fixed-point calculation

CONNECT 231167 89/94

bp:tau_unreliable!

x’>z-(8-2*bf)&u==1&z==0

x’>2*(bf-4)&u==1&z==10&b==tt

(9)

x’>2*(bf-4)&u==1&z==0 (I)

bp:frame_recv!

bp:semi-bot

x’>z+2*(bf-9)&u==1&z>=y+9&b==tt

x’>z+2*(bf-9)&u==1&z>=9&b==tt (C)

x’>z+2*(bf-8)&u==1&z>=9&b==tt&y<=1

bp:semi-bot

x’>z+2*(bf-8)&u==1&z-8>=y&b==tt

be:input?+bp:semi-bot + (B)

be:input?+bp:semi-bot + (C)

x’>z+2*(bf-8)&u==1&z>=8&b==tt

......
x’>z+2*(bf-[z-y])&u==1&b==tt (III)

bp:tau_unreliable!

x’>z-(8-2*bf)&u==1&z==0

(s)

bp:tau_periodic!

x’>z-(8-2*bf)&u==r==0&z==0

bp:tau_slotFin! + strengthening

x’>2*(bf-4)&u==r==0&z==10&b==tt&y<=1

(I)

bp:tau_periodic!

bp:frame_recv!

bp:semi-bot

x’>z+2*(bf-9)&u==r==0&z>=y+9&b==tt

x’>z+2*(bf-9)&u==r==0&z>=9&b==tt (G)

x’>z+2*(bf-8)&u==r==0&z>=9&b==tt&y<=1

bp:semi-bot

x’>z+2*(bf-8)&u==r==0&z-8>=y&b==tt

be:input?+bp:semi-bot + (F)

be:input?+bp:semi-bot + (G)

x’>z+2*(bf-8)&u==r==0&z>=8&b==tt

......

x’>z+2*(bf-[z-y])&u==r==0&b==tt (IV)

x’>2*(bf-4)&u==r==0&z==0 (II)

bp:tau_reliable!

x’>z+2*(bf-[z-y])&(r>=1&u==1)&z==0

bp:tau_slotFin!

x’>2*(bf-[0-y])&(r>=1&u==1)&z==0

x’>0&bf==0&y==0&(r>=1&u==1)&z==0

subsumed by (I)

...... ([10]=9)

x’>z+2*(bf-[z])&u==1&b==tt (D)

......

x’>z+2*(bf-[z])&u==r==0&b==tt (H)

bp:tau_reliable!

x’>z+2*(bf-[z-y])&(r==1&u==0)&z==0

x’>2*(bf-[0-y])&(r==1&u==0)&z==0

x’>0&bf==0&y==0&(r==1&u==0)&z==0

x’>2*(bf-4)&u==1&z==0 (A) x’>2*(bf-4)&u==r==0&z==0 (E)

(IV)

bp:tau_reliable!

x’>z+2*(bf-[z])&(r==1&u==0)&z==0

x’>2*bf&(r==1&u==0)&z==0

(III)

bp:tau_reliable!

x’>z+2*(bf-[z])&(r>=1&u==1)&z==0

x’>2*bf&(r>=1&u==1)&z==0

subsumed by (A)

bp:tau_slotFin!

x’>2*(bf-4)&u==r==0&z==10 (F)

(A)

bp:tau_slotFin!

x’>2*(bf-4)&u==1&z==10&b==tt (B)

+XI

x’>0&bf==0&(r==1&u==0)&z==0 (J)

bp:frame_loss!

x’>0&bf==0&(r==1&u==0)&z==0&b==ff (XI)

x’>0&bf==0&(y==0 or b==ff) (XII)
 &(r==1&u==0)&z==0

x’>0&bf==0&(r>=1&u==1)&z==0

bp:tau_slotFin! + strengthening

x’>2*(bf-4)&u==r==0&z==10&b==ff&y<=1

bp:frame_loss!

bp:semi-bot

x’>z+2*(bf-9)&u==r==0&z>=y+9&b==ff

x’>z+2*(bf-9)&u==r==0&z>=9&b==ff (K)

x’>z+2*(bf-9)&u==r==0&z>=9&b==ff&y<=1

bp:semi-bot

x’>z+2*(bf-9)&u==r==0&z-8>=y&b==ff

be:input?+bp:semi-bot + (F)

be:input?+bp:semi-bot + (K)

x’>z+2*(bf-9)&u==r==0&z>=8&b==ff

......

x’>z+2*(bf-9)&u==r==0&b==ff (VII)

(II)

......
x’>z+2*(bf-9)&u==r==0&b==ff (L)

bp:tau_unreliable!

x’>z+2*(bf-9)&(u==1&r==0)&z==0

(L)

bp:tau_unreliable!

x’>z+2*(bf-9)&(u==1&r==0)&z==0

x’>2*(bf-9)&(u==1&r==0)&z==0 (VIII)

x’>2*(bf-9)&(u==1&r==0)&z==0 (N)

......

x’>z+2*(bf-[z-y]-4)&(u==1&r==0)&b==tt (IX)

......

x’>z+2*(bf-[z]-4)&(u==1&r==0)&b==tt (M)

bp:tau_reliable!

x’>z+2*(bf-[z]-4)&(r==1&u==1)&z==0

x’>2*(bf-4)&(r==1&u==1)&z==0

subsumed by (A)

(IX)

bp:tau_reliable!

x’>z+2*(bf-[z-y]-4)&(r==1&u==1)&z==0

x’>2*(bf-[-y]-4)&(r==1&u==1)&z==0

subsumed by (I)

bp:tau_slotFin! + strengthening

x’>0&bf==0&b==ff&(r==1&u==0)&z==10

bp:semi-bot ...

2>z-8>=x’&bf==0&b==ff&(r==1&u==0)

be:play_frame?+bp:semi-bot ...

x’>z-8&bf==1&b==ff&(r==1&u==0)

x’>z-(10-2*bf)&b==ff&(r==1&u==0) (V)

......

x’>z-(10-2*bf)&b==ff&(r==1&u==0) (O)

......

bp:tau_unreliable!

x’>2*(bf-5)&(r==1&u==1) (VI)

bp:tau_unreliable!

x’>2*(bf-5)&(r==1&u==1) (P)

......

x’>z+2*(bf-[z-y]-1)&(u==1&r==1)&b==tt (X)
......

x’>z+2*(bf-[z]-1)&(u==1&r==1)&b==tt (Q)

bp:tau_reliable!

x’>z+2*(bf-[z]-1)&(r==2&u==1)&z==0

x’>2*(bf-1)&(r==2&u==1)&z==0

subsumed by (A)

(X)

bp:tau_reliable!

x’>z+2*(bf-[z-y]-1)&(r==2&u==1)&z==0

x’>2*(bf-[-y]-1)&(r==2&u==1)&z==0

subsumed by (I)

(VI)

Figure B.3: Global fixed-point calculation I

CONNECT 231167 90/94

 bp:tau_reliable!+tau_periodic!
+(XII)+(II)+(I)+strengthening

(7)

x’>y+1&z==0&bf==0&(r>=2&u==0)&b=ff [1]

bp:tau_reliable!+tau_periodic!+strengthening

x’>1&z==0&bf==0&(r>=2&u==0) [a]

(n)

 x’>y+1&(r>=2&u==0)&z==10&bf==0&b==ff

bp:tau_slotFin!

bp:semi-bot

 z-8>=x’>y+1&(r>=2&u==0)&bf==0&b==ff

bp:tau_slotFin! + strengthening

x’>1&z==10&bf==0&b==ff&(r>=2&u==0) [b]

 z-8>=x’>1&(r>=2&u==0)&bf==0&b==ff [c]

be:input?+bp:semi-bot + [b]

bp:frame_loss!

 z-8>=x’>1&(r>=2&u==0)&bf==0&b==ff

x’+1>2*(bf-4)>=x’&(r>=2&u==1
 or r==u==0)&z==0 [3]

bp:semi-bot

 x’+1>z-8>=x’>y&(r>=2&u==0)&bf==0&b==ff

x’==2&1>z-8>=0&(r>=2&u==0)&bf==1
 &b==ff&x<2&y<1

be:play_frame?+bp:semi-bot

......

x’+1>z-6>=x’&(r>=2&u==0)&bf==1&b==ff
......

x’+1>z-(8-2*bf)>=x’&(r>=2&u==0)&b==ff [2]

......

x’+1>z+2*(bf-4)>=x’&(r>=2&u==0)&b==ff [e]

x’+1>2*(bf-4)>=x’&(r>=2&u==1
 or r==u==0)&z==0 [f]

 x’+1>z-8>=x’>0&(r>=2&u==0)&bf==0&b==ff [d]

be:input?+bp:semi-bot + [c]

bp:frame_loss!

 x’+1>z-8>=x’>0&(r>=2&u==0)&bf==0&b==ff

x’+1>2*(bf-4)>=x’&
(r,u==2,1 or 0,0)&b==tt&z==10

bp:frame_recv!

bp:semi-bot

x’+1>z+2*(bf-9)>=x’&
(r,u==2,1 or 0,0)&z>=y+9&b==tt

x’+1>z+2*(bf-9)>=x’&
(r,u==2,1 or 0,0)&z>=9&b==tt [h]

x’+1>z+2*(bf-8)>=x’&
(r,u==2,1 or 0,0)&z>=9&b==tt&y<=1

bp:semi-bot

x’+1>z+2*(bf-8)>=x’&
(r,u==2,1 or 0,0)&z-8>=y&b==tt

be:input?+bp:semi-bot + [g]

be:input?+bp:semi-bot + [h]

x’+1>z+2*(bf-8)>=x’&
(r,u==2,1 or 0,0)&z>=8&b==tt

......

x’+1>z+2*(bf-[z-y])>=x’&
(r,u==2,1 or 0,0)&b==tt [4]

bp:tau_reliable!

x’+1>z+2*(bf-[z-y])>=x’&(r,u==3,1 or 1,0)&z==0

bp:tau_slotFin!+strengthening

x’+1>2*(bf-[0-y])>=x’&(r,u==3,1 or 1,0)&z==0

subsumed by (I)

......

x’+1>z+2*(bf-[z])>=x’&
(r,u==2,1 or 0,0)&b==tt [i]

[4]

bp:tau_reliable!

x’+1>z+2*(bf-[z])>=x’&
(r,u==3,1 or 1,0)&z==0

x’+1>2*bf>=x’&(r,u==3,1 or 1,0)&z==0

subsumed by (A)

x’>0&bf==0&(r,u==3,1 or 1,0)&z==0
or x’>1&bf==1&(r,u==3,1 or 1,0)&z==0

[3]

bp:tau_unreliable!+tau_periodic!

bp:tau_unreliable!+tau_periodic!

x’+1>2*(bf-4)>=x’&(r,u==0,0)&b==ff&z==10

bp:tau_slotFin!+strengthening

[3]

bp:semi-bot...

x’+1>z+2*(bf-9)>=x’&(r,u==0,0)&b==ff [5]

......

x’+1>z+2*(bf-9)>=x’&(r,u==0,0)&b==ff [j]

bp:tau_unreliable!

x’+1>2*(bf-9)>=x’&(r,u==0,1)&z==0 [6]

bp:tau_slotFin!

x’+1>z+2*(bf-14)>=x’&(r,u==0,1)&b==tt&z==10

......

x’+1>z+2*(bf-14)>=x’&(r,u==0,1)&z-8>=y&b==tt

......
x’+1>z+2*(bf-[z-y]-6)>=x’&(r,u==0,1)&b==tt [7]

......

x’+1>z+2*(bf-[z]-6)>=x’&(r,u==0,1)&b==tt [k]

bp:tau_reliable!

x’+1>2*(bf-6)>=x’&(r,u==1,1)&z==0 [l]

bp:tau_reliable!

x’+1>z+2*(bf-[z-y]-6)>=x’&(r,u==1,1)&z==0

x’+1>2*(bf-[-y]-6)>=x’&(r,u==1,1)&z==0 [8]

[7]

x’+1>2*(bf-[-y]-6)>=x’&(r,u==1,1)&b==tt&z==10

bp:tau_slotFin!

bp:semi-bot

x’+1>z+2*(bf-[-y]-11)>=x’&
(r,u==1,1)&z>=y+9&b==tt

x’+1>z+2*(bf-11)>=x’&
(r,u==1,1)&z>=9&b==tt

be:input?+bp:semi-bot + [m]

bp:frame_recv!

x’+1>z+2*(bf-11)>=x’&
(r,u==1,1)&z>=9&b==tt

bp:semi-bot

x’+1>z+2*(bf-11)>=x’&
(r,u==1,1)&z-8>=y&b==tt

......

x’+1>z+2*(bf-[z-y]-3)>=x’&
(r,u==1,1)&b==tt [9]

......

x’+1>z+2*(bf-[z]-3)>=x’&(r,u==1,1)&b==tt [n]

bp:tau_reliable!

x’+1>z+2*(bf-[z]-3)>=x’&(r,u==2,1)&z==0

x’+1>2*(bf-3)>=x’&(r,u==2,1)&z==0

subsumed by (A)

bp:tau_reliable!

x’+1>z+2*(bf-[z-y]-3)>=x’&(r==2&u==1)&z==0

x’+1>2*(bf-[-y]-3)>=x’&(r==2&u==1)&z==0

subsumed by (I)

[9]

bp:semi-bot

 x’+1>z-8>=x’>=0&(r>=2&u==0)&bf==0&b==ff

[f]

bp:tau_slotFin!+strengthening

x’+1>2*(bf-4)>=x’&
(r,u==2,1 or 0,0)&z==10 [g]

bp:tau_slotFin!

x’+1>2*(bf-6)>=x’&(r,u==1,1)&z==10 [m]

Figure B.4: Global fixed-point calculation II

CONNECT 231167 91/94

Bibliography
[1] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Programming Languages

and Systems, 15(1):73–132, January 1993.

[2] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming Languages

and Systems, 17(3):507–534, May 1995.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126:183–235, April 1994.

[4] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The de-

scription logic handbook: theory, implementation, and applications. Cambridge University Press,

2003.

[5] S. Bauer, A. David, R. Hennicker, K. Guldstrand Larsen, A. Legay, U. Nyman, and A. Wsowski.

Moving from specifications to contracts in component-based design. In J. Lara and A. Zisman, edi-

tors, Fundamental Approaches to Software Engineering, volume 7212 of Lecture Notes in Computer

Science, pages 43–58. Springer Berlin Heidelberg, 2012.

[6] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier, A. Sangiovanni-

Vincentelli, W. Damm, T. Henzinger, and K. G. Larsen. Contracts for System Design. Rapport de

recherche RR-8147, INRIA, Nov. 2012.

[7] P. Bhaduri and S. Ramesh. Interface synthesis and protocol conversion. Form. Asp. Comput.,

20(2):205–224, March 2008.

[8] C. Canal, P. Poizat, and G. Salaün. Model-based adaptation of behavioral mismatching components.

IEEE Trans. Software Eng., 2008.

[9] T. Chen, C. Chilton, B. Jonsson, and M. Kwiatkowska. A Compositional Specification Theory for

Component Behaviours. In H. Seidl, editor, Programming Languages and Systems, Proc. 21st Euro-

pean Symposium on Programming (ESOP’12), volume 7211 of Lecture Notes in Computer Science,

pages 148–168. Springer-Verlag, 2012.

[10] CONNECT consortium. CONNECT Deliverable D0.6: Annual progress and financial report. FET IP

CONNECT EU project, FP7 grant agreement number 231167, http://connect-forever.eu/.

[11] CONNECT consortium. CONNECT Deliverable D2.2: Compositional algebra of connectors. FET IP

CONNECT EU project, FP7 grant agreement number 231167, http://connect-forever.eu/.

[12] CONNECT consortium. CONNECT Deliverable D2.3: Rephrasing interoperability in terms of connec-

tor behaviours. FET IP CONNECT EU project, FP7 grant agreement number 231167, http://connect-

forever.eu/.

[13] CONNECT consortium. CONNECT Deliverable D3.3: Dynamic connector synthesis: revised pro-

totype implementation. FET IP CONNECT EU project, FP7 grant agreement number 231167,

http://connect-forever.eu/.

[14] CONNECT consortium. CONNECT Deliverable D6.3: Experiment scenarios, prototypes and report

Iteration 2. FET IP CONNECT EU project, FP7 grant agreement number 231167, http://connect-

forever.eu/.

[15] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Timed I/O automata: a complete

specification theory for real-time systems. In Proc. 13th ACM International Conference on Hybrid

systems: computation and control, HSCC ’10, pages 91–100. ACM, 2010.

[16] L. de Alfaro and T. Henzinger. Interface automata. In Proceedings of the 8th European Software

Engineering Conference and the 9th ACM Symposium on Foundations of Software Engineering,

pages 109–120, 2001.

CONNECT 231167 93/94

[17] L. de Alfaro and T. A. Henzinger. Interface automata. SIGSOFT Softw. Eng. Notes, 26(5):109–120,

September 2001.

[18] L. de Alfaro and T. A. Henzinger. Interface-based design. In M. Broy, J. Grünbauer, D. Harel, and

T. Hoare, editors, Engineering Theories of Software Intensive Systems, volume 195 of NATO Science

Series II: Mathematics, Physics and Chemistry, pages 83–104. Springer-Verlag, 2005.

[19] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed interfaces. In A. Sangiovanni-Vincentelli and

J. Sifakis, editors, Embedded Software, volume 2491 of LNCS, pages 108–122. Springer-Verlag,

2002.

[20] B. Delahaye, B. Caillaud, and A. Legay. Probabilistic contracts: a compositional reasoning methodol-

ogy for the design of systems with stochastic and/or non-deterministic aspects. Form. Methods Syst.

Des., 38(1):1–32, Feb. 2011.

[21] J. Drissi and G. v. Bochmann. Submodule construction for systems of i/o automata. Technical report,

M.B. JOSEPHS, H.K. KAPOOR / CONTROLLABLE DELAY-INSENSITIVE PROCESSES, 1999.

[22] M. Dumas, M. Spork, and K. Wang. Adapt or perish: Algebra and visual notation for service interface

adaptation. In Business Process Management, 2006.

[23] B. Jonsson. Compositional specification and verification of distributed systems. ACM Trans. on

Programming Languages and Systems, 16(2):259–303, 1994.

[24] K. G. Larsen, U. Nyman, and A. Wasowski. Interface input/output automata. In FM 2006, volume

4085 of LNCS, pages 82–97. Springer, 2006.

[25] X. Li, Y. Fan, J. Wang, L. Wang, and F. Jiang. A pattern-based approach to development of service

mediators for protocol mediation. In WICSA, 2008.

[26] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI Quarterly, 2(3):219–246,

September 1989.

[27] R. Passerone, L. de Alfaro, T. A. Henzinger, and A. L. Sangiovanni-Vincentelli. Convertibility verifica-

tion and converter synthesis: two faces of the same coin. In ICCAD, 2002.

[28] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and R. Passerone. A modal interface

theory for component-based design. Fundam. Inform, 108(1):119–149, 2011.

[29] B. Spitznagel and D. Garlan. A compositional formalization of connector wrappers. In ICSE, 2003.

[30] R. Vaculı́n, R. Neruda, and K. P. Sycara. An agent for asymmetric process mediation in open envi-

ronments. In SOCASE, 2008.

[31] T. Verhoeff. A Theory of Delay-Insensitive Systems. PhD thesis, Dept. of Math. and C.S., Eindhoven

Univ. of Technology, May 1994.

[32] G. Wiederhold and M. Genesereth. The conceptual basis for mediation services. IEEE Expert:

Intelligent Systems and Their Applications, 12(5), 1997.

CONNECT 231167 94/94

	List of Figures
	Introduction
	The role of work package WP2
	WP2 progress during the fourth year
	Review recommendations
	Outline

	Year 4 work
	Safe assume-guarantee reasoning framework for the compositional specification theory
	Primer on the specification theory
	Assume-guarantee reasoning framework
	Evaluation

	Quantitative extension of the compositional specification theory and its application
	Component model
	Semantic model
	Refinement
	Compositional operations
	Realisability
	Evaluation

	Connecting the specification theory with the Connector algebra to support WP3 synthesis
	An informal overview on the automated synthesis of modular Connectors
	Evaluation: correctness and Connector evolution

	Evaluation of WP2 results
	Conclusion
	Published work
	Assume-Guarantee Reasoning for Safe Component Behaviours
	Revisiting Timed Specification Theories: A Linear-Time Perspective
	Automatic Synthesis of Modular Connectors via Composition of Protocol Mediation Patterns

	Quantitative extension: computation of constraints
	Bibliography

