N

N
N

HAL

open science

VerChor: A Framework for Verifying Choreographies

Matthias Giidemann, Pascal Poizat, Gwen Salatin, Alexandre Dumont

» To cite this version:

Matthias Gidemann, Pascal Poizat, Gwen Salatin, Alexandre Dumont. VerChor: A Framework for
Verifying Choreographies. Fundamental Approaches to Software Engineering 2013, Mar 2013, Rome,

Italy. pp.226-230, 10.1007/978-3-642-37057-1_16 . hal-00806788

HAL Id: hal-00806788
https://inria.hal.science/hal-00806788

Submitted on 2 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00806788
https://hal.archives-ouvertes.fr

VerChor: A Framework for Verifying
Choreographies

Matthias Giidemann', Pascal Poizat?, Gwen Salaiin', and Alexandre Dumont!

! Inria, Grenoble INP, France
2 LIP6 UMR 7606 CNRS — Université Paris Ouest, Nanterre, France

1 Introduction

Nowadays, modern applications are often constructed by reusing and assembling
distributed and collaborating entities, e.g., software components, Web services,
or Software as a Service in cloud computing environments. In order to facilitate
the integration of independently developed components (i.e., peers) that may
reside in different organizations, it is necessary to provide a global contract to
which the peers participating in a service composition should adhere. Such a
contract is called choreography, and specifies interactions among a set of services
from a global point of view. This contract is the reference for the further devel-
opment steps (service selection, code generation, maintenance, reconfiguration,
etc.). The specification and formal analysis of this contract is therefore crucial
and must be handled carefully by the designer to avoid an erroneous design,
which would be very costly if discovered lately in the development process. Un-
fortunately, only limited effort, e.g. [3,6, 1], has been spent to develop formal
verification tools, which can automatically detect issues such as deadlocks or
erroneous behaviours in the choreography specification.

In this paper, we propose a modular framework for performing automatically
a number of crucial verification tasks on choreography specifications. Our frame-
work accepts as input the following interaction-based choreography description
languages: (i) XML-based languages (WS-CDL), (ii) graphical notations (BPMN
2.0 choreographies), and (iii) formal description models (Chor, conversation pro-
tocols). In order to favour extensibility and reusability of our framework, we

choreography
models/languages

i CADP verification tools
choreography input models (LNT) et .

intermediate format

AN 3
Ws-CDL A L
> CIF — |] eeeas)
model Python
transformation scripts
conversation verification scripts
protocols (SVL)

diagnostics

propose an intermediate format (CIF) for representing choreography description
languages. This intermediate format allows to accept several existing languages

2 M. Giudemann, P. Poizat, G. Salaiin, and A. Dumont

as input. It can also serve as an expressive standalone specification language for
choreographies and can be easily extended with new choreography constructs.
Another advantage is that it makes possible to use jointly several formal veri-
fication tools and techniques as back-end, provided that a connection to those
tools exist. We have already developed a connection to the CADP verification
toolbox [2] via a translation to the LNT process algebra, one of the CADP
input specification languages. This enables the automated verification of some
key choreography analysis tasks (repairability, realizability, conformance, etc.).
Our framework is extensible with other front-end and back-end connections to,
respectively, other choreography languages and formal verification tools.

2 Verification

This section presents some key properties, which are of utmost importance when
designing choreography-based distributed system. They can be verified automat-
ically in our framework using model and equivalence checking techniques.

REALIZABILITY
2+3+4

CONFORMANCE
3+4

4
check
equivalence

SYNCHRONIZABILITY
2+3+5
synchronous
peer composition V\

) h ,

rat , Il]
generate peer models

peers f ;

:]

REPAIRABILITY
1

|
check

repairability

A
choreography
specification

3
compute
composition

check
equivalence

asynchronous
peer composition

CONTROL

/ \

6 n ‘ :
generate ' !

> —>| controllers !

controllers \ i

)]

Repairability. A choreography is not repairable when at some point in its
behaviour there is a non-deterministic choice between interactions involving dif-
ferent sending peers. Such a design is erroneous because there is no way to
make the corresponding distributed implementation respect the choreography
requirements. Detecting automatically (non-)repairable choreographies is diffi-
cult, because there are situations where such a non-deterministic choice actually
corresponds to the initial part of an interleaving of several interactions, and in
that case, the choreography is repairable.

Synchronizability. Synchronizability analyzes a set of peers and checks that
all interaction sequences in the asynchronous system are also possible in the
synchronous one. This property is necessary for ensuring the realizability and
conformance of possibly infinite systems (choreographies with loops). A recent
result [1] that we reuse here proves that checking synchronizability is decidable
and proposes a decision procedure for verifying this property.

VerChor: A Framework for Verifying Choreographies 3

Realizability. This property checks whether the distributed version of the sys-
tem behaves exactly as specified in the choreography. This is crucial in a top-
down development process, where peers are obtained via projection [6] from the
choreography, in order to ensure that the implementation perfectly matches the
global specification. In our framework, we can check equivalence-based notions
of realizability, as those used in [1, 5, 6].

Conformance. In a bottom-up development process, peers are being reused
and integrated into a new composition. The choreography serves as a contract
that the implementation under construction must respect. From a verification
point of view, it can be checked exactly as realizability, except that projection is
not necessary. Conformance checking takes as input a choreography and a set of
peers, whereas realizability checking only requires a choreography specification.

Control for enforcing realizability. If a choreography is not realizable (or
conformant wrt. a set of peers) yet repairable, we can enforce the distributed
system to respect the (synchronizability and) realizability of a choreography
by generating distributed controllers. They act locally by interacting with their
peer and the rest of the system in order to make the peers respect the choreogra-
phy requirements. These controllers are generated through an iterative process,
automatically refining their behaviours, as presented in [4].

3 Tool Support

We use Eclipse Indigo and the BPMN2 modeler as front-end for BPMN, and
XML for describing our intermediate format. The connection from our inter-
mediate format to CADP, that we use here for verifying the properties intro-
duced in Section 2, is achieved through a translation to the LNT process algebra
(see [5] for encoding patterns). CADP model and equivalence checking tools are
used here for verifying automatically all the properties presented in Section 2.
Verification of the properties is fully automated thanks to verification scripts
generated by our translator. The encoding into LNT also enables other kinds
of formal analysis with CADP, such as deadlock search, simulation, or checking
temporal properties written in MCL using the Evaluator 4.0 model checker.

Experiments. We show experimental results on some examples of our database,
which contains more than 200 choreographies (many of them are real-world ex-
amples found in the literature). It is worth observing that translation time (from
the input languages to CIF and LNT) is negligible even for huge examples. For
each experiment, the table gives the number of peers (P), interactions (Inter.),
and selection operators (Sel.). Then, we give the size of the corresponding LTS
and the size of the largest intermediate state space for generating the asyn-
chronous version of the distributed system (number of states and transitions),
and the overall time for checking whether the choreography is repairable (R,),
generating all LTSs (synchronous and asynchronous versions of the distributed
system), and verifying synchronizability (S.) and realizability (R).

We can see that BPMN choreographies can result in huge LTSs (see exam-
ple 7), because BPMN parallel operators are expanded in all the possible inter-

4 M. Giudemann, P. Poizat, G. Salaiin, and A. Dumont

Ex.| Lang. |||P|||mter.|||Sel]| |SI/IT]| f‘:é‘;‘;ﬁ;ﬁﬁ?? Time Rp\fegf'| "
1[Chor [[3] 10 | 1 21 /29 127 / 200 48s [V VIV
2 |BPMN|[6| 19 | 1 580 / 1,828 4,054 /12,814 |[1m43s|+/ | v/ | v/
3 |BPMN| 6| 19 | 1 18 / 20 750 / 3,298 |1m40s|v/ | v/ |
4 |BPMN| 6| 19 | 1 580 / 1,842 16,129 / 51,317 [1m45s| v/ | v/ | v/
50 Cp ||[7| 11 | 1 11 /11 158,741 / 853,559 | 5md7s| /| x | x
6 |BPMN|[12| 25 | 4 577 / 2,499 || ~1%10° / ~7*10° |8m43s|/ | v/ | v/
7 |BPMN| 15| 31 5 165,556 / 573,479||~2*10° / ~18*10%|1h34m| / | x | x

leaved behaviours when the corresponding LTS is generated. We note that the
overall time for generating LTSs for choreography and both distributed systems
(synchronous and asynchronous) as well as for verifying properties R,, S¢, and R
is reasonable for medium-size choreographies, see for instance examples 2, 3, 4, 6
in the table. It is most costly to check realizable examples because it deserves an
exhaustive exploration of all cases, whereas if the choreography is not realizable,
the analysis stops when a violation is found. The two causes of explosion are the
number of peers (e.g., 15 peers in example 7) and the degree of parallelism, that
is the number of branches and interactions executed in concurrent branches of
the choreography. If the choreography is not realizable, we generate local con-
trollers which synchronize together in order to enforce the distributed system to
respect the order of messages as specified in the global contract. For instance,
example 5 presents several ordering issues if peers are generated using projec-
tion. In that case, our process requires 6 iterations to construct these controllers,
meaning that 6 additional synchronization messages are necessary to make the
system realizable. It takes about 20 minutes for this example to successively
check synchronizability /realizability using equivalence checking and exploit the
resulting counterexample to refine controllers, until completion of the process.

Acknowledgements. This work is supported by the Personal Information Man-
agement through Internet (PIMI) ANR project.

References

1. S. Basu, T. Bultan, and M. Ouederni. Deciding Choreography Realizability. In
Proc. of POPL’12.

2. H. Garavel et al. CADP 2010: A Toolbox for the Construction and Analysis of
Distributed Processes. In Proc. of TACAS’11.

3. H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: A Tool for Model-based
Verification of Web Service Compositions and Choreography. In Proc. of ICSE’06.

4. M. Giiddemann, G. Salaiin, and M. Ouederni. Counterexample Guided Synthesis of
Monitors for Realizability Enforcement. In Proc. of ATVA’12.

5. P. Poizat and G. Salaiin. Checking the Realizability of BPMN 2.0 Choreographies.
In Proc. of SAC’12.

6. G. Salailin, T. Bultan, and N. Roohi. Realizability of Choreographies Using Process
Algebra Encodings. IEEE T. Services Computing, 5(3), 2012.

