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Résumé

Since the initial point of [Lan93] saying that Geographic In formation
Systems (GIS) were poorly equipped to handle temporal data, many re-
searchers have sought to integrate the time dimension into GIS [RHS01].
We present a time space modelling approach � and a generic software na-
med ARPEnTAge � capable of clustering a territory based on its pluri-
annual land-use organization. By adding the ability to repr esent, locate
and visualize temporal changes in the territory, ARPEnTAge provides
tools to build a Time-Dominant GIS. One main Markovian assum ption
is stated : the land-use succession in a given place depends only on the
land-use successions in neighbouring plots. By means of stochastic models
such as a hierarchical hidden Markov model and a Markov random �eld,
ARPEnTAge performs an unsupervised clustering of a territory in order
to reveal patches characterized by time space regularities in the land-use
successions. Two case studies are developed involving two territories car-
rying environmental issues. Those territories have variou s sizes and are
parameterized using long term surveys and/or remote sensing data. In
both cases,ARPEnTAge detects, locates and displays in a GIS the tem-
poral changes. This gives valuable information on the spatial and time
dynamics of the land-use organization of those territories .

keywords : Markov random �eld, MRF , second-order HMM , data mining
, landscape organization , land-use successions , temporalGIS , Hierarchical
Hidden Markov Model
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1 Software availability

Name : ARPEnTAge

Programming language : C++

Libraries used : Gnu STL, shapelib, gen2shp, txt2dbf

Inputs : csv �les holding landscape raster representation : Lambertconformal
conic coordinates (Tab. 2) or 2 level samplingTer-Uti data (Tab. 3)

Outputs : ESRI shape�les and DBF �les

User interface : Unix / Windows scripts �les

Availability : http ://www.loria.fr/ ~jfmari/App/

Licence : Gnu GPL.

Demo : http ://www.loria.fr/ ~jfmari/App/Arpentage/demo.zip

2 Introduction

Stochastic modelling is a convenient way of building statistical and proba-
bilistic models for capturing the spatial and temporal variability that is not
yet fully understood [HK08, SMDF+ 12] especially in all alive processes. In agri-
cultural landscapes, land-use (LU) seem randomly distributed among di�erent
agricultural �elds (plots) managed by farmers. Nevertheless, the landscape spa-
tial organization and its temporal evolution reveal at vari ous scales the presence
of logical processes and driving forces related to the soil,climate, cropping sys-
tem, and economical pressure whose understanding is a majorchallenge mainly
for landscape agronomists [BRM+ 12]. The data mining approach involving spa-
tial and temporal clustering methods to get a landscape description in terms of
land-use patterns has already demonstrated its capabilities in knowledge extrac-
tion [LMB09, SLM + 12]. Such a description is useful in various areas : [For95] has
demonstrated that a concise description of the mosaic of plots in terms of patch
arrangement is necessary for ecologists to understand the relationship between
landscape organization and species �ows or biotic diversity. [JSMP06] use such
a plot mosaic description to lower runo� on agricultural lan d by spatially alter-
nating di�erent crops at the catchment level. This descript ion is also of interest
in landscape governance [SLOW11] issues because land-use location in�uences
the assessment of the visual aesthetic of a landscape.

This paper presents a method � and a generic software namedARPEn-
TAge (Analyse de Régularités dans les Paysages : Environnement, Territoires,
Agronomie or �Landscape Regularities Analysis : Environment, Territory, Agro-
nomy�, arpenter is a French verb meaning �to survey�) � capable of clustering
territories of various sizes into patches based on their pluri-annual LU organiza-
tion. It provides a Geographic Information System (GIS) with a description of
the main time changes in the landscape together with their localizations. The
scope of this software is not restricted to agriculture but may extend to other
�elds whenever it comes to locate sequences in space like in time space epide-
mic or ecological species surveillance. It implements a Markov random �eld of
sequences whose parameters can be estimated based on a stream of time space
data : long term surveys or remote sensing data.

This paper is organized as follows : section 3 presents the stochastic models
that ARPEnTAge implements : second-order Hidden Markov Models (HMM2),
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Hierarchical Hidden Markov Models (HHMM2), and Markov Random Fields (MRF).
Section 4 describes the method used byARPEnTAge to cluster a 3-D stream
of data representing a time sequence of landscapes. Section5 evaluates AR-
PEnTAge on two di�erent annual landscape raster representations : 2level
resolution surveys and remote sensing data. Section 6 compares ARPEnTAge
with similar software programmes. Finally, Section 7 focuses onARPEnTAge
in the framework of temporal GIS.

3 Temporal and spatial modelling background

ARPEnTAge relies on a stochastic Markovian principle to model time space
landscape regularities. In short, this framework is based on the two following
assumptions in spatial and temporal domains respectively :

� the Markov random �eld assumption assumes that the land-use of a given
�eld depends only on the land-use of the neighbouring �elds ;

� the Markov chain assumption assumes that the land-use of a given �eld
in a year depends only on the land-use of the recent previous years in the
same �eld.

Therefore, these two assumptions may be summarized by assuming in turn that
the land-use succession of a given �eld only depends on the land-use successions
in the neighbouring �elds.

3.1 Hidden Markov Models

A Hidden Markov Model is a Bayesian network which representsthe se-
quence of observations as a doubly stochastic process : an underlying �hidden�
process, called the state sequence of random variablesQ0; Q1; Q2; : : : QT and an
output (observation) process, represented by the sequenceof random variables
O0; O1; O2; : : : OT over the same time interval.

. . .Q0 Q1 Q2 QT

O0 O1 O2 OT

P(Q1=Q0) P(Q2=Q1) P(Q3=Q2)

P(O0=Q0) P(O1=Q1) P(O2=Q2) P(OT =QT )

Figure 1 � Conditional dependencies in an HMM1represented as a Bayesian
network. The hidden variables (Qt ) govern the observable variables(Ot )

We de�ne a discrete hidden Markov model (HMM) by giving :
� E = f e1; e2; : : : ; eK g; a �nite set of K states that are the outcomes ofQt ;
� A a matrix de�ning the transition probabilities between the s tates. These

probabilities are time independent.

A = ( aij ) for a �rst-order HMM ( HMM1). aij is the probability P(Qt =
ej =Qt � 1 = ei ); 8t = 1 ; T that the Markov chain is in state ej at
index t assuming it was in stateei at index t � 1 (see Fig. 1) ;

A = ( aijk ) for a second-order HMM (HMM2). aijk is the probability P(Qt =
ek =Qt � 1 = ej ; Qt � 2 = ei ); 8t = 2 ; T that the Markov chain is in
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. . .Q0 Q1 Q2 QT

O0 O1 O2 OT

P(Q2=Q0; Q1) P(Q3=Q1; Q2)

P(Q1=Q0)

P(O0=Q0) P(O1=Q1) P(O2=Q2) P(OT =QT )

Figure 2 � Conditional dependencies in an HMM2represented as a Bayesian
network

state ek at index t assuming it was in stateej at index t � 1 and ei

at index t � 2 (see Fig. 2) ;

� O = f o1; o2; : : : oL g a set of L observations that are the outcomes ofOt ;
� B = f b1() ; b2() ; : : : ; bK ()g a set of K probability density functions ( pdf )

over O, each of them being associated to a stateei ; i = 1 ; K .

3.1.1 HMM2properties

Each second-order Markov model has an equivalent �rst-order model on the
2-fold product spaceE � E but going back to �rst-order increases dramatically
the number of states. For instance, �gure 3(b) shows the equivalent HMM1as-
sociated with the HMM2depicted in �gure 3(a). In this model the states in the
same column share the samepdf .

20 1 3 4

(a) original second-order model

01 12 23 34

22 33

a123 a234

1 - a123

a222 a333

1 - a222 1 - a333

1

1 - a234

pdf pdf

(b) �rst-order equivalent model

Figure 3 � Decreasing the order of aHMM2.

The transition probabilities determine the characteristi c of the state duration
model. In a HMM1, whose topology is depicted in the �gure 3(a) : linear, left-to-
right, self-loop, the probability dj (l ) that the stochastic chain loops l times in
the state j follows a geometric law of parameterajj :

dj (l ) = al � 1
jj � (1 � ajj ): (1)

In the model depicted in �gure 3(b), in which the successive states are in-
dexed by i = j � 1; j; k = j + 1 , the duration in state ej may be de�ned as :

dj (0) = 0 (2)
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dj (1) = aijk ; i 6= j 6= k

dj (n) = (1 � aijk ) � an � 2
jjj � (1 � ajjj ); n � 2:

These models achieved interesting results in pattern recognition and know-
ledge extraction in areas such as : speech recognition [MHK97, PBW98, EdP10],
hydrology [LABP12], biology [EAA + 09, ETD+ 11] and agronomy [MLB06, LBBS+ 06].

3.1.2 Hierarchical hidden Markov Models

We de�ne a discrete hierarchical hidden Markov model (HHMM) as aHMMwhose
states areHMM[FST98]. Therefore, a second-order hierarchicalHMM(HHMM2) is a
2-level hierarchical hidden Markov model in which the mainHMMis a HMM2(see
Fig. 4).

. . . . . . . . .

. . .

. . .

Q0 Q1 Q2 QT
P(Q1=Q0)

P(Q2=Q0; Q1) P(Q3=Q1; Q2)

Figure 4 � 2-level second-order hierarchical hidden Markov model (HHMM2)
represented as a Bayesian network. The observation probabilities are given by
the HMM2depicted in Fig. 2

The second-order Hidden Markov Models implement an unsupervised trai-
ning algorithm � the Baum-Welch algorithm [DLR77] � that can tune the HHMM2
parameters from a corpus of observations in order to �t the model to the obser-
vations. The estimated model enables to segment each sequence in stationary
and transient parts and to build up a classi�cation together with its a posteriori
probability

P
�
QT

0 = qT
0

�
� OT

0 = oT
0

�
; (3)

while the uncertainty of the class assignment of observation ot in class ek is
measured by thea posteriori probability

P
�
Qt = ek

�
� OT

0 = oT
0

�
; t = 0 ; T; ek 2 E: (4)

3.2 Stochastic spatial modelling

In the space domain, theMRFtheory is an elegant mathematical way for ac-
counting neighbouring dependencies [GG84, Bes86] betweenplots. A landscape
representation is given by a setS of sites (eg plots) and a relation of neigh-
bourhood on S (Fig. 5). j S j denotes the number of sites andN (i ) the set of
neighbours of sitei . As in section 3.1, we callE = f e1; e2; : : : ; eK g, a set of K
di�erent classes that will play the role of patches. Z i = ek means that site i is
assigned to classek . The collection of outcomesf Z i = zi g is called acon�gura-
tion. In the following, the random variables Z i will belong to R K . In particular,
ek is a binary vector of R K having its kth component set to 1, all the others
being 0.
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3.2.1 The Potts model with external �eld

In a Potts model with external �eld, a unique parameter � > 0 controls
the pair-wise interaction � aggregation versus dispersion � between the patches
whereas an additional vectorVi weights the values ofzi . The probability of a
con�guration Z = z is given by :

P(Z = z) =
exp

�
�

P
i 2 S

h
zt

i Vi � �
P

j 2N ( i ) zt
i zj

i�

W
:

W is a normalizing factor involving all the possible con�gurations. Its compu-
tation is intractable, hence the need of approximations such as the mean �eld
approximation. zt denotes the transpose of vectorz and the product zt

i zj is
equal to 1 if the sites i and j are in the same class, 0 otherwise.

3.2.2 The Mean Field approximation

The mean �eld theory applied to MRFprovides an approximation of the distri-
bution of a MRFthat allows the design of fast algorithms in image segmentation.
In this theory, the class assignment probabilities of the neighbours of site i
are set constant and replaced by their mean value. In this framework, [CFP03]
introduce the self-consistency equation :

Pmf
i (es) =

exp
h
� Vi (es) + �

P
j 2N ( i ) Pmf

j (es)
i

P K
k=1 exp

h
� Vi (ek ) + �

P
j 2N ( i ) Pmf

j (ek )
i ; (5)

Vi (ek ) being the kth component of Vi . This equation says that the mean com-
puted based on the mean �eld approximation must be equal to the mean used
to de�ne the approximation.

3.3 Approximation of a MRFby a HMM

(a) plot con�guration (b) neighbour. graph (c) Hilbert-Peano fractal
curve

(d) LU allocation

Figure 5 � Simple landscape and its neighbourhood graph

HMMcan approximate e�ciently MRF[BP95, GP97] by means of a Hilbert-
Peano fractal curve (cf. Fig. 5(c)) that introduces a total order in the lattice of
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sites [Ska92, DCOM00]. The 2-D landscape is �rst sampled using a 2n � 2n grid.
A scan is next performed using the Hilbert-Peano curve. To take into account
the irregular neighbour system, the variable plot size and the overall landscape
shape, we adjust the fractal depth by removing the fractal motifs lying entirely
in a plot. For example, �gure 5(c) shows two successive merging in the bottom
left �eld that yield to the agglomeration of 16 points. The �b lank� pixels in the
2n � 2n image that are not in the landscape are assigned to the same �blank� plot
and are partly removed in such a way. Two successive points inthe fractal curve
represent two neighbouring points in the landscape but the opposite is not true,
nevertheless, this rough modelling of the neighbourhood dependencies has shown
interesting results compared to an exact Markov random �eld modelling [GP97].

4 ARPEnTAge description

ARPEnTAge is based onCarrotAge [LBBS+ 06] : a data mining tool-
box for mining temporal data. Therefore, these two softwareprogrammes share
a great part of code. They have the same programs to edit and train the HMM2.
ARPEnTAge produces ESRI shape�les that represent the landscape by means
of a mosaic of patches, each of them being characterized by a temporalHMM2that
models the temporal dynamics.ARPEnTAge takes advantage of theCarro-
tAge graphic user interface facilities to display the temporal changes involved
in the extracted clusters.

An elementary observation can range from a LU (such as cereals in the Yar
watershed case study) or a LU category (such as Wheat in the Seine watershed
case study) to a �xed length LU succession spanning several years (usually 2,
3 or 4) on a plot. In the latter case, the observation time sequence over the
study period is made of overlapping LU sub sequences. The length of the LU
succession in�uences the interpretation of the �nal model. However, the total
number of LU successions is a power function of the succession length, and
memory resources required during the estimation ofHMM2parameters increase
dramatically. The user de�nes the LU categorization in a con�guration �le (box
2 in Fig. 6).

Figure 6 � Mining data with ARPEnTAge
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ARPEnTAge implements hierarchicalHMM2as shown in Figure 7. A master

1a //
��

2a //
��

3a
��

1b //
��

2b //
��

3b
��

a //
��

�� ""DDD
DDD

boo
��

��||zzz
zzz

c //
GG

OO <<zzzzzz
doo

II

OObbDDDDDD

1c //
II

2c //
II

3c
II

1d //
II

2d //
II

3d
II

Figure 7 � Graph of state transitions in a hierarchical HMM. Each state x 2
f a; b; c; dg of the HHMMtopology is a HMMwhose states are1x; 2x; 3x. In this
�gure, the HHMMtopology is ergodic (all states are inter connected) whereas the
HMMtopology is left-to-right and linear

HMM2� whose underlying transition graph is made up of states named a; b; c; d
� approximates the MRF. In each master state x, the LU succession proba-
bilities are given by a temporal HMM2whose underlying graph contains states
named1x; 2x; 3x. The editing and training of this HHMM2is performed using the
corresponding programs of theCarrotAge toolbox.

In CarrotAge , the design of the HMM2is a crucial step. The user has to
specify the underlying graph (linear, ergodic, . . .) and to decide which state
must be container or Dirac [LBBS+ 06]. In ARPEnTAge , the user must simply
set the number of states (box 3 in Fig. 6) in the ergodic model (a,b,c,d in Fig.
7) related to the number of classes to extract and, in each class, the number of
states of a linear model related to the number of steady periods or snapshots
(1,2,3 in the same �gure).

4.1 a posteriori decoding

ARPEnTAge regroups the territory sites into patches (box 4 in Fig. 6) by
assigning a class to each site. The assignment is done in three steps :

1. De�ne a K state ergodicHHMM2(see Fig. 7) that process the observations
along the fractal curve. The observation on a given site is the temporal
LU sequence observed on this site. This sequence is built up with single
LU observed at time t such as(lu t ); t = 0 ; T or overlapping temporal
n-uplets such as([lu t ; lu t +1 ; lu t + n � 1]); t = 0 ; T � n + 1 .

2. Let CarrotAge train this HHMM2and compute during the last iteration
of the EM algorithm the a posteriori class assignment probabilities

P (zi = ek j curve) ; i 2 S; k = 1 ; K: (6)

3. To take into account the full neighbourhood of each site, we next model
the class assignment using a K-colour Potts model with a site-dependent
external �eld whose mean �eld is the a posteriori probabilities computed
in step 2 (Eq. 6). Finally, the ICM algorithm [Bes86] performs the class
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assignment. Using one iteration, it scans the territory following the fractal
curve and gets, for all i 2 S, a new estimate ofPmf

i (es) based on Equa-
tion 5. The site i is labelled by arg maxk Pmf

i (ek ) and the mean �eld at
site i is updated to be 1 on this component and 0 on the others.

It seems reasonable to set the external �eld using Eq. 6 :

Vi (ek ) = � log (P(zi = ek =curve)) :

The best results have been obtained by setting� = 1 . Then Equation 5 intro-
duces a smooth e�ect in Eq. 6 that eliminates the e�ect of the Peano curve in
which only 2 neighbours � the previous and the next in the fractal � were taken
into account.

5 Case studies

5.1 Data preparation

The corpus of spatial and temporal LU data is generally built either from
remotely sensed LU data or from long-term LU surveys. Depending on the data
source, several di�erences in the LU database may exist regarding the number of
LU modalities and the representation of the spatial entities : polygons in vector
data or pixels in raster data. In the following, the �rst data source (remotely
sensed LU) is illustrated by the Yar watershed case study andthe second (long-
term LU �eld surveys) is illustrated by the Seine watershed case study. Principal
characteristics of the two case studies are summarized in Table 1.

Case study
Seine watershed Yar watershed

Data source Ter-Uti surveys Remote sensing
Surface (km 2) 112000 61
Study period 1992 � 2003 1997 � 2008
LU modalities 83 (reduced to 49) 6
Atomic spatial unit Ter-Uti point polygon
Data base format Excel data sheet ESRI Shape�le

Table 1 � Comparison between 2 land-use databases coming from two di�erent
sources : land-use surveys and remote sensing

5.2 ARPEnTAge on remotely sensed LU data : the Yar
watershed

This watershed � 61.5 km2 � is known as being a place in Brittany where
there is an important phytoplanktonic biomass and Ulva speciesmass prolife-
ration risk. Using data obtained by remote sensing analysisand spanning the
1997 � 2008 period, we have distinguished only six LUs : Urban, Water, Forest,
Grassland, Cereal and Maize.

On these data, usingCarrotAge , we have performed preliminary temporal
segmentation tests with linear models having an increasingnumber of states
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nLig=153157, y1=1997, yn=2008, nAttr=1, indeter=0, isHea der=1
x y pt poly 97 98 09 00 01 02 . . . 06 07 08
164603 2424461 1 4825 1 1 1 1 1 1 . . . 1 1 1
164623 2424461 2 4825 1 1 1 1 1 1 . . . 1 1 1
164643 2424461 3 4800 3 3 3 3 3 3 . . . 3 3 3
164663 2424461 4 5005 3 3 3 3 3 3 . . . 3 3 3

. . .

Table 2 � First lines of the Yar data sheet. The �rst line is a header giving the
�le size (153157 lines), the study period (1997 � 2008), the number of attributes
per site each year (=1), the value of the �blank pixel� (=0) and speci�es that
the next line gives the column's names : x, y coordinates (Lambert conformal
conic), pixel Id, polygon Id, and the LU sequence betweenyear1 and yearn

on the whole territory. These tests showed that a 6-state linear HMM2was the
best compromise to achieve an accurate time resolution witha small number
of parameters. This de�nes 6 timestamps. Plotting together the surface size
devoted to each LU on these 6 timestamps gives the major trends of the LU
dynamics (Figure 8).

The patches shown in �gure 8 are associated to a 5-state ergodic HHMM2.
States 1 and 2, respectively represent Forest and Urban and are steady during
the study period. The Urban state is also populated by less frequent LUs that
constitute its privileged neighbours. Grassland is the �rst neighbour of Urban,
but it vanishes over the time. The other 3 states exhibit a greater LU diversity
and a more pronounced temporal variation. In state 3, Grassland, Maize and
Cereal evolve together until the middle of the study period. Next, Grassland
and Maize decrease and are replaced by Cereal. This trend mayshow that a
change in the cropping system was undertaken in the patches belonging to this
state and threaten the groundwater and surface water quality. State 4 and state
5 represent 2 steady areas populated mainly by Grassland andForest.

5.3 ARPEnTAge on long-term LU surveys : Ter-Uti
data on the Seine watershed

The Ter-Uti data are collected by the French agriculture administration
on the whole French mainland territory. They represent the land use of the
country on a one year basis. Two levels of resolution are achieved (see Fig. 9)
and determine 2 fractal scans. The aerial photos are �rst ordered by a Hilbert-
Peano scan while the 36 points inside a photo are ordered using a common space
�lling curve. This de�nes an extended fractal curve on which the a posteriori
class assignment probabilities (Eq. 6) are computed. The mean �eld is de�ned
at the photo level by averaging the mean �eld probabilities of the 36 points
inside a photo. Finally, the ICM algorithm is run on the regul ar photo lattice
and classi�es each photo.

The 83 LU have been grouped with the help of agricultural experts into 49
categories following an approach based on the LU frequency in the spatial and
temporal database and the similarity of crop management.

On the Seine watershed, represented by 112806 sites (see Tab. 3), ARPEn-
TAge exhibited patches whose spatial organization looks similar to the mosaic
obtained by [MSB04, MSB07] on the same data in their work for modelling the
spatial dynamics of farming practices in the Seine watershed and for understan-
ding the relations in di�use pollution observed in the ground waters and surface
waters of the river Seine.
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Figure 8 � The Yar watershed seen as patches of LU dynamics. Each map unit
stands for a state of theHHMM2used to achieve the spatial segmentation. Each
state is described by a diagram of the LU evolution. Locationin France of the
Yar watershed is shown by a black spot depicted in the upper middle box

nLig=112806, y1=1992, yn=2003, nAttr=1, indeter=95, isHe ader=1
pt dep pra photo pti 92 93 94 . . . 00 01 02 03
1 2 2034 8885 1 27 28 42 . . . 42 27 27 27
2 2 2034 8885 2 27 33 27 . . . 40 27 27 42
3 2 2034 8885 3 27 40 52 . . . 27 40 27 33

. . .

Table 3 � First lines of the Seine data sheet. The (x,y) coordinateshave been
replaced by the photo Id, the intra grid point Id ( pti : 1 � 36). Each site is
labelled by the administrative department (dep) and the agricultural district
(pra = smaller agricultural region) where it is located
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(a) an aerial photograph
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(d) the basic grid cove-
ring France

Figure 9 � Collecting the Ter-Uti data : 3820 meshes square France, 4 aerial
photographs are sampled in a mesh, a 6x6 grid determines 36 sites.

In this work, 147 districts were �rst labelled by their main c rop successions
using CarrotAge . As the cropping system was assumed as being stationary
over the whole study period, a one stateHMM2was speci�ed. The observations
were temporal triplets of LU. Their distribution de�ned a cr opping plant that
was computed on each agricultural district. A linear component analysis (LCA)
followed by a hierarchical classi�cation (HC) using Ward's method identi�ed
homogeneous regions made up of groups of contiguous agricultural districts
which exhibited similar combinations of crop successions (see Fig. 10(b)). It
is interesting to note that ARPEnTAge produced roughly a similar mosaic
without having to use the geographical limits of the agricultural districts. In
both experiments, the observations were temporal tripletsof LU, the number
of states in the master HHMM2was set to the same number of classes found by
the HC and the number of steady periods was set to 1 like in Mignolet's work
in order to have a fair experiment.

6 Comparison with other similar software pro-
grammes

ARPEnTAge provides a stand-alone analysis tool to extract patches based
on their pluri-annual LU organization, it can be seen as a GISanalysis tool. Since
the initial point of [Lan93] saying that GIS were poorly equipped to handle tem-
poral data, many researchers have sought to integrate the time dimension into
GIS [RHS01]. It is now well accepted in many �elds such as pedagogy [Pia73], an-
thropology [Hal90], GIS [Peu02] and agronomy [LMB09, SLM+ 12] that the tem-
poral and spatial dimensions are interrelated and cannot beexchanged. This
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(a) ARPEnTAge (b) LCA+HC

Figure 10 � Comparison between two clusterings of the Seine watershed.
LCA+HC represents the map obtained by statistical methods [MSB07]. AR-
PEnTAge gives results directly from Ter-Uti data without considering the
district borders. The patch's colours are characteristic of the LU succession
distributions that are roughly the same in both maps

explains why a 3-D modelling approach provides a limited answer. Following
Langran's and Peuquet's works, a GIS that handles time data can fall into
three categories [Peu00, Wac00].

Space-Dominant Models : space is considered as a container in which events
occur. A new snapshot is created every time a new event occurs. Time is
frozen in each layer.

Time-Dominant Models : speci�c patterns that occur repeatedly or in se-
quence constitute units that are geographically located.

Relative Space-Time Models : the relations between entities determine their
locations.

Several software programmes that implement Space-Dominant Models and ha-
ving clustering capabilities, have been released in various domains :

� In the image segmentation area, SpaceEM31 is used for clustering various
data from hyper spectral satellite images, remote sensing and mapping
epidemics of ecological species.

� In the space-time disease surveillance domain, ClusterSeer 2, SatScan3,
GeoSurveillance4 and the Surveillance package for R5 provide maps from
disease data. More generally, the GNU R statistical tool provides access
to Geoprocessing tools6 (ArcGIS, QGIS, . . .). R programmers can read
shape�le, do unsupervised clustering on the spatial entities based on their
attributes and represent the results as shape�les. But, thetime dimension
of the attributes is not handled.

1. http ://spacem3.gforge.inria.fr
2. http ://www.terraseer.com
3. http ://www.satscan.com
4. http ://www.acsu.bu�alo.edu/� rogerson/geosurv.htm
5. http ://cran.r-project.org/web/packages/surveillan ce/
6. http ://cran.r-project.org/web/views/Spatial.html
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In our knowledge, no software provides a simultaneous analysis of time se-
quences and their spatial locations. Consequently,ARPEnTAge can be seen as
the �rst software in the agronomic area implementing a Time-Dominant Model
and processing time-space data.

7 Discussion and conclusions

We have presented a software programme calledARPEnTAge whose goal
is to achieve an unsupervised clustering of a 2-D territory represented by its
LU successions. This software is based on a stochastic modelling of the time
space stream of data. The user controls the clustering through a limited set of
parameters : the length of the elementary observation (1 LU for the Yar case
study and 3 successive LUs in the Seine watershed case study), the number of
states in the masterHHMM2that speci�es the number of clusters to be extracted
and the number of states of the temporalHMM2that de�ne the number of desired
steady periods.

In the mean �eld paradigm applied to the Potts model, we have shown that
the initialization of the mean �eld by the a posteriori probabilities given by a
fractal scan provides a tractable opportunity to obtain pat chy landscapes. These
probabilities can be used to de�ne an external �eld as well. But so far, the value
� that controls the pixel interaction strength has not been not learnt and set by
the expert. A logical continuation of this work would be to consider its learning.

ARPEnTAge rapidly produces patchy landscapes of various sizes whose
classes can be analyzed more precisely by agronomists. As shown in the Yar
case study,ARPEnTAge implements a Time-Dominant model and proposes
a visualization of changes � eg where the grasslands are replaced by crops �
by means of shape�les and Markov diagrams thatCarrotAge can display.
In the Seine case study,ARPEnTAge produced a clustering of the watershed
based on 3 year successions and computed a shape�le that can be viewed as a
snapshot showing clusters having stationary successions over the study period.
In this case, the HHMM2acts as a Space-Dominant model in which the dominant
successions are the themes to be located.

In a stochastic framework, a plot mosaic description is obtained by estima-
ting as many probabilistic distributions as clusters that a clustering program
can extract, each of them characterizing the content of a cluster. Only few
works tackle the issue of describing the neighbour e�ects between clusters and
their time dynamics. ARPEnTAge showed interesting capabilities in quanti-
fying the neighbourhood e�ects between clusters. [LMB09],in their work to
describe a patchy landscape having environmental issues, usedCarrotAge to
determine the main LU successions andARPEnTAge to locate them inside
the territory. As they observed that LU successions were stationary over the
1996-2007 period, they used a simple temporal HMM2 to represent the states
of the hierarchical HMM2 (see Fig. 11). This model had 2 states. One � S(X ) �
described the distribution of the temporal quadruplets of interest related to the
successionS(X ) involving the LU X , the other state � N (X ) � captured the dis-
tribution of the temporal quadruplets in the neighbourhood. The Markov �eld
introduces a blur in the patch's frontier and in the patch estimation because a
site is classi�ed not only based on its temporal characteristics (the quadruplet
succession) but depends now on the classi�cation of the neighbouring sites. A
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patch was then described by two stochastic pluri-annual LU distributions : one
characterizing the inside and the second characterizing the border. The latter
in�uenced their relative locations as in a relative time space model. That last
point shows that ARPEnTAge brings a valuable help for creating shape�les
from time-space data in temporal GIS.
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Figure 11 � Graph of state transitions in a HHMMthat describe 4 kinds of patches
based on the inside � S(X) � and border � N(X) � observation dis tributions
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